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Abstract: Background: Systemic inflammation in chronic kidney disease (CKD) is associated (as a
cause or effect) with intestinal barrier dysfunction and increased gut permeability, with mechanisms
not yet fully understood. This study investigated different parameters of the intestinal barrier in
CKD patients, especially tight junction (TJ) proteins and their possible association with systemic
endotoxemia and inflammation. Methods: Thirty-three patients with stage I–IV CKD (n = 17) or
end-stage kidney disease (ESKD) (n = 16) and 11 healthy controls underwent duodenal biopsy.
Samples were examined histologically, the presence of CD3+ T-lymphocytes and the expression of
occludin and claudin-1 in the intestinal epithelium was evaluated by means of immunohistochemistry,
circulating endotoxin concentrations were determined by means of ELISA and the concentrations
of the cytokines IL-1β, IL-6, IL-8, IL-10 and TNF-α in serum were measured using flow cytometry.
Results: Patients with stage I–IV CKD or ESKD had significantly higher serum endotoxin, IL-6, IL-8
and IL-10 levels compared to controls. Intestinal occludin and claudin-1 were significantly decreased,
and their expression was inversely correlated with systemic endotoxemia. Regarding occludin, a
specific expression pattern was observed, with a gradually increasing loss of its expression from the
crypt to the tip of the villi. Conclusion: The expression of occludin and claudin-1 in enterocytes is
significantly reduced in patients with CKD, contributing to systemic endotoxemia and inflammatory
responses in these patients.

Keywords: chronic kidney disease; endotoxin; intestinal barrier; occludin; tight junctions

1. Introduction

Systemic inflammation without evident clinical infection is common in CKD pa-
tients [1–3]. This can exacerbate various pre-existing comorbidities such as cardiovascular
disease, malnutrition and erythropoietin-resistant anemia, leading to increased morbidity
and mortality [4–6]. Systemic inflammation is manifested in CKD patients by increased
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levels of pro-inflammatory cytokines and biomarkers of oxidative stress in the blood [7].
The translocation of bacteria and endotoxins from the gut due to injury to the uremic gut
barrier plays a key role in promoting systemic inflammation [8–12]. On the other hand,
proinflammatory cytokines exert injurious effects on the gut barrier’s integrity, further
promoting endotoxin translocation and systemic inflammation, thus creating a vicious
cycle [1,5,8–11]. Previous studies have shown that the intestinal barrier is structurally and
functionally impaired in CKD, leading to increased gut permeability [11,13].

The main regulator of paracellular permeability is the apical junctional complex, which
consists of TJs, the subjacent adherens junctions and desmosomes [14–16]. It serves as the
main natural barrier against the influx of harmful contents in the internal environment [14,17].
To date, four groups of proteins have been identified as integral components of the TJs;
occludin, members of the claudin family, junctional adhesion molecules (JAMs), and
tricellulin. These proteins are associated with the actin cytoskeleton via an intracellular
“tight junctional plaque”, which is mainly formed by members of the zonula occludens (ZO)
protein family [18,19]. Occludin and claudins play a central role in the function of epithelial
TJs, which dynamically regulate the passage of ions, macromolecules and cells through the
paracellular pathway [20,21]. Previous studies using intestinal epithelial cell cultures and
experimental animal models have shown that enterocyte TJ proteins occludin and claudin-1
are structurally and functionally disrupted after exposure to uremic conditions [22–24].

The aim of this study was to investigate whether the expression of the key TJ proteins
occludin and claudin-1 is altered in the intestinal mucosa of patients with stage I–IV CKD
or ESKD, contributing to systemic endotoxemia and inflammatory responses.

