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Abstract: Drug abuse still represents a significant challenge for forensic pathologists; it must always
be considered during the autopsy examination when the brain morphological alterations observed
are not characteristic of any known disease of the central nervous system (CNS). Nonetheless, no
specific brain lesions had been found to characterize the precise drug that caused the poisoning.
In fact, a broad spectrum of changes affecting the CNS are seen in drug abusers. Thus, forensic
pathology plays a key role in identifying the encephalic morphological alterations underlying the
death. The aim of this review is to present an updated overview of the literature regarding the
correlation between the main substances of abuse and the morphological alterations of the CNS to
help the forensic pathologist to discriminate drug-induced alterations of the brain. The authors used
the PRISMA criteriology to perform the bibliographic search for the present review. Among the
articles identified according to the selected search criteria, 116 articles were chosen which allow us to
define a picture of the main macroscopic and microscopic alterations of the brain in drug abuse.

Keywords: forensic neuropathology; drug abuse; neuropathology

1. Introduction

Drug abuse represents a significant challenge for forensic pathologists. Those cases
exhibiting clinically conspicuous psychophysical changes, not attributable to illness or
known disturbances in central nervous system (CNS) function, must always draw the
suspicion of drug poisoning. This is also true in diagnosis in anatomical pathology. In
fact, if a morphological finding is not characteristic of any known disease of the CNS,
then poisoning must always be considered. Circumstances (e.g., environment, heavy
drinking, drugs) or external markings (e.g., changes in the mouth, needle marks on the
arms, constricted or dilated pupils, known or unknown smell, etc.) can also suggest a
possible poisoning. Among the general clinical symptoms of poisoning, there are changes
in global cognitive function, level of consciousness and vigilance. Dementia, seizures,
headaches, hydrocephalus, cerebellar syndromes, tremors, and disturbances of the visual,
auditory, vestibular, or olfactory systems may also be observed.

Morphological alterations are represented by:
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1. Neuronal and axonal injury, which is due to an impaired axoplasmic transport [1] that
causes an isolated neuropathy or polyneuropathy (cf. toxic neuropathy). Neuronal
and axonal injury are typical alterations found in aluminum, acrylamide, colchicine,
organophosphate or alcohol poisoning.

2. Cerebral edema [2], represented by cytotoxic edema, resulting from injury of the
membrane enzyme system and/or membrane damage, and vascular edema caused
by alcohol. Two types of edemas may occur sequentially or simultaneously. Cytotoxic
edema predominates in gray matter, and is characterized by astrocytic swelling and
enlargement of perineuronal and perivascular spaces (indicative of the swelling of
astrocytic foot processes around neurons, capillaries, and arterioles). The hallmarks
of vasogenic edema include swelling of pericapillary astrocytic processes and of
oligodendrocyte cytoplasm. In addition, it can also be present a spread of exudate in
the extracellular space of white matter. Macroscopically, vasogenic edema induces a
slight green discoloration of the white matter. Histologically, edema (particularly the
vasogenic edema), features extensive cytoplasmic vacuolation in the white matter [3].

3. Neuronal injury, which is due to a faulty energy metabolism [4], is a typical alteration
of the exposure to carbon monoxide, ethanol and organophosphates [5,6].

4. Injury of the white matter, which is a structural alteration of cerebral white matter, in
which myelin suffers the most damage (i.e., leukoencephalopathy). Toxic leukoen-
cephalopathy may be caused by exposure to a wide variety of agents, including drugs,
anti-neoplastic agents, antimicrobial agents and environmental toxins [7].

5. Focal necrosis, which can be caused by the exposure to hyperbaric oxygen, carbon
monoxide, methanol, heavy metals and methotrexate [8,9].

Although it is hard to find specific brain lesions to characterize the precise drug that
caused the fatal intoxication, a broad spectrum of changes affecting the CNS can be seen in
drug abusers.

In this context, a crucial role is played by forensic pathology, which has to identify
the encephalic morphological alterations underlying the death through the use of autopsy
techniques in combination with histopathology and immunohistochemistry techniques.

Considering the great advances reached in recent years, the aim of our study was to
present an updated overview of the literature regarding the correlation between the follow-
ing substances (classes of substances) of abuse: cannabis, opioids, cocaine, amphetamines,
methamphetamines, benzodiazepines, designer drugs, new psychoactive substances, and
the morphological alterations of the CNS to help the forensic pathologist to discriminate
drug-induced alterations of the brain.

