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Abstract: Immunotherapy using dendritic cell-based vaccination is a natural approach using the
capabilities and functions inherent in the patient’s immune system to eliminate tumor cells. The
development of dendritic cell-based cell technologies evolved as the disorders of dendritic cell
differentiation and function in cancer were studied; some of these functions are antigen presentation,
priming of cytotoxic T-lymphocytes and induction of antigen-specific immune responses. At the initial
stage of technology development, it was necessary to develop protocols for the in vitro generation of
functionally mature dendritic cells that were capable of capturing tumor antigens and processing and
presenting them in complex with MHC to T-lymphocytes. To achieve this, various forms of tumor-
associated antigen delivery systems were tested, including lysates, tumor cell proteins (peptides),
and DNA and RNA constructs, and it was shown that the use of DNA and RNA constructs was the
most effective method, as it made it possible not only to deliver the most immunogenic epitopes
of tumor-associated antigens to dendritic cells, but also to enhance their ability to induce antigen-
specific cytotoxic T-lymphocytes. Currently, cell therapy based on dendritic cells is a modern basis for
antigen-specific immunotherapy of cancer due to the simplicity of creating DNA and RNA constructs
encoding information about both target tumor antigens and regulatory molecules. The potential
development of cell technologies based on dendritic cells aims to obtain antigen-specific cytotoxic
T-lymphocytes induced by dendritic cells, study their functional activity and develop cell-based
therapy.
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1. Introduction

Oncological diseases are some of the leading causes of death. The high incidence of
cancer can be explained by various factors (for example, adverse environmental conditions,
social stress and the increased incidence of viral infections). As our understanding of the
immune system and its functions expanded, it became apparent that the general reactivity
of the immune system undergoes shifts during the course of human development. On
the one hand, there is the involution of the thymus, and, on the other hand, there is the
“training” of the immune system through targeted vaccination and as a result of transferred
diseases. All these processes can influence the activity of the immune system in general
and the antitumor immune response in particular. The key players in the activation of
antigen-specific immune responses are antigen-presenting cells, dendritic cells in particular,
which mediate antitumor immunity through the activation of CD8+ and CD4+ T-cells in
the tumor microenvironment. The defects of dendritic cell maturation and differentiation
described in cancer patients are associated with ineffective antitumor defense. Therefore,
significant attention is directed towards the restoration of the antigen-presenting function
of dendritic cells, which, in turn, is correlated with a more effective antitumor immune
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response. Functionally mature dendritic cells were obtained under in vitro conditions using
various protocols for their generation from monocytes of cancer patients, with subsequent
“training” by delivery of tumor antigens in the form of peptides, lysates, DNA plasmids
or RNA by various methods (liposomes, transfection and transduction). Protocols for the
induction of antitumor immune responses using induced antigen-specific dendritic cells
showed their efficacy in both in vitro and in vivo studies, including clinical studies.

2. Disruption of Induction and Development of Antitumor Immune Response in the
Cancer Process

Tumors contain heterogeneous cancer cells, including tumor stem cells [1,2], which
interact with microenvironmental cells and immune cells [1,2]. Progressive tumor growth is
associated with escape from immune control [3]. The development of the tumor process is
associated with the impact of malignant cells and their microenvironment on immune cells,
causing their suppression and changes in their activity. It has been shown that in patients
with cancer, the number of circulating dendritic cells, in particular myeloid dendritic
cells, decreases, and the ratio of myeloid and plasmacytoid dendritic cells changes. These
changes are indicated for patients with breast cancer, melanoma and pancreatic cancer [4–6].
In addition to changes in the number and ratio of the main populations of dendritic
cells, there is also a violation of their maturation and differentiation and suppression
of their functional activity [7,8]. Reduced accumulation of mature dendritic cells was
found in patients with cervical cancer [9], hepatocellular carcinoma [10], lung cancer [11],
colorectal cancer [12] and breast cancer [13]. Blockade of dendritic cell differentiation in
cancer patients is most often associated with VEGF, a tumor microenvironmental factor
that stimulates tumor angiogenesis [14,15]. Accordingly, the content of VEGF negatively
correlates with the number of dendritic cells in the blood and tumors in various types of
human cancer [16]. These studies suggest that the lack of functionally mature dendritic
cells in tumors is a major factor contributing to overall immune evasion. A consequence
of defective antigen presentation in cancer patients is a lack of T cell response, which
may result from anergy or exhaustion. It should be noted that anergy and exhaustion
are reversible processes that arise as a result of different transcriptional programs [17,18].
Anergy occurs during priming, whereas exhaustion occurs in previously activated T cells
that undergo repeated exposure to suboptimal amounts of antigens in the presence of
negative costimulation. In this regard, T cell exhaustion has been shown to be a major factor
in tumor-induced immunosuppression in a number of cancer patients [19,20]. The negative
influence of tumor cells and their microenvironment is manifested in the differentiation
of effector cells and dendritic cells into suppressor cells [21], mediated by “checkpoint”
molecules, which is highly expressed in tumor-infiltrating dendritic cells, inhibiting T-cell
activation and cytokine production [22]. Another mechanism involves enhancing the
activity of T-cell immunoglobulin and mucin domain-containing protein-3 (TIM-3) on
dendritic cells, which inhibits immune signal transduction [23,24]. The presence of VEGF,
CCL1, CCL2 and CXCL5 in a conditioned medium from colorectal cancer explants was
shown to inhibit dendritic cell maturation and IL-12 production, while IL-10 secretion
increased [25]. Melanoma cells expressing β-catenin were found to induce resistance
to immunotherapeutic agents, reduce dendritic cell and T-cell infiltration, and promote
tumor growth [26]. Moreover, the presence of prostaglandin E2 stimulated tumor growth
by disrupting the accumulation of intratumoral CD103+ dendritic cells [27]. Metabolic
dysfunction may also affect dendritic cell maturation in cancer patients. Hypoxia, lactic
acid production and decreased pH impair normal dendritic cell function [28]. Metabolites
from the tumor microenvironment have been shown to induce lipid peroxidation, which
ultimately leads to lipid accumulation in dendritic cells [29,30]. These lipid particles
inhibit the migration of the peptide–MHC I complex to the surface of dendritic cells
and impair the cross-presentation potential of T cells, blocking their activity [31,32]. It
has been shown that tumor-infiltrating plasmacytoid dendritic cells are not capable of
producing type I IFN but actively express indoleamine 2,3-dioxygenase (IDO) and ICOSL
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and stimulate Treg cells. This enhances tumor progression [33,34]. A large number of tumor-
infiltrating plasmacytoid dendritic cells in cancer patients is associated with a negative
prognosis [35,36]. Dendritic cells in the tumor microenvironment have a lower antigen
trafficking potential due to controlled expression of CCR7 [37], resulting in a reduced ability
to induce T cells in lymph nodes.

