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Abstract: Hypoglycemia is a particular problem in people with diabetes while it can also occur in
other clinical circumstances. Hypoglycemia unawareness describes a condition in which autonomic
and neuroglycopenic symptoms of hypoglycemia decrease and hence are hardly perceivable. A
failure to recognize hypoglycemia in time can lead to unconsciousness, seizure, and even death.
The risk factors include intensive glycemic control, prior episodes of severe hypoglycemia, long
duration of diabetes, alcohol consumption, exercise, renal failure, and sepsis. The pathophysiological
mechanisms are manifold, but mainly concern altered brain glucose sensing, cerebral adaptations, and
an impaired hormonal counterregulation with an attenuated release of glucagon, epinephrine, growth
hormone, and other hormones, as well as impaired autonomous and neuroglycopenic symptoms.
Physiologically, this counterregulatory response causes blood glucose levels to rise. The impaired
hormonal counterregulatory response to recurrent hypoglycemia can lead to a vicious cycle of
frequent and poorly recognized hypoglycemic episodes. There is a shift in glycemic threshold to
trigger hormonal counterregulation, resulting in hypoglycemia-associated autonomic failure and
leading to the clinical syndrome of hypoglycemia unawareness. This clinical syndrome represents a
particularly great challenge in diabetes treatment and, thus, prevention of hypoglycemia is crucial in
diabetes management. This mini-review provides an overview of hypoglycemia and the associated
severe complication of impaired hypoglycemia awareness and its symptoms, pathophysiology, risk
factors, consequences, as well as therapeutic strategies.

Keywords: hypoglycemia unawareness; diabetes; hypoglycemia counterregulation; hormonal
regulation; sleep deprivation

1. Introduction
1.1. Definition of Hypoglycemia

Hypoglycemia is a common complication in people with diabetes. It is defined by
the American Diabetes Association as all episodes of an abnormally low plasma glucose
concentration that expose the individual to potential harm [1]. In numerical terms, a
value of 70 mg/dL (3.9 mmol/L) or lower with associated symptoms is usually consid-
ered a hypoglycemic condition. A blood glucose level below 70 mg/dL is also called
level 1 hypoglycemia, defining the lower end of the postabsorptive glucose scale. Be-
yond that, hypoglycemia with glucose levels below 54 mg/dL (3.0 mmol/L) is called
level 2 hypoglycemia, which is mostly accompanied by neurological symptoms of hypo-
glycemia. Level 3 hypoglycemia describes hypoglycemia independent of a defined numeri-
cal value as severe hypoglycemia requiring the assistance of a third party [2] (Table 1).
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Table 1. Definition of levels of hypoglycemia [2].

Level Criteria

Level 1 Plasma glucose concentration < 70 mg/dL (<3.9 mmol/L);
≥54 mg/dL (≥3.0 mmol/L)

Level 2 Plasma glucose concentration < 54 mg/dL (<3.0 mmol/L)

Level 3 A severe event characterized by altered mental and/or physical
status requiring assistance

1.2. Symptoms of Hypoglycemia

Symptoms of hypoglycemia can be classified as autonomic and neuroglycopenic
symptoms. While autonomic symptoms occur due to stimulation of the autonomic nervous
system, neuroglycopenic symptoms are mainly caused by a glucose deficiency in the brain.
Autonomic symptoms usually occur at higher glucose thresholds than neuroglycopenic
ones [3,4]. Autonomic symptoms may include diaphoresis, palpitations, hunger, tingling,
and anxiety. Neuroglycopenic symptoms include weakness, drowsiness, confusion and
fatigue, seizures, and in the most severe cases may lead to coma and death.

1.3. Risk Factors for Hypoglycemia

Intensive glycemic control, often achieved through intensive insulin therapy, increases
the risk of hypoglycemic episodes. This represents a major lifelong challenge for patients
with diabetes because a low HbA1c level is important, but the risk of hypoglycemia
increases with HbA1c values below 6.5% [5]. However, intensive insulin management has
been shown to be a risk factor for a higher frequency of hypoglycemic episodes but not
severe hypoglycemia [6].