2. Materials and Methods
2.1. Study Design

This is a single-center, two-arm, non-randomized prospective study. Patients were
eligible for inclusion if they were ≥18 years old and had been diagnosed with CKD. Exclu-
sion criteria included pregnancy, severe cardiac valve insufficiency, heart failure (with a left
ventricular ejection fraction of less than 50% or diastolic dysfunction), malignancies, chronic
gastrointestinal diseases (e.g., Helicobacter pylori gastro-duodenitis, celiac disease, irritable
bowel syndrome, inflammatory bowel disease) or bowel surgery, and the presence of any
of the following conditions in the last four weeks: infections, alcohol abuse, gastrointestinal
bleeding, pancreatitis, and treatment with drugs that could interfere with TJ regulation
such as antibiotics, corticosteroids, non-steroidal anti-inflammatory drugs and antioxidants
(vitamins C and E, allopurinol and N-acetyl cysteine).

All samples were collected and analyzed within a 24-month period. In total, 44 of the
60 patients examined met the above criteria. The study group consisted of patients with
CKD documented by a previous renal biopsy or an eGFR (CKD-EPI calculation) below
90 mL/min/1.73 m2 or albuminuria of more than 30 mg in 24 h urine (n = 33). This group
was divided into two groups: patients with stage I–IV CKD (CKD group, n = 17) and
patients with ESKD receiving maintenance hemodialysis (HD) or peritoneal dialysis (PD)
(ESKD group, n = 16). The CKD stage was classified using the CKD-EPI formula. The
control group consisted of subjects without CKD who did not fulfill any of the above
exclusion criteria (control group, n = 11).

All subjects enrolled in this study underwent an upper gastrointestinal (GI) endoscopy
under light sedation, due to symptoms of dyspepsia, after consultation with a gastroenterol-
ogist, without any pathological findings. During endoscopy, three duodenal biopsies were
taken from the second part of the duodenum. Only samples with a negative Helicobacter
pylori biopsy were considered for participation in this study.

The study was approved by the Ethics Committee of the University Hospital of
Patras, Greece (approval number: 480/4216) and was performed in accordance with the
Declaration of Helsinki as revised in 2013. Written informed consent was obtained from all
subjects prior to participation in the study.
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2.2. Endotoxin and Cytokines Measurements

Before the endoscopy, a blood sample was taken for endotoxin and cytokine measure-
ment. In the ESKD group, blood samples were obtained before a mid-week HD session or
after drainage and before filling the peritoneal cavity with peritoneal dialysate in subjects
on PD. The samples were collected in endotoxin-free vials and the serum was separated and
stored at −80 ◦C until processing. The endotoxin concentration was measured by ELISA
using the Human Endotoxin (ET) kit (cat#abx051541; Abbexa Ltd., Cambridge Science Park,
Cambridge, UK) (test range 0.015–1.0 EU/mL, sensitivity < 0.005 EU/mL). The samples
were processed after appropriate dilution according to the manufacturer’s instructions.

Measurement of the concentration of cytokines IL-1β, IL-6, IL-8, IL-10 and TNF-α in
serum samples was performed with a BD FACS Array Bioanalyzer using a cytometric bead
array (CBA) assay (Human Inflammatory Cytokines Kit, cat#551811, BD Biosciences, San
Diego, CA, USA) (test range 20–5000 pg/mL, sensitivity 7.2 pg/mL for IL1β, 2.5 pg/mL
for IL6, 3.6 pg/mL for IL8, 3.3 pg/mL for IL10 and 3.7 pg/mL for TNF-α).

2.3. Histopathological Evaluation and Immunohistochemistry

All biopsies were formalin-fixed and paraffin-embedded, and they were placed in
formalin within 10 min from the resection and processed within 48 h. In each hematoxylin
and eosin (H&E)-stained slide, several histologic features were evaluated in a blind fashion
and recorded. These features included architectural distortion, villous blunting, surface
and crypt epithelial injury, the presence and cell type of inflammation of the lamina propria,
surface and cryptal intraepithelial infiltration, lamina propria fibrosis and granulation
tissue formation. Apoptotic bodies are defined as round vacuoles containing fragments of
karyorrhectic nuclear debris distinct from small, isolated fragments of nuclear chromatin
and intraepithelial neutrophils or lymphocytes. Apoptotic bodies were counted in all archi-
tecturally well oriented consecutive crypts of the sample, regardless of crypt orientation,
and their number per 100 intestinal epithelial cells is referred to as the apoptotic body count.
For villus length (mm), at least 10 well-oriented villi were evaluated in each sample.