2. Methods
2.1. Database Search Terms and Timeline

The present systematic review followed the Preferred Reporting Items for Systematic
Review (PRISMA) standards.

This review was conducted by performing a systematic literature search until Novem-
ber 2023 using two electronic databases (PubMed® and Scopus®). Words searched were:
“drug abuse”, “neurotoxicity”, “neurons”, “microglia”, “astrocytes”, “white matter”, “blood
brain barrier”, “neuropathological findings in drug abusers”, “neurobiological basis of drug
abusers”, “alterations of neurotransmitters”, “receptor”, “cerebrovascular complications”,
“cannabis”, “opioids”, “cocaine”, “amphetamine”, “methamphetamine”, “designer drugs”,
“new psychoactive substances”, “sedative/hypnotics benzodiazepine analogs” in the title,
abstract, and keywords.

2.2. Inclusion and Exclusion Criteria

Through the use of search filters, only articles in English were selected. The following
inclusion criteria were applied: original article, case report. The following exclusion criteria
were adopted: review, editorial, book chapter, communications at conferences, animal
studies, in vitro studies.
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2.3. Quality Assessment and Data Extrapolation

Two different investigators (G.T. and A.M.) evaluated the entire bibliography by
selecting articles that met the inclusion and exclusion criteria. From the evaluation of the
articles, those deemed not congruent with the purpose of the review, following reading of
the title or abstract, were excluded. In cases of discrepancy of opinion between the inclusion
or exclusion of articles, these were submitted to a third author (L.A.). A consensus process
resolved disagreements concerning eligibility.

We collected 9779 articles on PubMed and 6399 from Scopus. The articles were selected
by applying the automated filter and searching only for those in English. After that, 3549
review articles were removed. Another 8079 articles were removed because the title or the
analysis of the abstract indicated investigations carried out on animals or in vitro cells. The
remaining papers, after eliminating duplicates, were excluded because they disagreed with
the review’s objectives. Furthermore, the bibliography of the articles of interest was checked
in order to extrapolate further useful references. The methodology used is displaced in
Figure 1 using the PRISMA chart.
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Figure 1. A flow diagram of the work carried out in this study is according to the Systematic Reviews
and Meta-Analysis (PRISMA) 2009 recommendations.

3. Neuropathological Investigations

In order to evaluate during an autopsy the pathological alterations affecting the brain,
it is recommended to proceed with a standardized and careful sectorial technique in order
to systematize both the macroscopic observation and the sampling of tissues.

In this review, we report the method used in the Department of Forensic Pathology of
Ancona University.

Brain Removal and Dissection

Before removing the brain, an in situ assessment of the lateral ventricles should be
performed. The cerebral hemispheres are gently divided by placing the fingers on the
cingulate gyrus. Then, with the scalpel blade inclined at about 45◦ to the cingulated gyrus,
make a semicircular incision in the inferior concavity. Prior to brain dissection, photographs
and measurements should be taken. If there are any concerns about vascular integrity,
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photographs of the circle of Willis (also called the Willis polygon) should be taken before it is
incised and removed as one block. Many methods have been proposed for the examination
of the brain. The Ludwig method seems to be the most attractive one, as it combines the
best features of classic anatomopathological methods and the classical method of Virchow
(Figure 2).
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An adequate basic examination can be performed no matter whether or not the brain
is fixed, though it is possible to observe a good deal more detail if the brain is fixed for
2 weeks prior to dissection; in either case, the brain is cut into coronal sections. Once
the incisions are made, the brain can be removed and placed on a cloth or large sheets
of absorbent paper. Position the brain so that the hemispheres rest on the cloth and the
inferior surface of the brain faces upward, with the frontal horns oriented anteriorly. The
first incision is made approximately 1–2 cm anterior to the mammillary bodies, separating
the hemispheres. If the brain has not been preserved, it will only be possible to make
two more coronal cuts. If the brain has been fixed, it will be possible to cut each slice with
a thickness of approximately 1 cm, allowing a much more detailed view of the cerebral
parenchyma. An analogous procedure is used for the corpus callosum and the cerebellum.

The Virchow method consists of sagittal and coronal cuts, made 2–3 cm from one an-
other, producing symmetric slices, and bilateral cuts made at 45◦ into the two hemispheres,
beginning with the lateral ventricles (Figure 3).