Older age has also been shown to be related to severe hypoglycemic reactions [7].
Sociodemographic differences in risks for severe hypoglycemia were not found [6].

It is known that endogenous glucose release and production are decreased after
alcohol ingestion and, thus, this represents a risk factor for severe hypoglycemia. During
exercise, glucose utilization is generally increased and sensitivity to insulin is higher late
after exercise and during the night as well as after weight loss. Especially in children
and adolescents, nocturnal hypoglycemia can occur after delayed effects of exercise and
alterations in sleep physiology. This is a serious complication and nocturnal hypoglycemic
episodes are often profound and prolonged [8].

Hypoglycemia can also occur in certain medical conditions and diseases such as
pancreatic or non-islet cell tumors, organ failure, dietary toxins, stress, and infections.
Moreover, autoimmune conditions such as adrenal insufficiency and other endocrine
diseases can lead to hypoglycemic episodes [9]. In patients with renal failure, for example,
insulin clearance is reduced so that higher insulin levels could lead to severe hypoglycemia.
Moreover, there is an impaired renal glucose production in these patients (Figure 1) [10].

After esophageal, gastric, or bariatric surgery, new onset of postprandial hypoglycemic
episodes can occur. People with obesity who underwent Roux-en-Y gastric bypass are more
affected than individuals who have undergone a sleeve gastrectomy. It has been shown that
especially younger, female, and non-diabetic individuals experience hypoglycemic episodes
more frequently after bariatric surgery [11]. The altered gastric anatomy allows undigested
food to pass from the stomach into the small intestine too rapidly. Early dumping syndrome
occurs within the first hour after food intake. Hyperosmolality of food causes a fluid shift
into the intestinal lumen, leading to hypoglycemia with accompanying gastrointestinal
symptoms. Late dumping syndrome typically occurs one to three hours after a meal. An
incretin-driven hyperinsulinemic response to undigested carbohydrates can result in a
hypoglycemic episode [12,13]. Elevated GLP-1 and associated insulin levels have been
shown in patients after bariatric surgery [14]. Nevertheless, the risk of hypoglycemia
during therapy with GLP-1 analogs is very low. It has even been shown that GLP-1 analogs
can stabilize glucose levels. Therefore, the mechanism of late dumping syndrome appears
to be more complex [13,15,16].
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Figure 1. Graphical representation of the risk factors for hypoglycemia unawareness and its pathophysiology.

2. Pathophysiology of Hypoglycemia Unawareness Syndrome
2.1. Autonomic Failure

It is suggested that hypoglycemia unawareness syndrome is mainly induced by re-
cent antecedent hypoglycemic episodes causing defective glucose counterregulation. The
absence of symptoms of hypoglycemia reflects the attenuation of the sympathoadrenal
response [17]. Hypoglycemia unawareness syndrome is commonly observed in individuals
with recurrent hypoglycemic episodes disrupting the normal release of counterregulatory
hormones, such as glucagon, growth hormone (GH), and epinephrine. Besides the attenua-
tion of the sympathoadrenal responses, the blunted hormonal response leads to impaired
glucose counterregulation and reduced awareness of hypoglycemia. Consequently, a vi-
cious cycle of recurrent hypoglycemia with the potential for serious complications can
occur [18,19]. Supporting the theory of hypoglycemia unawareness syndrome, consequent
avoidance of hypoglycemia improves the hypoglycemic counterregulatory process and
thus hypoglycemia awareness [18].

2.2. Altered Brain Glucose Sensing

The brain relies critically on glucose as its primary energy source. It is not possible
for cells in the brain to synthesize glucose or to store it as glycogen. Therefore, brain
cells are dependent on being constantly supplied with glucose. Due to the important
glucose supply for the brain, specialized mechanisms can be activated by the brain to sense
and respond to changes in glucose levels. These mechanisms involve various cell types,
including neurons, glial cells, and endothelial cells, which work together to regulate glucose
uptake, metabolism, and signaling. Dysfunction in these processes can lead to altered brain
glucose sensing, which has far-reaching consequences on neuronal activity and overall
brain physiology and can contribute to hypoglycemia unawareness syndrome [10,18].