3. Dendritic Cells, Tumor Antigen Presentation and Induction of Antitumor
Immune Response

Antigen-presenting cells (macrophages, dendritic cells and B cells) play an important
role in both the innate and adaptive immune responses [38]. Dendritic cells are the most
important of the antigen-presenting cells, which were first described by Ralph Steinman in
1973. They perform a number of specific functions in immunological processes, such as the
initiation, regulation and maintenance of immune responses [39].

Currently, the heterogeneity of dendritic cells, their division into subgroups with
different phenotypic and functional properties, and their role in immunoregulation have
been described [40,41]. Four major subpopulations of dendritic cells involved in antitumor
immunity have been described. The first two are represented by subgroups of conventional
(myeloid) dendritic cells (cDCs): CD11c+ MHC class II+ cDCs, which are present in periph-
eral and lymphoid tissues: cDCs type 1 (cDC1s) are characterized by XCR1 and CLEC9a
markers in mice and BDCA-3 in humans [42]; and cDCs type 2 (cDC2s) are characterized
by CD11b and SIRPα markers in mice and BDCA-1 in humans. The next subpopulation
of dendritic cells is the monocyte group (moDCs), and they differentiate from monocytes
exclusively under inflammatory conditions. This subpopulation of dendritic cells are also
called “inflammatory” dendritic cells [43,44]. The last major subpopulation is represented
by plasmacytoid dendritic cells (pDCs). They are characterized by Siglec-H markers in
mice and BDCA-2 and CD123 in humans. cDC1s are capable of inducing antitumor im-
mune responses through cross-presentation of tumor antigens to CD8+ T cells [45,46].
cDC1s are capable of engulfing necrotic or apoptotic tumor cells and presenting antigens
to effector cells in the MHC class I complex, inducing the emergence of a population of
antigen-specific CD8+ T cells [45,47]. The development of cDC1s depends on various
transcription factors, including BATF3 [45] and IRF8 [48,49]. Genetic deletion of Batf 3
or point mutations in the Irf8 gene lead to the development of a cDC1 defect. With Batf3
deficiency, there is an increased frequency of development of cancer processors caused by a
defect in tumor-specific CD8+ T-cell immunity [22,45]. Priming of naive CD8+ T cells has
been shown to depend on the ability of cDC1s to migrate from tumors to regional lymph
nodes [37] and cDC1s in the tumor microenvironment to support the cytotoxic activity of
intratumoral CD8+ T cells [50]. The antitumor role of cDC1s is also realized through the
active production of the cytokines CXCL9/CXCL10 and IL-12, which leads to activation
and stimulation of infiltration of CD8+ T cells in tumors [51]. cDC1s are thought to be
specialized not only for priming CD8+ T cells, but also for priming CD4+ T cells, which
has a synergistic effect in mediating the antitumor cytotoxic immune response [52]. cDC2s
efficiently present MHC class II antigens to trigger CD4+ T cells. They stimulate antitumor
responses of CD4+ T cells and indirectly support the function of CD8+ T cells in the tumor
microenvironment [41,53]. The presence of CD5+ cDC2s in tumors and regional lymph
nodes is known to be associated with longer overall survival and disease-free survival of
patients, as well as with immune rejection of tumors in mouse models [44,54,55]. CD5 on
DCs potentiates the priming and activation of CD4+ T cells and CD8+ T cells. The role of
inflammatory DC monocytes in antitumor immunity is well studied [56,57] and largely
overlaps with the functions of cDC1s and cDC2s. They have been shown to stimulate CD4+
T cells in cancer [52] and to present opsonized tumor antigens and directly trigger CD8+ T
cell responses [58,59].