At our institute, we carry out the following withdrawals: orbito-fontal, frontal, parietal,
temporal with hippocampus, occipital, basal ganglia, thalamus, mesencephalon, pons,
medulla oblongata, cerebellum.
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4. Neuropathological Findings in Drug Abusers
4.1. Polydrug

Polydrug abuse refers to the concurrent or sequential usage of multiple psychoactive
substances, such as alcohol, prescription medications used for nonmedical purposes, and
illicit drugs; this phenomenon is associated with several adverse effects and lethal out-
comes [10–16]. The complexity of the interactions between these substances, due to the
synergistic or antagonistic potential, can have a significant impact on brain morphology
and structure [17,18].

Extensive histological, immunohistochemical, and morphometric examinations have
revealed significant morphological changes in the brains of polydrug abusers. Most com-
mon findings include neuronal loss, neurodegenerative alterations, a decrease in glial
fibrillary acidic protein-immunopositive astrocytes, extensive axonal damage accompanied
by microglial activation, and reactive, degenerative changes in the cerebral microvascula-
ture [19].

These findings show that substances of abuse start a cascade process of interconnected
toxic, vascular, and hypoxic factors, ultimately leading to widespread disruptions in the
intricate network of interactions among cells in the central nervous system.

Additionally, the study highlighted drug-induced alterations in neurofilament pro-
teins as a possible contributing factor. In another study, Büttner et al. [20] discussed the
effects of substance abuse on brain structure, highlighting damage to axons through the
accumulation of the β amyloid precursor protein (β-APP). The research suggests that sub-
stance abuse, especially opioids, might induce toxic-metabolic axonal damage even after
intravenous administration, potentially exacerbated by cerebral hypoxia. Other studies by
Kaag et al. [21,22] suggest that the number of substances doses has an inverse correlation
with the integrity of white matter, particularly in the prefrontal cortex. Volumetric brain
abnormalities were demonstrated in 2016 by Noyan et al. [23] in polysubstance users. In
fact, they found a significant increase in the volume of temporal pole, superior frontal
gyrus, cerebellum, gyrus rectus, thalamus, occipital lobe, superior temporal gyrus, anterior
cingulate cortex, and postcentral gyrus [11,24].

A frequent finding in polysubstance users is represented by changes in the cerebral
microvasculature but, until today, there is no consensus about the underlying mechanisms.
In particular, Buttner et al. [25] examine the basal lamina of blood vessels of brain specimens
of 12 polydrug abusers. The authors found a significant reduction in immunoreactivity for
collagen type IV compared to controls, which may be due to a thinning of the basal lamina
of cerebral vessels. A similar alteration was demonstrated in HIV-1-infected patients [26].

4.2. Opioids

Opioids, a family of potent analgesic and anesthetics drugs, have long been utilized in
medicine for managing pain, but they also have been emerged as a class of psychoactive
abuse substances.
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Originating from opium or synthesized to have similar effects, opioids have their
impact through the stimulation of three types of G protein-coupled receptors (µ, κ, and
δ) [27]. However, the wide utilization of opioids and their derivatives within medical
contexts significantly elevates the susceptibility to dependence. It must be mentioned that
susceptibility to dependence highly depend from the drug used. In fact, heroin, which can
rapidly cross the blood–brain barrier (BBB), tends to develop as an addiction more quickly
compared to morphine.

In cases of acute death from heroin consumption, the cerebral findings are represented
by perivascular hemorrhages, congestion, and cerebral edema. In contrast, in the case of
chronic drug addicts, it is possible to observe ischemic encephalopathy features: cortical
atrophy of the cerebrum and the cerebellum, rare patches of demyelination, and pallidum
necrosis [28–30].

Chronic intravenous drug addicts exhibit numerous secondary injuries caused by
repeated phases of ischemia; in fact, 90% of dead chronic intravenous drug addicts show a
focal increase in astrocytes and microglia, especially in the hippocampal formation, which
is sometimes accompanied by selective and segmental nerve loss in the CA1 region of the
hippocampus (Ammon’s horn), in the Purkinje cell layer, or in both areas [29].

In 2017, Wollman et al. [31] identified the fronto-temporal region, bilaterally, as the
focal point where gray matter deficits are linked to opioids abuse. The study underlines
atrophy in the right insula and reductions in the superior temporal and orbitofrontal gyri.
Moreover, the authors found a negative association between duration of opioid use and
gray matter in the left cerebellar vermis and right Rolandic operculum, including the insula.
Studying the gray matter, Lyoo et al. [32] observed remarkable alterations with a significant
decrease in gray matter density in the bilateral medial frontal cortex, right superior and
inferior frontal cortex, and left superior and middle frontal cortex. Furthermore, gray
matter density was reduced in bilateral insula, bilateral superior temporal cortex, right
uncus and left fusiform cortex.