Neurons express glucose transporters (GLUTs) that facilitate glucose entry into the
cells. Moreover, certain neurons express glucose-sensitive channels, such as ATP-sensitive
potassium (KATP) channels, which regulate neuronal excitability in response to glucose
fluctuations. These glucose-sensing neurons are strategically located in key brain regions in-
volved in energy homeostasis, such as the hypothalamus. Glial cells, particularly astrocytes,
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play a crucial role in brain glucose sensing. Astrocytes express GLUTs and actively take
up glucose from the bloodstream. Intracellular glucose is metabolized through glycolysis,
and the resulting lactate is released as a metabolic substrate for neurons. Astrocytes also
release signaling molecules, such as ATP and lactate, which can modulate neuronal activity
and synaptic transmission. Brain endothelial cells forming the blood–brain barrier (BBB)
regulate the exchange of nutrients, including glucose, between the bloodstream and the
brain. These cells express glucose transporters and glucose transport proteins (GLUT1 and
GLUT3), ensuring a constant supply of glucose to the brain. Endothelial glucose-sensing
mechanisms involve the release of signaling molecules, such as nitric oxide and lactate,
which modulate blood flow and regulate glucose transport across the BBB. However, recent
antecedent hypoglycemic episodes do not increase these mechanisms with a higher blood-
to-brain glucose transport. Consequently, these mechanisms might work with a lower
glucose threshold resulting in a higher risk of developing hypoglycemia unawareness
syndrome [10,18,20].

2.3. Cerebral Adaptations

Recurrent hypoglycemic episodes can trigger adaptive responses within the central
nervous system. Over time, the brain adapts to the lower glucose levels, resetting the
threshold for glucose sensing to lower values. As a consequence, individuals with impaired
hypoglycemia awareness exhibit a blunted response to falling glucose levels, further
contributing to the condition [21].

Studies in animals have demonstrated the presence of glucose-sensing neurons in
both the brain and peripheral regions, which detect changes in glucose concentration and
transmit signals to initiate appropriate responses. These neurons can be either glucose-
excited or glucose-inhibited, increasing or decreasing their activity based on glucose levels.
Several neurotransmitters, including norepinephrine, gamma-aminobutyric acid (GABA),
glutamate, and nitric oxide, are involved in relaying signals from these glucose-sensing
neurons. The information on glucose concentration is integrated at the central level,
primarily in the hypothalamus and hindbrain, and then transmitted to motor neurons
responsible for autonomic and neuroendocrine responses. The precise roles of peripheral
and central glucose sensors in initiating the counterregulatory response are still being
studied [22]. Human studies have identified brain areas activated during hypoglycemia,
including the hypothalamus, brainstem, anterior cingulate cortex, and others. An important
mediator in the development of hypoglycemia unawareness syndrome could be levels
of GABA, a potent inhibitory neurotransmitter. The concentration levels of GABA are
decreased during an acute hypoglycemic episode in ventromedial hypothalamus (VMH)
interstitial fluid. However, recurrent hypoglycemia induces increased GABA levels so
that the absence of decreasing GABA concentrations during hypoglycemia is associated
with a reduced glucagon and epinephrine response. Recurrent hypoglycemia results in
increased VMH GABA inhibitory tone which could be important in the development of a
hypoglycemia unawareness syndrome [21].

2.4. Hormonal Regulation

Hypoglycemia counterregulation is a complex process involving further counterreg-
ulatory hormones such as epinephrine, glucagon, cortisol, and other hormones. These
hormones mostly work synergistically to increase hepatic glucose production, reduce
peripheral glucose uptake, and mobilize alternative energy sources during hypoglycemia.