For immunohistochemistry (IHC), serial 3 µm tissue sections were cut, fixed in poly-L
lysine-coated slides and further processed. The sections were initially dried at 25 ◦C for
24 h, deparaffinized in xylene and hydrated in gradient alcohol. Antigens were retrieved in
Tris/EDTA buffer (pH 9) for 12 min with a pressure antigen retrieval procedure. Endoge-
nous peroxidase activity was then blocked by incubating the sections in an endogenous
peroxidase blocking solution (0.3% H2O2) at room temperature for 10 min. The sections
were then incubated with the following primary antibodies: claudin-1 (rabbit polyclonal
antibody, 1:100, WA314099, cat# 51–9000 Invitrogen, Rockford, IL, USA), occludin (rabbit
polyclonal antibody, 1:80, VL314100, cat#71–1500, Invitrogen, Rockford, IL, USA), CD20
(monoclonal antibody, Clone L26, 1:200, Dako Carpinteria, Carpinteria, CA, USA) and CD3
(rabbit polyclonal antibody, 1:300, Dako, Glostrup, Denmark). Dako EnVision polymer
(Dako EnVision Mini Flex, Dako Omnis, Angilent Technology Inc., Santa Clara, CA, USA,
K8023) was used for signal detection. Diaminobenzidine (Dako Omnis, GV823, Glostrup,
Denmark) was used as a chromogen and Harris hematoxylin was used for nuclear counter-
staining. Positive and negative controls for antibody validation were used according to the
manufacturer’s instructions.

Occludin, claudin-1 and CD3 immunohistochemical expression was recorded as
present (+) or absent (−). For occludin expression, ten well-oriented villi were randomly
selected per case and a percentage value of occludin (+) enterocytes was obtained by divid-
ing the number of cells stained positive by the total number of enterocytes lining villi. For
each part of the villi (crypt, middle and tip), a percentage value of occludin (+) enterocytes
was also obtained by dividing the number of cells stained positive by the total number of
enterocytes present in each part. The localization of the stain (nuclear, membranous, cyto-
plasmic) was also assessed. Moreover, the number of CD3(+) intraepithelial lymphocytes
per 100 intestinal epithelial cells was recorded in ten well-oriented villi per case. Regarding
claudin-1, at least 20 well-preserved crypts were evaluated in each case and a percentage
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value of claudin-1(+) enterocytes was obtained by dividing the number of cells stained
positive by the total number of cryptal enterocytes. Photomicrographs were taken with
cellSens Entry by Olympus on an Olympus BX41 microscope (Olympus Europa SE & Co.,
Wendenstraße 20, 20097 Hamburg, Germany). Two expert pathologists (PB and VZ) blinded
to the pathological and clinical characteristics of all cases performed the histopathological
and immunohistochemical analyses, and when scores between the two observers were
discordant, a consensus was achieved by conference at a two-headed microscope.

2.4. Statistical Analysis

Data were analyzed using the SPSS statistical package for Windows (version 25.0;
IBM, Armonk, NY, USA) and GraphPad Prism (version 9.1.0, GraphPad Software Inc., San
Diego, CA, USA). Normality of data was tested using the Shapiro–Wilk test. Comparisons
were performed using nonparametric analysis of variance (Kruskal–Wallis test) followed
by a post hoc Mann–Whitney U test with Bonferroni correction (non-normally distributed
data) or with one-way analysis of variance followed by a post hoc Tukey test (normally
distributed data). The results are expressed as the median (interquartile range) for non-
normally distributed data or the mean ± standard deviation (SD) for normally distributed
data. The chi-squared test, with Yates’ correction if required, was used to compare the
proportional data. Correlations were estimated by a nonparametric Spearman correlation
test. All tests were two-tailed and a p-value of less than 0.05 was considered significant.