Similar results were obtained in the study of Reid et al. [33] focusing on the thalamus
and finding that the volume of gray matter was significantly lower in opioid-dependent
subjects compared with control subjects.

In 2021, Schimt et al. [34] studied the impact of prolonged injectable opioid agonist
treatment (OAT) on brain volumes in individuals with opioid use disorder. The authors
found a significant increase in the volume of the right caudate nucleus, which was particu-
larly pronounced in individuals with an extended history of opioid use disorder. At the
same time, the volumes of the right amygdala, anterior cingulate cortex, and orbitofrontal
cortex showed a decreasing trend over time. They observed that the increase in caudate
nucleus volume may signify a manifestation of reward-seeking behavior, while reduced
volumes in the amygdala and prefrontal cortex could be linked to persistent activation of
the antireward system, contributing to a negative emotional states and craving.

The study by Younger et al. [35] addressed the use of opioids for chronic pain, showing
that the impact of daily morphine administration on the human brain caused neuroplastic
changes after one month of use. These alterations persist even after opioid cessation.
Moreover, morphine use led to an increase in gray matter in the left pregenual anterior
cingulate, right ventral posterior cingulate, inferior pons, the right hypothalamus, and
left inferior frontal gyrus. A reduction of gray matter in the amygdala and hypothalamus
persist even after cessation of morphine use.

Alterations in the amygdala, nucleus accumbens, and insula were also found in the
study by Upadhyay and colleagues [36]. In this study, the authors suggested a potential
link between opioid-induced dendritic spine density reduction and amygdala atrophy.
Moreover, bilateral volumetric loss in the amygdala was present. This study also identified
significant decreases in white matter fractional anisotropy, including those connecting the
amygdala, nucleus accumbens, and insula.

Another interesting study by Merhar et al. [37] evaluated the risk of prenatal opioid
exposure, and found that these infants exhibit a smaller overall deep gray matter (including
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the thalamus, subthalamic nucleus, brainstem, insular white matter, and less cerebrospinal
fluid volumes). On the contrary, larger volumes of white matter were observed in the right
cingulate gyrus and left occipital lobe.

Alterations of brain tissue were also reported in the study by Büttner et al. [38]. In
this study, the authors found a significant reduction in brain tissue, characterized by
smaller sulci and an increased ventricle-to-brain ratio compared to normal measurements.
Moreover, up to 90% of cases of death due to heroin overdose showed cerebral edema with
a marked increase in brain weight, highlighting the severe physiological consequences
associated with heroin toxicity. Furthermore, the authors found areas of demyelination
in the cerebral white matter. Microscopic examination of the brains of heroin addicts has
revealed decreased neuronal density in the globus pallidus, indicating structural changes
at cellular level. Cerebral edema is also common in deaths due to fentanyl assumption [39].

Leukoencephalopathy is a rare but clinically significant condition secondary to opioid
abuse, especially heroin. This kind of heroin-induced leukoencephalopathy can be demon-
strated in CT and MRI images, which show signal abnormality in the brain parenchyma.
Spongiform leukoencephalopathy has been documented in individuals who inhale pre-
heated heroin. Heroin causes a demyelination characterized by the presence of vacuoles
surrounded by a network of thin myelinated fibers [39–41]. Ropper et al. described a
special form of leukoencephalopathy, observed in the white matter of the cerebrum and,
occasionally, also in the cerebellum, after inhalation of heroin pyrolysate [42]. The findings
were a more diffuse or spongiform demyelination and patchy necrosis in the contest of
globus pallidus and the cerebral and cerebellar hemispheric white matter.

Another study showed a vacuolar degeneration of the deep white matter in the
centrum semi-oval of the two hemispheres, and a severe axonal injury in cases of inhalation
and intravenous consumption of heroin and cocaine [43].

In addition to the alterations previously reported, opioids use has also been involved
in strokes, hypotension and hypoxemia [44]. Moreover, opioids abuse has also been
associated with alterations of white matter microstructures impairing neuronal connectivity
and function. In particular, it has demonstrated a decreased fractional anisotropy in corpus
callosum, thalamic radiation, and inferior longitudinal fasciculus [45].

4.3. Cocaine

Several alterations have also been found in individuals who use cocaine. In fact, it has
been reported that cocaine causes ischemic stroke (IS) through cerebral vasospasm [46,47],
platelet aggregation [48,49] and cardiac arrhythmia with secondary embolic ischemia [50].