In healthy individuals without diabetes, the initial response to low blood sugar levels
is a reduction in insulin secretion, even before the plasma glucose concentration reaches
hypoglycemic levels. Glucagon and insulin play an important role in hypoglycemia coun-
terregulation and in restoring normal glucose homeostasis. Hormonal dysregulation has
been identified as a significant factor contributing to the development of hypoglycemia
unawareness syndrome. In individuals with T1D or prolonged type 2 diabetes (T2D), un-
regulated insulin release from subcutaneous depots or the sustained effects of sulfonylureas
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can result in elevated systemic insulin levels during hypoglycemia. In addition, beta-cell
dysregulation leads to dysfunction of alpha-cells, and a lack of a decrease in insulin levels
prevents glucagon secretion. These processes cause defects in counterregulatory response,
which is the failure to remove insulin from the systemic circulation. The relative insulin
excess increases glucose uptake and suppresses glucose production in the liver, despite the
development of hypoglycemia. It also acts peripherally to limit lipolysis and the release of
gluconeogenic substrates to the liver. These effects collectively enhance tissue glucose up-
take and reduce glucose production, intensifying the hypoglycemic stimulus. Furthermore,
there is a paradoxical impairment of glucagon secretion during hypoglycemia in patients
with diabetes. The reasons for this reversal are not fully understood, but it may involve the
loss of regulatory signals from beta-cells, such as insulin and GABA [23–25]. In addition,
the intraislet insulin hypothesis could play an important role. In this hypothesis, insulin
secretion from β-cells decreases during hypoglycemia and, at the same time, serves as an
activating signal for the release of glucagon from α-cells. A more recent hypothesis sug-
gests that zinc atoms, and not the insulin molecule itself, inhibit α-cells and thus glucagon
secretion via their ability to open ATP-sensitive K+ channels in α-cells [26].

GH is secreted at glucose concentrations of approximately 66 mg/dL (3.7 mmol/L) and
is also involved in hypoglycemia counterregulatory processes. Some studies suggest that
GH has a prominent role in the setting of a prolonged hypoglycemic episode. GH induces
glucose level changes over several hours by stimulating lipolysis in adipose tissue as well
as ketogenesis and gluconeogenesis in the liver [22,27,28]. For example, in patients with
GH deficiency due to hypopituitarism, plasma glucose concentrations were significantly
lower 12 h after continuous insulin infusion to induce hypoglycemia [29]. After antecedent
hypoglycemia, GH responses were significantly suppressed [22].

Glucocorticosteroids increase when hypoglycemia occurs, which has been proposed
to feedback to the hypothalamus. However, the exact role of cortisol in hypoglycemia coun-
terregulation remains unclear. In contrast to GH, cortisol effects the central nervous system.
A prior elevation of cortisol levels and recurrent hypoglycemia lead to an attenuation of
counterregulatory response to subsequent hypoglycemia. Consequently, cortisol could play
an important role in the development of hypoglycemia unawareness syndrome [30].

The concept of hypoglycemia unawareness also includes that recent antecedent
hypoglycemic episodes cause a defective counterregulation by reducing epinephrine
levels. Physiologically, in response to hypoglycemia, plasma levels of epinephrine in-
crease. After recent antecedent hypoglycemia, epinephrine levels are significantly reduced
(Figure 2) [19,30].

Biomedicines 2024, 12, x FOR PEER REVIEW 6 of 13 
 

 
Figure 2. Concept of a dampened hormonal hypoglycemic counterregulation after recent antecedent 
hypoglycemic episodes. 

2.5. Sleep 
Emerging evidence suggests that sleep plays a critical role in hypoglycemia coun-

terregulation [19]. It is known that sleep quality and duration have a significant impact on 
metabolic as well as neuroendocrine processes [31–33]. Sleep is a complex physiological 
process characterized by distinct stages, including non-rapid eye movement (NREM) 
sleep and rapid eye movement (REM) sleep. Both stages contribute to the regulation of 
glucose metabolism. NREM sleep is associated with increased insulin sensitivity and glu-
cose uptake in peripheral tissues. In contrast, REM sleep is characterized by a shift toward 
insulin resistance and increased glucose production by the liver. Disruptions in sleep ar-
chitecture can disrupt glucose homeostasis, predisposing individuals to hypoglycemic ep-
isodes [33,34]. 