3. Results
3.1. Patients’ Characteristics

Patients’ clinical and biochemical characteristics are summarized in Table 1.

Table 1. Characteristics of patients with CKD or ESKD and healthy controls.

Characteristics Control
(n = 11)

Stage I–IV CKD
(n = 17)

ESKD
(n = 16)

Age (years) 49.7 ± 18.5 58.5 ± 12.5 57.7 ± 13.4

Sex (males/females) 5/7 10/7 11/5

Urea (mL/dL) 30 ± 3.9 63.8 ± 39 * 123.5 ± 39 **

Creatinine (mL/dL) 0.75 ± 0.09 0.75 ± 0.4 * 5.9 ± 2.3 **

eGFR (mL/min/1.73 m2) 106.6 ± 19 56.5 ± 23.7 ** <15

Causes of CKD

Diabetic Nephropathy N/A 2 5

Hypertensive Nephropathy N/A 0 4

Glomerulonephritis N/A 13 2

Interstitial Nephritis N/A 0 2

Other N/A 2 1

Unknown N/A 0 2

CKD Classification

Stage I (eGFR ≥ 90) N/A 3 0

Stage II (eGFR = 60–89) N/A 2 0

Stage IIIA (eGFR = 45–59) N/A 7 0

Stage IIIB (eGFR = 30–44) N/A 4 0

Stage IV (eGFR = 15–29) N/A 1 0

Stage V (eGFR < 15) N/A 0 16
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Table 1. Cont.

Characteristics Control
(n = 11)

Stage I–IV CKD
(n = 17)

ESKD
(n = 16)

Renal replacement method

Hemodialysis 10

Peritoneal dialysis 6

Statistical analysis was performed with one-way analysis of variance followed by a post hoc Tukey test for
numerical data (age, Urea, Creatinine, eGFR) and with the chi-squared test, with Yates’ correction for the
proportional data (sex). * p < 0.05, ** p < 0.01 vs. Controls. N/A: not applicable.

There were no significant differences concerning basic clinical characteristics of pa-
tients among groups except for serum creatinine, urea and eGFR.

3.2. Endotoxin Concentrations

Patients with either CKD or ESKD showed significantly higher endotoxin serum levels
in comparison to controls (p < 0.01, Figure 1).
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Figure 1. Endotoxin concentrations in the peripheral blood of CKD patients and controls. Statistical
analysis was performed with nonparametric analysis of variance (Kruskal–Wallis test) followed by a
post hoc Mann–Whitney U test with Bonferroni correction. CKD: chronic kidney disease; ESKD: end
stage kidney disease. ** p < 0.01 vs. controls.

There was no significant difference in serum endotoxin levels between patients with
CKD and ESKD.
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3.3. Cytokine Levels

Cytokines levels in all groups are presented in Table 2.

Table 2. Cytokine levels in peripheral blood (values are median (IQR)).

Cytokine Controls
(n = 11)

Stage I–IV CKD
(n = 17)

ESKD
(n = 16)

IL-1β (pg/mL) 0 (0–0.53) 0 (0–0) 0 (0–0)

IL-6 (pg/mL) 0.83 (0.57–1.85) 10.36 (8.35–19.36) ** 19.33 (0.58–59.43) **

IL-8 (pg/mL) 3.42 (2.5–6.94) 41 (14.87–102) * 126.3 (33.9–475) ***

IL-10 (pg/mL) 0.28 (0.18–0.37) 2.8 (0.96–4.23) *** 1.85 (0.64–3.1) **

TNF-a (pg/mL) 0.41 (0–1.3) 0 (0–4.7) 0 (0–4)
Statistical analysis was performed with nonparametric analysis of variance (Kruskal–Wallis test) followed by a
post hoc Mann–Whitney U test with Bonferroni correction. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. Controls. There
were no significant differences between stage I–IV CKD and ESKD groups for all parameters.