In addition, intracerebral (ICH) (Figure 4) and subarachnoid hemorrhages (SAH)
(Figure 4B) [50–54] are also common, and are caused by a rupture of the aneurysms or
arteriovenous malformations consequent to an increase in blood pressure [55,56].

Cerebrovascular complications were described especially in young adults, with a peak
in the early 30s [57–60].

Several retrospective studies report SAH, ICH, IS and aneurysmal subarachnoid
hemorrhage (aSAH) in cocaine-positive subjects [50,51,53,58,59,61–72].

Another finding, but more rare, is cerebral vasculitis with transmural infiltration
by leukocytes and/or mononuclear inflammatory cells [73–75]. For the cocaine-induced
alterations of the BBB, several authors showed an increased permeability of the BBB
due to an increased expression of adhesion molecules, proinflammatory cytokines, and
chemokines in the endothelial cell membrane [65], as well as a glutathione depletion in
endothelial cell cultures after cocaine exposure [76]. Similar alterations with breakdowns
of the blood–brain barrier have been demonstrated in HIV-1-infected drugs abusers, which
manifest a concentric hyalinotic thickening of smaller cerebral arteries [77].
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4.4. Cannabis

Cannabis is a plant that has garnered increasing attention in the medical community
due to its complex chemical composition. It can be present in many preparations (oil,
smoke, food), but the most common is the mix with tobacco. The plant contains over
100 cannabinoids, the most studied are delta-9-tetrahydrocannabinol (THC) and cannabid-
iol (CBD). The effects of cannabis vary widely among individuals. The immediate outcomes
involve euphoria, self-confidence, relaxion and a feeling of well-being. Chronic abuse can
be related to negative side effects, including anxiety, panic attacks, and physical and
psychological dependence [78]. Cannabis led to the discover of endocannabinoid system.
The major endocannabinoids that have been identified are N-arachidonoylethanolamine
(anandamide) and 2-arachidonoyl glycerol (2-AG). Their effects, as cannabis effects, are
mediated by CB1 and CB2 receptors, which primarily couple to G proteins of the Gi and
G0 classes [79]. CB1 are localized in the CNS, in particular with the high density in the
temporal lobe (olfactory system, the hippocampal formation, and amygdala), in the cere-
bellum and neocortex, and in the ciliary epithelium, the corneal epithelium, and in the
endothelium of the anterior human eye [80]. CB2 receptors are less abundant, and are more
concentrated on the immune system, as promyelocytes and macrophages.

The effects of cannabis are related to the quantity of CB1 receptors present in the
area [79].

The most frequent complications involve the CNS and cardiovascular system, causing
vasospasm, hypotension and cardioembolism due to arrhythmias. The changes in cere-
brovascular resistance in cannabis abusers is related to the different blood flow velocity
that affecting blood vessels and brain parenchyma [81,82].

Jacobus et al. [83] studied blood perfusion in adolescents that use cannabis, and found
a reduced cerebral blood flow in four cortical regions, including the left, superior and
middle temporal gyri, left insula, left and right medial frontal gyrus, and left supramarginal
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gyrus at the baseline. Acute THC administration in young adults increased blood perfusion
in the anterior cingulate, frontal cortex, and insula, and reduced perfusion in posterior
brain regions [84].

Moreover, Cousijn et al. [85] found that weekly utilization of cannabis is correlated
with a decreased hippocampal and in amygdala volume. Instead, intense cannabis con-
sumption correlates with increased grey matter volume in the cerebellum. A subsequent
study by Yücel et al. [86] confirmed the reduction of the amygdala and hippocampal areas,
supporting the notion that the left hippocampus, in particular, may be especially susceptible
to the impacts of cannabis exposure. Other studies support this thesis [87,88].

Using voxel-based morphometry, it was possible to detected density changes in brain
areas, as demonstrated by Matochik et al. [89], who show higher density in the left and
right precentral gyrus, including portions of postcentral gyrus and thalamus.

Studying the differences between genders, Medina et al. [90] demonstrated that female
cannabis users have larger volumes in prefrontal cortex morphometry associated with
impaired executive functioning.