Hypoglycemia during sleep is particularly challenging as it often goes unnoticed, 
leading to prolonged and severe episodes. Studies have demonstrated that healthy indi-
viduals exhibit blunted autonomic and symptomatic responses to hypoglycemia during 
sleep compared to wakefulness [21]. Sleep-related changes in hormonal secretion, such as 
reduced release of counterregulatory hormones (e.g., glucagon, epinephrine, growth hor-
mone), contribute to impaired hypoglycemia awareness during sleep. Around 60–70% of 
nocturnal hypoglycemic episodes in patients with diabetes occur during late sleep, i.e., 
between 03:00 and 07:00 h [35,36]. Due to a difference in sleep stage architecture, there is 
also a difference between hormonal counterregulation during early and late nocturnal 
sleep. It was shown that counterregulatory hormones such as epinephrine, norepineph-
rine, ACTH, cortisol, and growth hormone were less pronounced during late than early 
nocturnal hypoglycemia [37]. In addition, epinephrine response to early nighttime hypo-
glycemia was shown to be enhanced, which is important in mediating the awareness of 
hypoglycemia [38]. Awakening from sleep due to hypoglycemia is a mechanism which is 
mainly part of the central nervous system. This was shown by a study with patients with 
T1D and healthy controls who underwent a hyperinsulinemic–hypoglycemic glucose 
clamp with a glucose nadir of 40 mg/dL (2.2 mmol/L) during sleep. Awakening from sleep 
with an accompanying increase in epinephrine levels was impaired in patients with T1D 
compared to healthy controls [39]. Furthermore, it is known that sleep represents a poten-
tial modulator of metabolic memory. In a study with two hypoglycemic episodes, fol-
lowed by a third hypoglycemic clamp after one night of regular sleep or sleep deprivation, 
the hormonal counterregulatory response to hypoglycemia was preserved after sleep loss. 
In contrast, counterregulatory response was attenuated after regular sleep, which can be 
considered as a learning process of memory consolidation that implicates the formation 
of neurometabolic memory and contributes to the development of a hypoglycemia una-
wareness syndrome [19,40]. 

2.6. Consequences 
Hypoglycemia unawareness poses significant safety risks to patients. Individuals ex-

periencing hypoglycemia unawareness are more likely to undergo severe hypoglycemic 
episodes, leading to accidents, injuries, and increased healthcare utilization. Moreover, 

1st hypoglycemia 2nd hypoglycemia 3rd hypoglycemia

Hypoglycemia counterregulation:Growth Hormone
Epinephrine

Glucagon

Figure 2. Concept of a dampened hormonal hypoglycemic counterregulation after recent antecedent
hypoglycemic episodes.

2.5. Sleep

Emerging evidence suggests that sleep plays a critical role in hypoglycemia counter-
regulation [19]. It is known that sleep quality and duration have a significant impact on
metabolic as well as neuroendocrine processes [31–33]. Sleep is a complex physiological
process characterized by distinct stages, including non-rapid eye movement (NREM) sleep
and rapid eye movement (REM) sleep. Both stages contribute to the regulation of glucose
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metabolism. NREM sleep is associated with increased insulin sensitivity and glucose
uptake in peripheral tissues. In contrast, REM sleep is characterized by a shift toward
insulin resistance and increased glucose production by the liver. Disruptions in sleep
architecture can disrupt glucose homeostasis, predisposing individuals to hypoglycemic
episodes [33,34].