Serum IL-1β and TNF-a levels did not differ significantly between groups. Serum IL-6
was significantly increased in both groups, CKD and ESKD, as compared to the controls
(p < 0.01, respectively), and the same applied for IL-8 (p < 0.05, p < 0.001, respectively) and
IL-10 (p < 0.001, p < 0.01, respectively). There were no significant differences between stage
I–IV CKD and ESKD groups for all measured cytokines.

3.4. Intestinal Histopathology

Overall, the duodenal architecture appeared normal, and epithelial continuity was
retained in all patients with CKD. Subepithelial edema was occasionally observed at the
tips of some villi in patients with ESKD. The duodenal crypts were well preserved in all
patients. No statistically significant differences were found between CKD or ESKD patients
and the control group in apoptotic body count and villus length (Table 3).

Table 3. Histological features in the intestinal mucosa of stage I–IV CKD or ESKD patients and
controls (values are median (IQR), except for villous length that are mean ± SD).

Histopathological Features Controls
(n = 11)

Stage I–IV CKD
(n = 17)

ESKD
(n = 16)

Apoptotic body count 10 (5–10) 5 (5–10) 7.5 (5–10)

Villous length (mm) 0.42 ± 0.03 0.40 ± 0.13 0.34 ± 0.1

Intraepithelial CD3+ lymphocytes/
100 intestinal epithelial cells 15 (15–20) 5 (5–7.5) 10 (5–17.5)

Statistical analysis was performed with nonparametric analysis of variance (Kruskal–Wallis test) for apoptotic
body count and intraepithelial CD3+ lymphocytes or with one-way analysis of variance for villous length. There
were no significant differences between the study groups.

3.5. Immunohistochemistry for TJ Proteins and Intraepithelial CD3(+) T-Lymphocytes

In healthy controls, occludin was expressed as membranous immunostaining, mainly
at the apical part of epithelial cells, whilst granular cytoplasmic and subnuclear distribution
was also observed. In the control group, almost all epithelial cells lining the villi and the
epithelial cells of the crypts showed positive immunostaining for occludin (Figure 2A).

In patients with stage I–IV CKD (Figure 2B) and ESKD (Figure 2C), the expression
of occludin was greatly reduced in numerous epithelial cells lining the villi (p < 0.001 as
compared to controls, respectively) (Table 4, Figure 3).

Interestingly, in the CKD and ESKD groups, we observed a gradient of occludin im-
munostaining positivity along the length of the villi, from crypt to tip; occludin expression
was maintained in the crypts and basal portion of the villi, and was reduced in the middle
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part of the villi in both groups, CKD and ESKD (p < 0.001, p < 0.01, respectively), while
greater loss of its expression was observed at the tip (p < 0.001, respectively) (Table 4).
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duodenal mucosa: in controls (A), almost all of the epithelial cells lining villi and crypts exhibit
positive cytoplasmic and apical membranous immunostaining for occludin (black arrows). In patients
with CKD (B) and ESKD (C), there is a pronounced depletion of cytoplasmic immunostaining for
occludin and loss of apical membranous expression in numerous epithelial cells, mainly at the upper
part of the villi (red arrows), while expression is generally preserved in crypts (black arrows) (all
microphotographs ×200).
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Table 4. Gradient of occludin expression (% of occludin (+) enterocytes) along the crypt–villous axis
in patient groups (values are mean ± SD).

Occludin Expression Controls
(n = 11)

CKD Stage I–IV
(n = 17)

ESKD
(n = 16)

Part of the villi

Tip 91.8 ± 7.5 44.7 ± 25 ** 53.7 ± 29 **

Middle 97.3 ± 4.7 84.7 ± 6.2 ** 86.3 ± 7.2 *

Crypt 99 ± 3 97 ± 5.9 93.1 ± 11.3

Total expression 93.6 ± 5 75.3 ± 6.2 ** 77.5 ± 10 **
Statistical analysis was performed with nonparametric analysis of variance (Kruskal–Wallis test) followed by a
post hoc Mann–Whitney U test with Bonferroni correction. * p < 0.05, ** p < 0.01 vs. Controls.