Alterations in the hippocampal region, typical of patients with schizophrenia, are
also observable in chronic cannabis users, as demonstrated by Solowij et al. [91]. More
than volumetric changes, these authors identified alterations in shape, especially in the
tail, head, and midway down the body of the hippocampus. Other authors, like Cohen
et al. [92], reach similar conclusions about the similarity with schizophrenia, in particular
in the cerebellum grey and white matter, in which cannabis abuse may interfere with brain
maturation in adolescents and lead to “schizophrenia like” cerebellar pathology.

Thus, the age at which you start using cannabis could play a crucial role in white
matter changes. Studying the impact on axonal connectivity, Zalesky et al. [93] found that
axonal connectivity is impaired in the right fimbria of the hippocampus (fornix), splenium
of the corpus callosum, and commissural fibers. Moreover, this function has deteriorated,
especially in those who initiated substance abuse in early age.

Bolla et al. [94] showed that cannabis abusers had greater activation in the left cerebel-
lum, and less activation in the right lateral orbitofrontal cortex and the right dorsolateral
prefrontal cortex.

Recent studies, such as those by Manza et al. [95], have demonstrated a reduction
in both thickness and density of gray matter, particularly in the precuneus, especially in
young adult cannabis users. However, as indicated by the studies of Gilman et al. [96], Orr
et al. [97], and Jacobus et al. [98], during late adolescence, cannabis use might be linked to
increased cortical thickness and volume in medial parietal cortex. Jacobus et al., in another
study [83], found poorer white matter by using two indices to reflect water diffusion in
white matter fibers, fractional anisotropy (FA), and mean diffusivity (MD), which are,
respectively, decreased and increased, contrary to what should happen in healthy tissue,
which indicates that myelination and coherence of fiber tracts are compromised.

Nevertheless, despite the widespread abuse of cannabis, the overall risk of cannabis
use is yet to be conclusively determined.

4.5. Alcohol

Regarding acute intoxication, non-specific brain findings like brain oedema, conges-
tion, perivascular extravasation (especially periventricular), and increases in brain volume
have been reported; neuronal changes are usually absent.

The cerebral findings for the expression of chronic alcohol intoxication are Diffuse
Brain Alterations (atrophy of the cortex and white matter), Cerebellar Atrophy, Wernicke–
Korsakoff Syndrome, Central Pontine Myelinolysis, Marchiafava–Bignami Syndrome, Neu-
ropathy of the Autonomic Nervous System and Secondary Pathologic Alterations (vascular
injury especially stroke, intracranial bleeding, especially subdural hemorrhages and intrac-
erebral hemorrhages [99,100].

Neuropathological hallmarks of heavy alcohol consumption include shrinkage of gray
matter, enlargement of ventricles, myelin fiber disruption, and degeneration of the white
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matter, leading to compromised brain structure and associated functional deficits [101–104].
The underlying mechanisms of these alterations, linked to chronic ethanol intake, may
be due to the activation of glial Toll-like receptor 4 (TLR4), receptors that can trigger the
production of inflammatory mediators and cause brain damage [105–108].

Postmortem studies in human alcoholics showed a loss in brain weight, primarily due
to the loss of white matter [109] and downregulation of several genes associated with axons
and myelin, as well as degeneration of myelin sheath [110,111].

For chronic alcohol abuse, usually, there is evidence of liver cirrhosis and portal hyper-
tension, elevated plasma ammonia levels, and acute hyperammonemic encephalopathy.
Atrophy of the cortex and white matter is a typical finding of chronic intoxication, and
occurs with reduction of cortical neurons and of the prefrontal cerebral white matter [112],
especially the corpus callosum, and is reversible [113].

Pfefferbaum et al. (2002) showed a correlation between a higher life-time level of
alcohol consumption and smaller volumes and prolonged transverse relaxation time in
the pons; an overall deficit in white matter macrostructural size is observed in alcoholic
women [114].

Ch Denk et al. [115] showed edematous alterations with neuronal cell depletion in
laminae 2–3 and 5–6 in the insular region; postmortem histopathological examination
revealed an extensive hypoxic ischemic encephalopathy, especially in the frontal regions,
with edema and neuronal cell in the occipital, frontal, and temporal lobes. The cingulate
gyrus only displayed mild gliosis. Alongside neuronal cell depletion, there were also areas
of diffuse and subpial gliosis in both insular cortices.

The study by Butterworth and colleagues [116] described pseudolaminar cortical
necrosis and neuronal cell loss from the basal ganglia, thalamus, and cerebellum, which
died following acute hepatic encephalopathy after liver transplantation.