The role of pDCs in antitumor immunity remains controversial. They weakly capture
and present exogenous antigens but have the unique ability to produce huge amounts
of IFNα in response to viral infection [60]. In patients with colon cancer, higher tumor
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infiltration of pDCs is associated with long-term survival [61], while in some cancer types,
the presence of pDCs is associated with tumor progression and poor patient survival [62].
The effect of pDCs on antitumor immunity has not yet been fully studied. In addition, two
new DC subtypes have recently been identified:

(1) The DC3 subtype, which was found in human peripheral blood, expresses the cDC2
marker (CD1c) and the monocyte marker (CD14) and has a different source of devel-
opment to monocytes and common dendritic cell progenitors (CDPs), being a separate
additional lineage of DCs [40,44,63].

(2) The transitional DC subtype (tDC) [64], which expresses Axl and is located on the
border between cDC2 and pDC. The existence and function of these two DC subtypes
in tumors remain to be determined (Table 1).

Table 1. Biomarkers of various blood dendritic cell subtypes and their biological functions.

Dendritic Cell Subset Biomarkers Secretory Cytokines Biological Functions References

Conventional (myeloid)
DCs type 1 (cDC1s)

CD11c
MHC II
BDCA-3 (CD141)
XCR1
CLEC9A
IRF8

IL-12
TNF-α
IL-6

Inducing antitumor
immune response
through
cross-presentation of
tumor antigens to CD8+
T cells

[42,45–47,51,52,65]

Conventional (myeloid)
DCs type 2 (cDC2s)

CD11c
MHC II
BDCA-1 (CD1c)
CD172a
CD11b
IRF4
CLEC10A

IL-1β
IL-6
IL-12
IL-23
IL-10
TNF-α
TGF-β

Presentation of MHC
class II antigens,
triggering CD4+ T cells

[41,53]

“Inflammatory” DCs
(moDCs)

CD11c
MHC II
CD11b
CD14
CD209
CD226
CD1a/b/c
CD206
IRF4
CD172a
CD64
CD88
CLEC10A

IL-1β
IL-6
IL-10
IL-12
IL-23
TNF-α

Direct presentation of
antigens to CD4+ T
cells, induction of Th1
and Th17 responses,
cross-presentation
capability

[43,44,56,57]

Plasmacytoid DCs
(pDCs)

MHC II
BDCA-2 (CD303)
BDCA-4
(CD304)
CD123
CD45RA

IFN-α
TNF-α

Induction of antiviral
immune response [60]

DCs type 3 (DC3s)

CD1c+
CD14+
MHC II
BDCA-3 (CD141)
BDCA-1 (CD1c)
CD163
CLEC10A

IL-1β
IL-6
IL-23
TNF-α
IL-10

Presentation of MHC
class II antigens,
triggering CD4+ T cells

[40,44,63,66]

Transitional DC
subtype (tDCs)

CD11clow/high

AXL+
SIGLEC6+

IL-1β
Presentation of MHC
class II antigens,
triggering CD4+ T cells

[64]
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In conclusion, cDCs play a critical role in initiating and maintaining antitumor T-cell
immunity [67,68], and the detection of cDCs in the tumor microenvironment is a favorable
feature of cancer immunotherapy [69].