Hypoglycemia during sleep is particularly challenging as it often goes unnoticed, lead-
ing to prolonged and severe episodes. Studies have demonstrated that healthy individuals
exhibit blunted autonomic and symptomatic responses to hypoglycemia during sleep com-
pared to wakefulness [21]. Sleep-related changes in hormonal secretion, such as reduced
release of counterregulatory hormones (e.g., glucagon, epinephrine, growth hormone),
contribute to impaired hypoglycemia awareness during sleep. Around 60–70% of nocturnal
hypoglycemic episodes in patients with diabetes occur during late sleep, i.e., between
03:00 and 07:00 h [35,36]. Due to a difference in sleep stage architecture, there is also a
difference between hormonal counterregulation during early and late nocturnal sleep. It
was shown that counterregulatory hormones such as epinephrine, norepinephrine, ACTH,
cortisol, and growth hormone were less pronounced during late than early nocturnal hy-
poglycemia [37]. In addition, epinephrine response to early nighttime hypoglycemia was
shown to be enhanced, which is important in mediating the awareness of hypoglycemia [38].
Awakening from sleep due to hypoglycemia is a mechanism which is mainly part of the
central nervous system. This was shown by a study with patients with T1D and healthy con-
trols who underwent a hyperinsulinemic–hypoglycemic glucose clamp with a glucose nadir
of 40 mg/dL (2.2 mmol/L) during sleep. Awakening from sleep with an accompanying
increase in epinephrine levels was impaired in patients with T1D compared to healthy con-
trols [39]. Furthermore, it is known that sleep represents a potential modulator of metabolic
memory. In a study with two hypoglycemic episodes, followed by a third hypoglycemic
clamp after one night of regular sleep or sleep deprivation, the hormonal counterregulatory
response to hypoglycemia was preserved after sleep loss. In contrast, counterregulatory
response was attenuated after regular sleep, which can be considered as a learning process
of memory consolidation that implicates the formation of neurometabolic memory and
contributes to the development of a hypoglycemia unawareness syndrome [19,40].

2.6. Consequences

Hypoglycemia unawareness poses significant safety risks to patients. Individuals
experiencing hypoglycemia unawareness are more likely to undergo severe hypoglycemic
episodes, leading to accidents, injuries, and increased healthcare utilization. Moreover,
the fear and anxiety associated with hypoglycemia can impair quality of life, causing
emotional distress, social isolation, and reduced adherence to treatment regimens. In
addition, patients with recurrent hypoglycemia are more likely to suffer from depression
and anxiety [21].

In patients with T1D, cognitive function and intellectual activity are likely to be im-
paired during acute hypoglycemia. Furthermore, this impairment persists for a longer
period after a hypoglycemic episode [41]. Supporting this fact, imaging techniques showed
that people with T1D require a higher level of brain activation to attain the same level
of cognitive performance during hypoglycemia compared with healthy individuals [42].
However, some studies such as the Diabetes Control and Complications Trial [43] and the
Stockholm Diabetes Interventions Study [44] could not detect any cognitive dysfunctions
after recurrent hypoglycemia [21]. Concerning older adults, a large longitudinal cohort
study revealed an increased risk for dementia in older individuals with T2D when hav-
ing a history of severe hypoglycemic episodes [45]. Moreover, older individuals are at
higher risk for geriatric syndromes including frailty, cognitive impairment, and depressive
symptoms [21].

Episodes of severe hypoglycemia are associated with an increased risk of mortality.
Although an intensive diabetes therapy is important in preventing other diabetes complica-
tions, hypoglycemia should always be avoided. Hypoglycemia induces vascular effects
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such as the activation of prothrombotic, proinflammatory, and proatherogenic components
resulting in an increased risk for cardiovascular diseases [46,47]. Another study found an
association of hypoglycemia and acute cardiovascular events such as myocardial infarction,
particularly in patients who experience considerable swings in blood glucose [48].

Especially during pregnancy, severe hypoglycemia and hypoglycemia unawareness
occur up to five times more frequently in women with diabetes, especially during the first
trimester. Risk factors for severe hypoglycemia in pregnant women are a long duration
of diabetes, an HbA1c level ≤ 6.5%, and high doses of daily insulin [49]. Consequences
of severe hypoglycemia during pregnancy are an impairment in fetal lung maturation,
intellectual performance and psychomotor development, and fetal growth [50].