Also, cerebellum atrophy is a finding of chronic alcohol intoxication. The atrophy was
caused by a reduction in cerebellar white matter, the molecular layer (stratum moleculare)
of the cerebellar vermis, and a drop in the Purkinje cell density reactive proliferation of
astrocytes, namely the Bergmann glia. Several studies showed dendritic arborization,
shrinking of the anterior superior cerebellar vermis [117], reduction of the number and
density of Purkinje cells, an apparently a dose-dependent phenomenon [118,119].

Cerebellar degeneration in hepatic encephalopathy was characterized by the loss
of Purkinje cells, and alcoholic etiology was associated with a higher prevalence and
greater degree of severity of loss of these cells [109]. It has generally been assumed that
cerebellar degeneration in chronic alcoholism (sometimes referred to as “alcoholic cerebellar
degeneration”) is the result of malnutrition.

Wernicke’s encephalopathy (WE) is a common finding in chronic alcoholic patients, and
a neuropathologic study revealed thalamic and mammillary body lesions characteristic of WE
in 25% of cases (9 out of 36). Furthermore, the majority of cases of WE described in the study
by Kril and colleagues [120] were characterized by chronic lesions, long-standing in nature
and representing neuronal cell loss from thalamic structures, which predated the terminal
hepatic coma and may have had a significant impact on the functional state of the patient.

The acute course shows some non-reactive capillary hemorrhages, located mainly
in the mammillary bodies and in the paraventricular nuclei, especially the supraoptic
nucleus and quadrigeminal plate. In the chronic course, macroscopic cerebral findings are
dominated by atrophic, brownish mammillary bodies and periventricular hemorrhages of
varying age at the level of the third and fourth ventricles and the aqueduct.

Histologic patterns reveal astrogliosis and capillary proliferation of siderophages, and
spongy disintegration of the neuropil and demyelination; the vascular changes include
angiectasis, looping, and swelling of endothelium, as well as fibrinoid degeneration selec-
tively affecting arterioles and capillaries. The neuronal elements remain largely intact, and
only occasionally exhibit swelling with chromatolysis [121].

Another neuronal alteration typical of chronic alcohol abuse is the spongy degen-
eration of white matter localized to the basis pontis, similar to the lesions described in
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Hepatocerebral Degeneration (AHCD) [122]. In this case, spongy degeneration mainly
involved the corticospinal and pontocerebellar tracts.

A summary of the studies discussed in this section is reported in Table 1.

Table 1. Neuropathological findings in drug abusers.

Drug Alterations References

Opioids Atrophy in the right insula, reductions in the superior temporal and orbitofrontal gyri decreased gray matter in
the left cerebellar vermis and right Rolandic operculum, including the insula [28]

Opioids

Decreased gray matter density in the bilateral medial frontal cortex, right superior and inferior frontal cortex, and
left superior and middle frontal cortex.

Decreased gray matter density in bilateral insula, bilateral superior temporal cortex, right uncus and left fusiform
cortex

[29]

Opioids Decreased gray matter volume in opioid dependent subjects compared with control subjects [30]

Opioids Increased volume of the right caudate nucleus and a decreasing trend of the volumes of the right amygdala,
anterior cingulate cortex, and orbitofrontal cortex [31]

Morphine
Increase in gray matter in the left pregenual anterior cingulate, right ventral posterior cingulate, inferior pons, the

right hypothalamus, and left inferior frontal gyrus.
Decreased gray matter in the amygdala and hypothalamus

[32]

Opioids Increased dendritic spine density, bilateral volumetric loss in the amygdala and decreased fractional anisotropy
of amygdala, nucleus accumbens, and insula [33]

Opioids Infants prenatally exposed to opioids showed a smaller overall deep gray matter of thalamus and insula.
Increased volumes of white matter in the right cingulate gyrus and left occipital lobe [34]

Heroin Decreased brain tissue, cerebral edema, demyelination in the cerebral white matter. Decreased neuronal density
in the globus pallidus [35]

Opioids Vacuolar degeneration of the deep white matter in the centrum semi-oval of the two hemispheres [40]

Opioids Decreased fractional anisotropy in corpus callosum, thalamic radiation, and inferior longitudinal fasciculus [42]

Cocaine Ischemic stroke [43–45]

Cocaine Intracerebral and subarachnoid hemorrhages [47–51]

Cocaine Cerebrovascular complications [54–57]

Cocaine Intracerebral and subarachnoid hemorrhages, ischemic stroke and aneurysmal subarachnoid hemorrhage [47,48,50,55,56,58–69]

Cocaine Cerebral vasculitis [70–72]