According to their ontogeny, dendritic cells can be divided into myeloid (conventional)
or plasmacytoid dendritic cells. Furthermore, depending on their stage of development,
dendritic cells can be divided into two main categories: immature and mature dendritic
cells [70]. Most immature dendritic cells are located on the surface of mucous mem-
branes, with skin and internal organs acting as sentinels for antigen recognition. These
dendritic cells have lower expression of MHC I and MHC II, T cell costimulatory factors,
and adhesion molecules [71]. Immature dendritic cells do not secrete proinflammatory
cytokines, but they are capable of migration. When encountering an antigen, dendritic
cells capture it and migrate to secondary lymphoid organs and present antigens to helper
T cells or effector T cells to elicit specific cytotoxic T lymphocyte responses [72]. At the
same time, they have increased expression of chemokine receptors (CCR7, -8 and -9)
that determine their directed migration [73]. In summary, mature dendritic cells have
a decreased ability to capture and process antigens but have an increased migratory ca-
pacity and increased expression of various costimulatory molecules (CD40, CD80 and
CD86) and production of pro-inflammatory cytokines and chemokines [65]. Dendritic cells
are very active, using their specific receptors to recognize foreign antigens or aberrant
intrinsic antigens. Dendritic cells recognize antigens using molecular patterns: pathogen-
associated molecular patterns (PAMPs), distress-associated molecular patterns (DAMPs)
and pattern-recognition receptors (PRRs). Antigens are taken up by specific phagocytosis
and nonspecific macropinocytosis. Phagocytosis is believed to be the defining mechanism
of antigen uptake by dendritic cells and other immune cells [65]. There are two important
forms of phagocytosis: microautophagy and lectin-mediated autophagy. The key endocytic
protein involved in the process of microautophagy is the regulatory protein RAB5A, which
has multiple effects (including an influence on cell membrane mobility and stiffness) [74].
C-type lectins and Fc receptors can recognize antigens by targeting specific ligands of apop-
totic cells or pathogens, inducing the process of endocytosis [75]. One of the lectin receptors
expressed on macrophages and dendritic cells is DC-SIGN (CD209), which is responsible
for the binding of pathogens, which leads to their internalization into endosomes, where
the pathogens are destroyed and an immune response is initiated [76,77]. It has been shown
that high expression of annexin A2 in cancer was able to activate DC-SIGN and inhibit
the dendritic cell-mediated antitumor immune response, which was accompanied by the
suppression of dendritic cell maturation and IL-12 production and increased IL-10 produc-
tion [78]. The role of formyl peptide receptors (FPRs) and Fc receptors (FcRs) expressed
in hematopoietic cells and especially on dendritic cells should also be noted [79,80]. FPRs
induce the migration of dendritic cells into the area of necrosis and apoptosis of tumor cells
and influence tumor angiogenesis [81]. FcRs bind to various immunoglobulins (IgA, IgM,
IgE and IgG) participating in antibody-mediated innate and adaptive immune responses,
leading to the activation of CD4+ T cells [62,80,82]. A special role in the maturation and
regulation of dendritic cell activity is played by toll-like receptors (TLRs) [83]. They are
located on the surface of immune cells or intracellularly and recognize PAMPs for immune
responses against pathogens and neoplastic cells. TLRs induce dendritic cell maturation
(increased expression of CCR7, MHC-II, and co-stimulatory molecules CD80 or CD86)
through activation of NF-kB [84,85]. TLRs are also expressed in tumor cells to evade the
immune response [86]. Stimulation of TLR3 and TLR5 signal transduction can induce anti-
tumor T-cell response; however, it was found that the risk of tumor process development
increased against the background of chronic inflammation mediated by TLR4, TLR7, TLR8
and TLR9 [87]. Presentation of the captured antigen takes place directly in complex with
MHC. MHC molecules are divided into two classes: MHC I and MHC II [88]. Both show a
huge allelic polymorphism of the groove-binding peptide, which allows them to bind to a
variety of peptides. MHC class I molecules are heterodimers consisting of two polypeptide
chains: α- and β2-microglobulin [89]. MHC-II dimers have been shown to form in the
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endoplasmic reticulum and then bind to the non-polymorphic invariant chain Ii (CD 74).
Peptide–MHC-II complexes are formed throughout the endocytic pathway, with antigen
processing typically occurring in late endosomal compartments or lysosomes [90,91]. The
efficiency and the process of antigen presentation itself are determined by a number of
signals. Several signals are required to activate CD8+ or CD4+ T cells: signal 1, which
is responsible for the binding of antigenic peptides to MHC-I or MHC-II molecules that
are presented to CD8+ T cells or CD4+ T cells, respectively [92]; signal 2, whereby proper
costimulatory signaling is ensured by a balance between a variety of positive (CD80/CD86)
and negative signals (programmed death ligand 1 or 2 (PDL1/2)) on the dendritic cell
surface [93,94]; and signal 3, whereby cytokines that stimulate T cells are produced by den-
dritic cells (IFN-γ and IL-12) [95]. These cytokines stimulate the functional expansion and
development of memory CTL cells. Disruption of individual signals or their combinations
leads to the disruption of natural mechanisms of antitumor defense (Figure 1).
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Figure 1. The main stages of antigen presentation by dendritic cells and their disorders. The main
function of dendritic cells in the body is the capture, processing and presentation of antigens to
immunocompetent cells; these processes involve a number of stages. Tumor cells have a negative
impact on each of the stages of antigen presentation, suppressing the development of an antigen-
specific immune response against them. This, on the one hand, leads to weak endocytosis of tumor
cell components and processing inside dendritic cells. On the other hand, the maturation of dendritic
cells is impaired as a result of inhibitors of immune cell differentiation secreted by tumor cells.
As a result, dendritic cells remain immature, do not migrate to the lymph nodes, and have weak
immunostimulating and antigen-presenting activity [92–95].

Several antigen presentation pathways have been described, the main, classical one
being antigen presentation to T cells via the T-cell receptor (TCR) [96]. MHC-I–peptide
and MHC-II–peptide complexes on the surface of dendritic cells are presented to TCR
complexes on CD8+ and CD4+ T cells, respectively. This triggers the processes of their
activation of proliferation and differentiation [97]. Another pathway is represented by cross-
presentation, a process by which dendritic cells capture, process and present extracellular
antigens via MHC-I molecules to CD8+ T cells [98]. Cross-presentation is essential for CD8+
T-cell activation and has a significant impact on immune surveillance in transplantation and
immune defense in infections. Only dendritic cells can cross-trigger the cytotoxic response
of CD8+ T cells [99]. The described disorders of various links or mechanisms of tumor
antigen presentation by dendritic cells are targets for correction and the development of
new approaches and methods of cellular immunotherapy for cancer patients.
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4. Cellular Immunotherapy Approaches Based on Antigen-Primed Dendritic Cells for
Induction of Antitumor Immune Response

The existing approaches of cellular immunotherapy are based on obtaining func-
tionally mature dendritic cells capable of presenting tumor antigens to effector cells and
activating cytotoxic immune responses [100]. Given the marked suppression of immunity
in cancer patients, and in order to eliminate the influence of tumors, the optimal option
for the induction of functionally mature dendritic cells is to obtain them under in vitro
conditions. Most clinical trials are based on dendritic cells derived ex vivo from peripheral
blood monocytes. Typically, IL-4 and GM-CSF are used to induce dendritic cell differ-
entiation from progenitor cells in 5–7 days [101,102] or 2–3 days, as in the case of “fast”
dendritic cells [101,103]. Protocols for obtaining dendritic cells by culturing peripheral
blood mononuclear cells (PBMCs) using various cytokines and cell differentiation factors
(for example, IFN-β and IL-3 or GM-CSF) have been described [104,105]. Immature den-
dritic cells produce low levels of stimulatory cytokines and express fewer co-stimulatory
molecules (CD80/CD86) [106,107].