3. Therapeutic Strategies

Hypoglycemia unawareness is a challenging condition due to the impaired ability
to recognize and respond to low blood glucose levels. The primary goal to prevent hy-
poglycemia unawareness should be the avoidance of hypoglycemic episodes. It has been
shown that even two to three weeks of strict avoidance of hypoglycemia in patients with
hypoglycemia unawareness is helpful to increase the glucose threshold triggering the
onset of hypoglycemic symptoms to a healthy level [51]. Therefore, providing compre-
hensive education to individuals with hypoglycemia unawareness and their caregivers
is crucial. Empowering patients with knowledge about hypoglycemia management, in-
cluding recognition and appropriate treatment, can enhance their ability to self-manage
and prevent severe events [21]. A randomized, prospective multi-center study found that
specific training programs for patients with hypoglycemia unawareness issues provided
additional benefits compared to the control group. These benefits included improving
hypoglycemia awareness, reducing mild hypoglycemia episodes, and enhancing the de-
tection and treatment of low blood glucose levels [52]. Another study, which focused on
assessing the restoration of impaired hypoglycemia awareness and defective hypoglycemia
counterregulation through educational strategies over 6 months, observed a significant
increase in the mean glucose concentration at which participants first experienced symp-
toms of hypoglycemia compared to baseline. Additionally, the participants exhibited
enhanced counterregulatory responses to hypoglycemia [53]. These findings emphasize
the importance of educational programs and specific training interventions in improving
hypoglycemia awareness and management.

There is recent evidence that sleep is metabolically relevant and plays a crucial role in
the adaptation process of the counterregulatory response to hypoglycemia. The adaptation
to recurrent hypoglycemia leading to hypoglycemia unawareness has been described as
a learning process that implicates the formation of neurometabolic memory. In a recent
study, sleep deprivation compared with sleep attenuated the adaptation to recurrent hy-
poglycemia. The counterregulatory response of the key hormones epinephrine, GH, and
glucagon was dampened after recurrent hypoglycemia when participants slept regularly
compared to sleep deprivation. Furthermore, neuroglycopenic symptoms during hypo-
glycemia were preserved upon sleep deprivation [19]. Although sleep loss or a short sleep
duration has negative effects on glucose metabolism, appetite, and hunger [31–33], sleep
loss after repeated hypoglycemia could prevent hypoglycemia unawareness. However,
further investigations about sleep-related memory formation in chronic hypoglycemia
unawareness are needed.

Furthermore, improving glycemic control with individualized glycemic targets for
blood glucose control is essential to reduce hypoglycemic episodes. Any comorbidities,
such as cardiovascular disease, history of severe hypoglycemia, hypoglycemia unawareness,
low glycated HbA1c, low C-peptide levels, or autonomic neuropathy, should always be
considered. Individuals with older age and/or frailty should not reach the standard
euglycemia or HbA1c levels <7.5%. Avoiding hypoglycemic episodes should be a priority
in elderly patients [54]. The insulin treatment should also be individually adapted for
each patient. To avoid severe hypoglycemic episodes, in many cases it could be helpful to
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use a rapid-acting insulin analog instead of regular insulins. Rapid-acting insulins have
a faster onset of action, a higher peak, and shorter duration of action, which corresponds
more closely to the endogenous mealtime insulin response. This allows more flexibility
in terms of meals and exercises [55,56]. NPH insulins should be used with caution due
to their ability to trigger hypoglycemia more frequently. In contrast, long-acting insulin
analogs show a more consistent, longer, and flatter action profile [10]. With the latest
generation of insulin analogs such as degludec and glargine U300, it is easier to reach a
consistent action profile [56]. Compared to insulin glargine U100, insulin degludec could
show a reduced rate of hypoglycemic episodes [57]. For patients with T2D, sulfonylureas
should only be used with caution and should be avoided in elderly individuals due to the
higher risk of hypoglycemia. Rates of hypoglycemia are higher especially for glibenclamid
than for other sulfonylureas [58]. Other treatment options for patients with T2D such as
metformin, glucagon-like peptide 1 receptor agonists, dipeptidyl peptidase-4 inhibitors,
pioglitazone, and sodium-glucose co-transporter-2 inhibitors show in contrast beneficial
effects in reducing the risk of hypoglycemia [56].