In healthy subjects, claudin-1 expression was observed in Brunner glands and crypts
and it was absent in intestinal villi. Staining in Brunner glands did not show any significant
difference between the CKD, ESKD and control groups. However, claudin-1 expression in
crypts was significantly decreased in the CKD and ESKD groups compared to the controls
(p < 0.001 and p < 0.01, respectively) (Figure 4).
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Figure 4. Claudin-1 expression (% of claudin-1 (+) enterocytes) in the intestinal mucosa. Statistical
analysis was performed with nonparametric analysis of variance (Kruskal–Wallis test) followed by a
post hoc Mann–Whitney U test with Bonferroni correction. CKD: chronic kidney disease; ESKD: end
stage kidney disease. ** p < 0.01, *** p < 0.001 vs. controls.

There was no significant difference in intraepithelial CD3(+) T-lymphocytes amongst
groups (Table 2).

3.6. Correlations

In all CKD patients (CKD stage I–IV and ESKD), the expression of occludin and
claudin-1 in the intestinal mucosa (immunohistochemical semi-quantification) was signifi-
cantly inversely correlated with endotoxin concentration (r = −0.616, p < 0.001 for occludin
and r = −0.417, p < 0.01 for claudin-1).
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4. Discussion

Intestinal mucosa injury, bacterial overgrowth and gut immune dysfunction promoting
the translocation of gut-derived bacteria and endotoxins, known as the “leaky gut theory”,
have been suggested to induce systemic inflammation in CKD patients [1,25,26]. This the-
ory has also been proposed as an explanation for the systemic inflammation in several other
non-intestinal diseases such as cirrhosis, chronic viral hepatitis, non-alcoholic fatty liver
disease, obesity, diabetes mellitus, heart failure, HIV infection and diverse autoimmune dis-
eases like rheumatoid arthritis [18,19,27]. The present prospective clinical study shows that
stage I–IV CKD and ESKD are associated with decreased intestinal expression of the key TJ
molecular components occludin and claudin-1, implying a potential cellular mechanism
of gut barrier dysfunction leading to endotoxemia and systemic inflammation. Previous
experimental studies with CKD animals have demonstrated the disruption of intestinal
TJs [24]. A previous retrospective clinical study also demonstrated reduced expression of
TJ proteins in the colonic mucosa of advanced CKD and hemodialysis patients complicated
with intradialytic hypotension [28]. However, in this previous study, samples were taken
after a bowel operation (colectomy) was performed due to malignancy or acute inflamma-
tory conditions (bowel obstruction, ischemic necrosis, perforation, diverticulitis). Since
all of these conditions may affect intestinal TJ expression and function [19], in the present
study, these procedures were set as exclusion criteria to reduce potential confounders and
attribute the TJ immunohistochemical results to the underlying CKD. According to our
results, a specific expression pattern of occludin was observed in the intestinal epithelium
in stage I–IV CKD and ESKD patients, with a gradually increasing loss of its expression
from the crypt to the tip of the villi. The latter may be explained by the fact that the villus
tip is the most vulnerable part to ischemic alterations, which are frequently encountered
in CKD patients, and ischemia is an important factor promoting disruption of epithelial
TJs [19,29].

Decreased intestinal occludin and claudin-1 expression might be attributed to diverse
factors in CKD. Chronic kidney disease leads to uremic toxins’ accumulation (indoxyl
sulphate, indole-3 acetic acid, p-cresyl sulphate, trimethylamine/trimethylamine-N-oxide,
and phenylacetylglutamine), which might affect TJ structure and function [30–33]. Ad-
ditionally, the dietary restrictions, as well as the medications used for the treatment of
CKD complications, chronic antibiotic administration due to infections, hemodynamic
alterations during hemodialysis and metabolic acidosis, all may lead to gut microbiota
alterations [28,31,32,34–36]. The normal gut microbiota, through the production of bene-
ficial metabolites (e.g., short chain fatty acids (SCFA), such as butyrate, propionate and
acetate), provides energy to enterocytes, while gut dysbiosis is associated with epithelial
dysfunction and disruption of enterocyte TJs [19,37].