The maturation and functional state of dendritic cells is assessed by the expression
of classical dendritic cell markers, such as CD80, CD86, CD83 and CCR7 positivity, which
can be measured using flow cytometry, but this is of limited use, since these markers are
expressed by DCs with different phenotypes [108].

Experimental studies have shown that the use of dendritic cell maturation factors and
cytokines that stimulate the development of the immune response (TLR agonists, CD40L and
other cytokines (IL-12 and IL18)) induces a cytotoxic immune response in vitro [109,110].

Historically, approaches using in vitro induction of antigen-specific dendritic cells
were initially used as monocellular therapies. The induction of antigen-specific dendritic
cells alone in cell therapy showed limited efficacy. The best-known single-cell-type dendritic
cell vaccine is the Provenge vaccine, which consists of autologous antigen-presenting cells
(CD54+ cells) loaded with a recombinant fusion protein antigen that consists of GM-CSF
and prostatic acid phosphatase. Clinical trials showed an increase in median survival
of 4 months in patients with metastatic prostate cancer [111,112]. In subsequent works,
scientists realized that a full-fledged antitumor cytotoxic response was produced by the
activation of cytotoxic lymphocytes and the formation of a pool of antigen-specific effector
cells. This is how the idea of optimal cell therapy as a polycellular therapy was formed,
including the use of antigen-specific dendritic cells and antigen-primed CD8+ lymphocytes.
The creation of such a cellular vaccine is a multistep process carried out in vitro (Figure 2).
Accordingly, researchers have developed approaches to obtain dendritic cells capable of
expressing tumor-associated antigens using various methods [110,113,114].
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Figure 2. Schematic diagram of obtaining a cell preparation based on various forms and methods
of delivering tumor antigens to dendritic cells. The production of modern cell preparations from
dendritic cells is based on obtaining dendritic cells from patient peripheral blood monocytes under
in vitro conditions. Various forms of delivery of tumor antigens are used: lysates of autologous
tumor cells and isolated tumor-associated peptides/proteins or synthesized DNA or RNA constructs
and peptides/proteins. These tumor antigens are delivered to dendritic cells passively, through
natural endocytosis at the immature dendritic cell stage, or actively, through magnetic, chemical
(lipofection), viral (transduction), transfection or electroporation methods. Currently, the greatest
effectiveness in inducing an antitumor immune response is observed when co-cultivating in vitro
obtained antigen-specific dendritic cells with lymphocytes (non-adhesive MNC fractions) to induce
cytotoxic T-lymphocytes, including antigen-specific ones. The effectiveness of the resulting cell
preparation is assessed in an in vitro cytotoxicity test against autologous tumor cells, if any, or cells
of a tumor line expressing the target tumor-associated antigen [115–117].

It should also be noted that the use of dendritic cell-based cellular immunotherapy has
its own problems and limitations, including limited responses, possibly due to inefficient
migration of dendritic cells from the injection site to the draining lymphoid organs and
ineffective antigen presentation. As a result of the immunosuppressive effects of tumors, T
cells activated by vaccination may be inactivated at the site of tumor growth. To prevent
this, large numbers of dendritic cells and/or multiple doses of vaccine are required to
ensure the production of sufficient numbers of activated cytotoxic T lymphocytes to kill
tumor cells and ensure the production of sufficient numbers of memory T cells that will act
as a rapid response in the event of tumor recurrence [108,115]. The number of cells required
for immunotherapy requires their standardized production on a scale large enough to
withstand repeated vaccinations. The production of cell-based vaccines requires highly
specialized equipment and personnel to comply with current Good Manufacturing Practices
(GMPs). The creation of cellular vaccines based on dendritic cells includes a number of
key steps: collecting the patient’s peripheral blood and isolating mononuclear cells from it,
collecting a tumor sample from the patient and isolating tumor cells and their antigens (cell
lysates, RNA and DNA), obtaining mature dendritic cells loaded with tumor cells antigens
(lysates, peptides, RNA and DNA), and obtaining a cellular vaccine based on dendritic
cells.

The effectiveness of dendritic cell therapy may be limited by several factors, including
failure to stimulate specific cytotoxic T lymphocytes, failure to activate NK cells or γδ T
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cells, failure to overcome the immunosuppressive effects of T regulatory cells and myeloid-
derived suppressor cells (MDSCs), unwanted immune effects of T-regulatory cells and
MDSCs, immunosuppression caused by decreased expression of tumor-associated antigens
on tumor cells, overexpression of checkpoint proteins (checkpoint molecules), insufficient
avidity of antigen-specific T lymphocytes, and a lack of suitable adjuvants that are required
to induce TLR-mediated dendritic cell maturation.

1. Proteins or peptides and tumor cell lysates

One of the earliest methods used to deliver tumor-associated antigens is the use of
lysates and tumor proteins (peptides) from autologous tumor cells to prime dendritic
cells [118,119], which express a wider range of tumor antigens suitable for personalized
treatment, and tumor cells fused with dendritic cell vaccines [119,120]. An alternative
method for creating a vaccine based on dendritic cells is the production of whole-tumor
vaccines, which use whole or lysed tumor cells, both intact and modified, as a source of
antigens and other immunogenic factors to stimulate the antitumor immune response.
This approach, as with the use of tumor cell lysates, provides a complete set of tumor
antigens [121]. In the case of dendritic cells, autologous or allogeneic tumor cells are used,
pretreated to impart increased immunogenicity and increase therapeutic efficacy [122,123].