Cannabis Vasospasm, hypotension, arrhythmias and increased cerebrovascular resistance [78,79]

Cannabis Reduced cerebral blood flow in left, superior and middle temporal gyri, left insula, left and right medial frontal
gyrus, and left supramarginal gyrus at the baseline [80]

Cannabis Increased blood perfusion in the anterior cingulate, frontal cortex, and insula, and reduced perfusion in posterior
brain regions [81]

Cannabis Weekly utilization of cannabis is correlated with a decreased hippocampal and in amygdala volume. Instead,
intense cannabis consumption correlates with increased grey matter volume in the cerebellum [82–85]

Cannabis Higher density in the left and right precentral gyrus, including portions of postcentral gyrus and thalamus [86]

Cannabis Female cannabis users have larger volumes in prefrontal cortex morphometry associated with impaired executive
functioning [87]

Cannabis Alterations in shape of the tail, head, and midway down the body of the hippocampus [88]

Cannabis Axonal connectivity is impaired in the right fimbria of the hippocampus (fornix), splenium of the corpus
callosum and commissural fibers [90]

Cannabis Increased activation in the left cerebellum and less activation in the right lateral orbitofrontal cortex and in the
right dorsolateral prefrontal cortex [91]

Cannabis Decreased thickness and density of gray matter, particularly in the precuneus, especially in young adult cannabis
users [92]

Cannabis In late adolescence, cannabis use might be linked to increased cortical thickness and volume in medial parietal
cortex [93–95]

Alcohol Shrinkage of gray matter, enlargement of ventricles, myelin fiber disruption, and degeneration of the white
matter [96–99]

Alcohol Loss in brain weight due to the loss of white matter [104]

Alcohol
Edematous alterations with neuronal cell depletion in the insular region. Hypoxic ischemic encephalopathy of
the frontal regions, with edema and neuronal cell in the occipital, frontal and temporal lobes. The cingulate gyrus

only displayed mild gliosis. Diffuse subpial gliosis in both insular cortices
[107]

Alcohol Pseudolaminar cortical necrosis and neuronal cell loss from basal ganglia, thalamus, and cerebellum [108]

Alcohol Wernicke’s encephalopathy with thalamic and mammillary body lesions [110]

Alcohol Spongy degeneration of white matter localized to the basis pontis [111]
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4.6. New Psychoactive Substances

Although the diffusion of new psychoactive substances (NPS, also known as Smart
Drugs) is increasing, the deaths reported in the literature are limited [123,124].

4.6.1. Synthetic Cannabinoids

Synthetic cannabinoid receptor agonists interact with the cannabinoid receptors CB1
and/or CB2, and severely toxic effects were described after ingestion of these compounds
psychostimulant NPS. In cases of sudden death due to the use of synthetic cannabinoids,
an encephalic edema was generically described at autopsy, in the absence of further specific
findings affecting the brain. In some cases, however, the concomitant administration of
alcohol was described [125,126].

4.6.2. Hallucinogenic NPS

N-Benzyl-substituted phenethylamines (NBOMes) are known as new drugs with
hallucinogenic action via a serotonin receptor activation mechanism. The mechanism
that can lead to death, together with cases of co-administration of multiple substances, is
described as linked to the establishment of a serotonin syndrome with the appearance of
psychic, neurological and autonomic symptoms. At the present time, encephalic alterations
macroscopically detected at autopsy are not described. The exception is a case of post-
traumatic hemorrhage due to the subject’s state of agitation [127].

5. Conclusions

In case of drug abuse, the identification of the cause of death still represents a sig-
nificant challenge for forensic pathologists. In addition, in drug abusers, these is a broad
spectrum of changes affecting the CNS. In the current analysis, we investigated several
studies that correlate the assumption of the most used substances of abuse and the mor-
phological alterations of the CNS related to these compounds, in order to help the forensic
pathologist with finding out the cause of death. Examining the studies reported in this
review, it came up that several brain morphological alterations can be detected in drug
abusers, including neuronal and axonal injury, cerebral edema, neuronal and white matter
injury, and focal necrosis. However, none of them is specifically correlated to a single drug.

Thus, on the basis of the evidence emerging from the present literature review, we
found common elements that could be useful in identifying a drug abuser’s brain. We
summarized the brain alterations found for each drug in Figure 5.
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Thus, histopathology and immunohistochemistry techniques may significantly help
the forensic pathologist to identify the brain morphological alterations underlying the
death and to establish the conceivable cause of death.
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