Disruption of epithelial TJs in the intestine facilitates the paracellular transport of
potentially harmful hydrophilic molecules from the intestinal lumen to bloodstream (18). It
has been demonstrated that endotoxin, a lipopolysaccharide (LPS) located in the bacterial
outer membrane, is increased in all CKD stages as well as in patients with ESKD receiving
dialysis [38,39]. This is in line with the findings of the present study, where patients with
CKD of various stages had significantly higher endotoxin levels compared to healthy
subjects. In addition, according to our findings, serum endotoxin levels in patients with
stage I–IV CKD were not different from those of patients with ESKD, which indicates
that gut barrier dysfunction is not only a late renal disease complication. This is also
supported by the observed similar magnitude of disruption of intestinal TJs between
CKD and ESKD patients. The significant inverted correlation of occludin and claudin-
1 expression with serum endotoxin concentration points towards a causal relationship
between the disruption of enterocyte TJs and systemic endotoxemia in CKD. Previous
studies have also demonstrated that increased intestinal permeability directly correlates
with endotoxemia [40].

In CKD, endotoxin is an additional stimulus in the development of a systemic inflam-
matory response [41]. Endotoxin stimulates the production of reactive oxygen species (ROS)
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from neutrophils and macrophages and induces the production of diverse proinflammatory
cytokines such as IL-1, TNF-α and IL-6, through the nuclear factor kappa B (NF κB) signal-
ing pathway [7,42–44]. In the present study, IL-6, -8 and -10 were significantly increased
in stage I–IV CKD and ESKD patients. Cytokinemia might represent an additional factor
implicated in the disruption of intestinal TJs [19]. Specifically, for occludin, previous studies
have shown that proinflammatory mediators downregulate its promoter [45]. Although
programmed hemodialysis in ESKD has been proposed as a contributing factor of systemic
inflammation [46], the present study found non-significant differences in cytokines levels
between ESKD and CKD non-dialysis dependent patients. This indicates that factors other
than the extracorporeal procedure of dialysis might be responsible for the inflammatory
response, such as the disruption of the intestinal barrier and the promotion of systemic
endotoxemia, as shown in the present study.

Potential therapeutic strategies to control intestinal hyperpermeability in CKD and
ESKD patients include (a) interventions to prevent or restore intestinal dysbiosis, which is
associated with TJ disruption, with the use of probiotics, prebiotics and synbiotics [19,47].
Also, there is currently a growing research interest on the potential beneficial role of fe-
cal microbiota transplantation in diverse pathological entities characterized by intestinal
dysbiosis, gut hyperpermeability and systemic inflammation [48]. This could be an inter-
esting research field for the future. These strategies also include (b) interventions aiming
at preventing or restoring intestinal barrier injury, such as immunonutrition and antiox-
idants supplementation might also have a positive impact in this direction [49], and (c)
interventions to suppress systemic inflammation with the use of anticytokine therapies on
a personalized basis according to the observed cytokine profile.

Our study has certain limitations; first, it is a single-center study with a small number
of patients. Second, intestinal permeability in patients with CKD or ESKD was only
indirectly studied by using endotoxemia as a marker. Third, the potential mechanisms
of disruption of enterocytes TJs were not investigated in depth and interrelations of our
findings were mostly based on a theoretical basis. However, despite these limitations,
our study provides novel insights in the cellular alterations associated with gut barrier
dysfunction in CKD patients, highlighting the important role of enterocytes’ TJs.

5. Conclusions

In conclusion, the present pilot study demonstrates that occludin and claudin-1 ex-
pression in enterocytes is significantly reduced in CKD and ESKD patients. The changes in
intestinal TJs may represent an important cellular mechanism for gut barrier dysfunction
in CKD, leading to increased gut permeability, endotoxemia and systemic inflammation.
Uncovering the molecular basis of increased gut permeability might lead to future pharma-
cological studies focusing on the modulation of intestinal TJs, which could lead to better
control of intestinal hyperpermeability in CKD patients, thus improving clinical outcomes.
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