The use of tumor lysates as a source of tumor immunogens has the potential advantage
of stimulating responses against multiple individual tumor-associated antigens. This
approach allows for the induction of a polyclonal immune response by stimulating both
CD4+ T cells and CD8+ T cells. The use of tumor lysates reduces the time and effort
required to identify and synthesize individual immunodominant peptide epitopes, allowing
dendritic cells to naturally process tumor antigens. The disadvantage of this method is the
impossibility, in a number of clinical situations, of obtaining tumor material for preparing a
lysate [124]. The effectiveness of the vaccine depends on the concentration of immunogenic
and immunosuppressive antigens in the tumor material [125]. In addition, the use of
tumor cell lysate antigens does not capture the changing repertoire of tumor antigens that
occurs during metastasis, as well as during specific chemotherapy and/or radiation therapy.
With this activation method, there is a potential risk of developing autoimmune reactions,
since normal tissue cells may be present in the tumor material. However, a tumor antigen
presented by dendritic cells has been shown to stimulate a specific antitumor cytotoxic
response [126].

Thus, it was shown in cellular immunotherapy of breast cancer patients that the
administration of dendritic cells primed with lysates of autologous breast cancer tumor
cells led to an increase in the percentage of patients with a relapse-free course, which was
accompanied by a decrease in the content of suppressor cells (Treg and CD14+ HLA-DR) in
the peripheral blood and an increase in the content of circulating myeloid dendritic cells in
the peripheral blood, compared to before immunotherapy [127].

The use of a full-length tumor protein as a tumor antigen has a number of positive
aspects. In particular, the selection of a tumor protein by HLA haplotyping becomes
irrelevant, which avoids the question of the need to identify individual epitopes. This
method has been successfully used in clinical studies of cell-based vaccines against lung
cancer, kidney cancer, lymphoma and myeloma, showing the formation of an antigen-
specific cytotoxic response [128]. However, it is worth noting that when dendritic cells are
loaded with an extracellular antigen, effective presentation of its epitopes in combination
with MHC class I and stimulation of CD8+ T cells does not occur. Therefore, at present, this
approach is only used in combination with other approaches to increase the immunogenicity
of a protein. For example, hybrid proteins may contain the TAT protein of the human
immunodeficiency virus, which improves penetration into the cell [129,130].

Modern technologies make it possible to create and use synthetic peptides to load
antigens into MHC class I or II complexes, depending on the epitope, and induce an
epitope-specific T-cell response [131]. This method also reduces the risk of autoimmune
reactions because only the epitope of the tumor protein is used and there is no cross-reaction
with the patient’s own tissue. The biggest disadvantage of this method is the mandatory
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determination of antigen epitopes, the human HLA type and the amino acid sequence
in a given peptide. The use of a peptide does not allow one to accurately predict the
processing of these molecules, and, as a result, it is not always possible to present the
necessary antigens in their native form. In addition, the use of peptides as a source of
antigens is limited by the size of the molecules that can enter the cell or bind to MHC on
the surface of antigen-presenting cells [132]. Currently, this approach is aimed primarily at
the CD8+-mediated cytotoxic antitumor immune response, though, to a lesser extent, it
also stimulates the CD4+ T-cell response [133,134].

Thus, when using dendritic cells loaded with a peptide/lysate, a number of difficulties
arise in controlling the final cytotoxic effect. This is due to the fact that the duration of tumor
antigen expression by dendritic cells is limited by the affinity of the peptide for the MHC
molecule and the half-life of the peptide–MHC complex [135,136]. When producing cellular
vaccines using tumor cells, a number of problems arise related to the standardization of
tumor-associated antigens and the availability of tumor cells. In such cases, an alternative
is to use tumor cell RNA for delivery to dendritic cells. To obtain RNA from tumor cells,
a small number of cells are required, which can be obtained from a tumor biopsy. This
method is also useful in situations where tumor-specific antigens cannot be detected on the
surface of tumor cells.

2. DNA and RNA constructs

These vaccines are created using DNA or RNA fragments that encode epitopes of
TAAs. In addition, these DNA and RNA fragments are delivered to dendritic cells in the
form of synthesized plasmids by transfection (chemical, magnetic or electroporative).

The introduction of DNA/RNA constructs into dendritic cells has a number of ad-
vantages compared to cells loaded with peptides/lysates ex vivo and tumor cells [114].
Through software, it is possible to design a DNA construct that includes only the most
immunogenic epitopes of a tumor-associated antigen, while autoimmune and immunosup-
pressive epitopes are excluded. The use of DNA constructs makes it possible to specifically
modulate the immune response against tumor cells expressing a given antigen, while sev-
eral genes (including those differing with respect to HLA haplotype specificity) encoding
various antigens can be included in one DNA plasmid [137]. As a result of transfection
of dendritic cells with DNA constructs, long-term expression of the tumor antigen occurs.
When genetic material is introduced into dendritic cells, antigens undergo endogenous
processing for presentation in complex with MHC class I molecules, which leads to effective
stimulation of a cytotoxic antitumor immune response. After processing, the cells express
the antigens in their native form, which facilitates their processing and presentation to the
immune system. The use of polyepitope constructs makes it possible to trigger the reac-
tion of several clones of T cells, ensuring the launch of a more powerful immune response
against various cancer cells that are part of the tumor, and, in addition, it allows the possible
loss of expression of a given tumor-associated antigen in tumor cells to be overcome. HLA
typing allows the selection of only those epitopes that increase the likelihood of developing
a specific CD8+ or CD4+ T-cell response [138].