Historically, self-monitored blood glucose (SMBG) was crucial in the prevention of
hypoglycemia during intensified insulin therapy. It is known that a high frequency of
SMBG monitoring (≥10 times per day) is associated with a better glucose control in all age
groups [59]. However, for many people, it is not possible to practice SMBG monitoring
with such frequency. Continuous glucose monitoring (CGM) devices that measure glucose
concentration in the interstitial fluid have revolutionized diabetes management. These
devices, typically non-invasive or minimally invasive, use a sensor inserted under the skin
to measure glucose levels continuously and transmit the data to an external monitor. CGM
devices offer a wealth of glucose data, allowing for better management of diabetes and
therapy. They provide real-time and continuous glucose level monitoring, enabling the
detection, correction, and prevention of hyper- or hypoglycemic events. CGM devices
can display current glucose levels and trends, generate alerts for hypoglycemia or hy-
perglycemia, and aid in optimizing treatment decisions [56]. Real-world evidence data
on CGM management in adult individuals with T1D or T2D showed significantly lower
severe hypoglycemic event rates after <6 months with CGM [60]. The combination of
CGM with continuous subcutaneous insulin infusion (CSII) has led to further technology
development. The combination of CGM and CSII is particularly widespread in children and
adolescents with a use rate of >90% in countries with optimal reimbursement [61]. With this
combination, it is possible to shift HbA1c values and “time in range” (TIR) into the normal
range without increasing the risk of hypoglycemia [62]. The newer technology, “automated
insulin delivery” (AID) or “hybrid closed-loop system” (HCL), is equipped with control
algorithms that can automatically suspend insulin infusion to prevent hypoglycemia. This
technology is associated with a reduced risk of hypoglycemia and a higher TIR [63]. The
current hybrid closed-loop systems require the manual entry of carbohydrates consumed
to calculate prandial doses [64]. Closed-loop systems, also known as artificial pancreas
systems, combine continuous glucose monitoring (CGM) and insulin delivery without
requiring patient intervention. These systems utilize a control algorithm that adjusts insulin
infusion frequently (i.e., every 5 min) based on glucose levels and data from CGM [65]. It
has been shown that closed-loop systems reduce time spent in hypoglycemia [56,66].

4. Conclusions

In conclusion, hypoglycemia unawareness is a significant complication in diabetes
treatment that poses serious risks to individuals. Failure to identify hypoglycemia in a
timely manner can lead to severe consequences, including unconsciousness, seizures, and
even death. Various risk factors contribute to the development of hypoglycemia unaware-
ness, such as intensive glycemic control, prior episodes of severe hypoglycemia, longer
duration of diabetes, alcohol consumption, exercise, renal failure, and sepsis. The patho-
physiology of hypoglycemia unawareness involves multiple mechanisms, including altered
brain glucose sensing, cerebral adaptations, and impaired hormonal counterregulation.
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These processes disrupt the normal response to hypoglycemia, leading to a blunted release
of counterregulatory hormones such as glucagon, epinephrine, and growth hormone. The
impaired hormonal counterregulatory response can initiate a vicious cycle of recurrent
hypoglycemia and further exacerbate the condition. Additionally, there are alterations in
brain glucose sensing, where the brain fails to detect and respond appropriately to low
glucose levels.

Prevention of hypoglycemia is crucial in managing diabetes and addressing hypo-
glycemia unawareness. Avoiding hypoglycemic episodes and maintaining stable blood
glucose levels can help to restore hypoglycemia awareness. Therapeutic strategies involve
a comprehensive approach, including medication adjustments, dietary modifications, reg-
ular physical activity, and continuous glucose monitoring. Additionally, education and
awareness about hypoglycemia symptoms and proper self-care practices are essential for
individuals with diabetes.

In summary, hypoglycemia unawareness represents a significant challenge in diabetes
management, but with appropriate preventive measures and therapeutic strategies, the
risks associated with this condition can be minimized. Further research is needed to gain a
deeper understanding of the underlying mechanisms and develop targeted interventions
to improve hypoglycemia awareness in individuals with diabetes.
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