In addition to using the sequences of specific immunogenic epitopes of tumor antigens,
constructs can be added to the plasmid DNA/RNA that affect various stages of signal
transduction between dendritic cells and T cells, including:

• Genetic modifications to ensure the delivery of antigens to stimulate T-cell receptors.
This is achieved by using HLA-specific epitope sequences, enhancing endogenous anti-
gen expression by dendritic cells and sufficient and continuous delivery of naturally
processed antigens;

• Genetic modifications to enhance costimulatory signals. This is achieved either
by enhancing costimulatory signals or by suppressing the expression of inhibitory
molecules;

• Genetic modifications aimed at improving the immune microenvironment, for ex-
ample, stimulating the secretion of Th1 cytokines (TNF-α, IFN-γ, IL-2 and IL-18),
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suppressing the activity of regulatory cytokines (TGF-β and IL-10) and changing the
secretion of chemokines.

Transfection of DNA/RNA constructs encoding tumor antigens into dendritic cells is
carried out by plasmid transfection methods (liposome-mediated transfection, magnetic
transfection and other types of transfection), viral vectors or electroporation [139]. The
main disadvantage of using genetic constructs is the low efficiency (about 5–20%) of
their direct uptake by dendritic cells [140]. The delivery method used for gene transfer
has been suggested to have a major impact on transfection efficiency [135]. The weak
transfection efficiency may be due to the limited ability of DNA molecules to reach the
nucleus, where transcription occurs [141]. In addition, physical methods can disrupt and
alter the function and phenotype of dendritic cells, or even be toxic to the cells [142]. On
the other hand, the use of electroporation has shown an increase in transfection efficiency
and cell viability [142,143]. Although viral vectors are much more effective at penetrating
dendritic cells (about 90–100%), their use in dendritic cell vaccine trials is limited due to
possible viral damage to the cells.

Thus, to optimally select a source of tumor antigens for priming dendritic cells, the
following factors must be taken into account:

1. Certain peptide/DNA/RNA molecules contain epitopes specific for a certain HLA
type, and, accordingly, the effectiveness of their use will be limited to a certain human
HLA type;

2. The presence of a limited set of well-characterized tumor-associated antigens and the
risks of changes in the antigenic profiles of target tumor cells as a result of malforma-
tion and/or exposure to chemotherapy;

3. When using certain peptide/DNA/RNA molecules, the repertoire of T cell clones
is limited and, accordingly, the ability of the immune system to produce a strong
multispecific antitumor response is limited.

Dendritic cell vaccines have shown good results in preclinical trials [140]. The use of
dendritic cells is sufficient to activate the T cell response, but they are not always able to
provide adequate additional support for the immune response. It is known that a tumor is
capable of creating an immunosuppressive microenvironment. Therefore, it is necessary to
develop successful dendritic cell-based vaccines that provide a strong and durable immune
response.

An alternative approach that is increasingly being used is to transfect DCs with RNA
or DNA encoding tumor-associated antigens and their immunogenic epitopes, which
through continuous gene expression can maintain antigen expression throughout the life
of the dendritic cells [117].

Therefore, combination immunotherapies, such as immune checkpoint inhibitors (ICIs)
and autologous antigen-loaded DC vaccination, are recommended to improve clinical out-
comes and address the challenges associated with dendritic cell vaccination. Neoantigens
are recommended as a source of antigens for the development of DC vaccines because they
have lower immunological tolerance and are less toxic than tumor-associated antigens [144].

Thus, further development of dendritic cell-based immunotherapy technology aims
to enhance and activate the immune response against cancer by harnessing the potent
immunostimulatory properties of dendritic cells to maximize their ability to capture tumor
antigens, stimulate T cells and trigger an antigen-specific antitumor immune response [145].
Vaccination with antigen-specific dendritic cells and adoptive transfer of cytotoxic cells
primed with the resulting antigen-specific dendritic cells, in combination with combination
therapy, form the basis of modern cancer immunotherapy. The ex vivo generation of
antigen-specific cytotoxic T cells using antigen-primed dendritic cells is currently imple-
mented using TCR T cell technology [146].

Therefore, it has become necessary to search for more specific antigenic substrates
(immunogenic epitopes of tumor-associated antigens). Due to the development of technolo-
gies, it has become possible to obtain immunogenic epitopes of tumor-associated antigens
and to create DNA and RNA constructs on their basis to obtain genetically modified den-
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dritic cells [147,148]. This approach has made it possible to include in the composition of
plasmids information not only about tumor-associated antigen epitopes but also about
“checkpoint” molecules, which markedly increases the induction of cytotoxic immune
responses. Delivery of genetic constructs (DNA and RNA) into dendritic cells is carried out
by various methods (chemical or magnetic transfection, electroporation and viral transduc-
tion), the essence of which is the transportation of genetic information encoded in plasmids
(DNA and RNA) inside the cell, bypassing the process of endocytosis and targeted plasmid
processing.

In preclinical studies, the above delivery modes were shown to be significantly ef-
fective in the induction of antitumor immune responses. In in vivo (mouse) and clinical
studies, different modes of delivery of cellular vaccines based on autologous dendritic
cells were used. Thus, different methods have been used to deliver dendritic cell-based
vaccines to patients, such as intravenous [149], intradermal [150], and, less frequently,
intranodal [151] and intratumoral routes [152,153], as well as in vivo dendritic cell induc-
tion [154]. At the same time, antigen-loaded dendritic cells can stimulate T-cell immunity
regardless of the route of administration [152].

Thus, an approach using DNA constructs encoding epitopes of tumor-associated
antigens of various cancers (breast cancer, colorectal cancer and non-small cell lung cancer)
for the induction of antigen-specific immune responses against autologous tumor cells
in vitro was successfully demonstrated [109]. A number of authors used the approach
of inducing dendritic cells by delivery of CD40L, CD70 and TLR4 mRNAs, resulting in
the formation of mature dendritic cells in a one-step process without further incubation
with other maturation cocktails. Synthetic mRNA-based vaccines caused fewer side effects
and showed higher potential for optimization and large-scale production than dendritic
cell vaccines based on whole-tumor mRNA [70,155,156]. The described approach stimu-
lated antigen-specific CD8+ T-lymphocyte cells in vaccinated patients [157–159]. Genetic
constructs also include various transcription factors (PU.1, Irf8 and Batf3) and migration
factor genes (SSR7) to obtain mature dendritic cells with a notable potential for migration
to draining lymph nodes [160,161]. It was shown that dendritic cells transfected with DNA
constructs encoding Her2/neu epitopes induced the formation of not only a population
of antigen-specific CD8+ T cells but also memory T cells [115,162–164]. In addition to ap-
proaches using genetic constructs to activate dendritic cell maturation and induce cytotoxic
T lymphocytes, plasmids encoding receptors specific to certain tumor-associated antigens
were used to selectively uptake extracellular vesicles of tumor origin that can deliver tumor-
associated antigens to dendritic cells and/or encode small interfering RNAs to repress
PD-L1 and PD-L2 genes in dendritic cells [165]. PD-1, when stimulated on the surface
of T cells, induces antigen-specific anergy or apoptosis [161,166]. Many types of tumors,
as well as mature dendritic cells, express PD ligands (PD-L1) on their cell surfaces [167].
Dendritic cells found in tumor-draining lymph nodes in an ovarian carcinoma model
express high levels of PD-L1, and blockade of PD-L1 enhances the activation of cytotoxic T
lymphocytes by dendritic cells and shifts cytokine production from a Th2 response to a Th1
response [168]. Blocking immunosuppressive signaling is one of the current approaches in
cancer vaccines [169,170]. It should be noted that, in addition to approaches used to obtain
functionally active dendritic cells by priming cytotoxic T-lymphocytes, which provide the
necessary first two signals for activation of CD8+ or CD4+ T-cells (Figure 1), cytokines are
also used to activate T-lymphocytes (IL-12, IL-18 and IFN-γ) [109] and generate antigen-
specific cytotoxic T-lymphocytes (IL-2, IL-7 and IL-15) [163].

Cell therapy is personalized, and courses of therapy and cell preparations are created
individually for each patient. This requires specialized laboratory equipment and skills
to isolate a subpopulation of dendritic cells from the patient’s blood or cultivate them
in vitro from progenitor cells, delivering antigens using high-tech transfection and targeted
delivery methods [126].

Along with this, it should be noted that the use of cell therapy based on dendritic
cells is safe; the local and systemic reactions (rash, itching and fever) that have been de-
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scribed are rare, in contrast to those that have been described for other immunotherapy
approaches, such as graft-versus-host disease (GVHD) and immunosuppression (with allo-
geneic bone marrow transplantation), cytokine storm syndrome, neurotoxicity (with CAR
T-cell therapy), and autoimmune reactions (with blockade of CTLA-4 or PD-1) [171,172].

Thus, the existing technologies make it possible to perform in vitro the whole chain of
induction of antigen-specific cytotoxic immune responses. Genetically engineered dendritic
cell vaccines expressing tumor-associated antigens have shown significant efficacy against
many types of cancer [173].

5. Conclusions

The development of cell technologies based on dendritic cells evolved as dendritic cell
differentiation disorders and their functions in cancer, the mechanisms of tumor antigen
presentation and priming of cytotoxic T-lymphocytes, and the induction of antigen-specific
antitumor immune responses were studied. At the initial stage of technology develop-
ment, protocols for in vitro generation of functionally mature dendritic cells capable of
capturing tumor antigens and processing and presenting them in complex with MHC to
T-lymphocytes were developed. Based on this, various forms of tumor-associated antigen
delivery (lysates or proteins (peptides) from tumor cells and DNA and RNA constructs)
were tested, and it was shown that the use of DNA and RNA constructs allowed not only
for the delivery of the most immunogenic epitopes of tumor-associated antigens to den-
dritic cells but also for the enhancement of their ability to induce antigen-specific cytotoxic
T-lymphocytes. Currently, cell therapy based on dendritic cells, due to the possibility of
creating DNA and RNA constructs encoding information about both target tumor antigens
and regulatory molecules, is a modern basis for antigen-specific immunotherapy of cancer.
In the future, the development of antigen-specific cell therapy will be aimed at studying the
functional activity of antigen-specific cytotoxic T-lymphocytes induced by dendritic cells
and developing approaches to obtain them in vitro in the necessary quantities for therapy.
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