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Abstract: Pre-eclampsia (PE) is a gestational hypertensive disorder that is characterized by hyper-
tension and proteinuria, typically occurring after 20 weeks of gestation. Despite its global impact
on pregnant women, the precise pathogenic mechanisms of PE remain unclear. Dysregulated lipid
metabolism and immune cell infiltration contribute to PE development. Our study aimed to identify
lipid-metabolism-related genes (LMRG-PEs) and investigate their association with immune infil-
tration. We utilized the “Seurat” R package for data quality control, cell clustering, and marker
gene identification. The “SingleR” package enabled the matching of marker genes to specific cell
types. Pseudotemporal ordering analysis was conducted using the “Monocle” package. Weighted
correlation network analysis (WGCNA), gene set variation analysis (GSVA), and gene set enrich-
ment analysis (GSEA) approaches were employed to explore lipid-metabolism-related genes, while
potential targeted drugs were predicted using the drug–gene interaction database (DGIdb). Hub
gene expression was validated through RT–qPCR. By analyzing single-cell RNA sequencing data, we
identified and classified 20 cell clusters into 5 distinct types. Differential gene expression analysis
revealed 186 DEGs. WGCNA identified 9 critical modules and 265 genes significantly associated
with PE diagnosis, emphasizing the importance of the core genes PLA2G7 and PTGS2. RT–qPCR
confirmed the significantly decreased expression of PLA2G7 and PTGS2 in PE patient tissues. These
findings offer valuable insights into the molecular mechanisms of PE, particularly those involving
lipid metabolism and immune infiltration. The identified hub genes have potential as therapeutic
targets and biomarkers for future research and clinical applications.

Keywords: pre-eclampsia; lipid metabolism; single-cell analysis; immune infiltration; novel biomarkers

1. Introduction

PE is a placenta-dependent disorder that is defined as the presence of new-onset
hypertension, proteinuria, and multiple organ dysfunction (mainly that of the kidney,
brain, and liver) occurring after 20 weeks of gestation [1,2]. It carries an estimated risk of
2% to 8% during pregnancy, making it a prevalent condition associated with significant
maternal and neonatal morbidity and mortality [2]. PE is widely recognized as a complex
interaction among multiple genetic components [3,4], angiogenic factors [5], metabolic
pathways [6], immunologic aberrations [7], and certain acquired risk factors [8–10]. PE
is hard to predict since it is usually symptomless in the early phase. Seizures, dyspnea,
epigastric pain, and profound placental abruption are indicative symptoms of a critical
terminal phase [11–13]. The diagnosis and prediction of PE was established by assessing
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the presence of de novo hypertension and proteinuria, as well as the identification of
placental or maternal-derived circulating biomarkers [14].

At present, the clinical outcomes of PE are improved by implementing preventive
measures, a timely diagnosis, vigilant monitoring, and the appropriate administration
of medications, as deemed necessary. PE continues to be a significant contributor to
morbidity and mortality in both developing and developed nations, despite the routine
utilization of aspirin [15–17] and other promising therapeutic interventions. In PE, levels
of soluble fms-like tyrosine kinase-1 (sFlt-1) increase, whilst placental growth factor
(PlGF) levels decrease. sFlt-1, acting as an antagonist to PlGF, can lead to vascular issues
and potentially early-onset PE. An elevated sFlt-1 to PlGF ratio is associated with this
risk, and effective screening through this ratio has been implemented in the second
and third trimesters [18]. Once diagnosed, PE necessitates delivery of the placenta
and fetus as the sole definitive therapeutic approach, rather than pursuing expectant
management [2]. Palliative treatment primarily encompasses the administration of
antihypertensive therapy to prevent maternal intracranial hemorrhage, in addition to the
use of magnesium sulfate (MgSO4) as an anticonvulsant therapy [14,19]. Nonsteroidal
anti-inflammatory drug (NSAID) medications should continue to be used preferentially
over opioid analgesics for controlling postpartum pain [20]. Research has shown that the
administration of low-dose aspirin from early pregnancy until 36 weeks can effectively
lower the likelihood of developing PE [17]. Since PE syndrome is hard to predict, we are
committed to performing bioinformatics for screening to identify PE-related biomarkers
and therapeutic targets, as well as help develop effective diagnostic strategies and
appropriate treatment and predict the prognosis of patients [21,22].

Although PE significantly contributes to maternal and fetal morbidity and mortality,
the underlying pathophysiological mechanisms remain poorly understood. Conse-
quently, this knowledge gap presents a critical opportunity for the advancement of
innovative diagnostic approaches and therapeutic interventions. From a pathophysio-
logical perspective, the primary cause of PE lies in placental dysfunction rather than
fetal factors [14]. This placental defect is most likely associated with abnormal lipid
metabolism [23] and partial breakdown of maternal–fetal immune tolerance [24,25].
Fatty acid oxidation (FAO) disorders and dyslipidemia are involved in the pathogen-
esis of PE through oxidative stress and inflammatory endothelial cell injury [23,26,27].
The deposition of lipids within the endothelium leads to heightened atherosclerosis,
culminating in the development of abnormally constricted spiral arterioles in PE and
subsequent impairment of placental perfusion [22,28]. Numerous studies [29,30] have
consistently demonstrated that the pathogenesis of PE is influenced by an autoantibody
known as AT1-AA, which specifically targets the angiotensin II type 1 receptor. Prior
investigations have shown that LXA4, an endogenous lipid mediator known for its
anti-inflammatory and pro-resolution properties, exerts a suppressive effect on the pro-
duction of AT1-AA through the activation of caspase-1 [31]. This study offers valuable
insights into the molecular mechanisms underlying PE, unveiling novel therapeutic
targets and identifying potential biomarkers. Additionally, it serves as a reference for
future research and highlights the utility of bioinformatics analysis in investigating PE
pathologies in humans.

In view of the importance of placental lipid metabolism and immune cell infiltra-
tion in the etiology of PE [32,33], this study aimed to investigate PE pathogenesis by
identifying the pivotal LMRG-PE module (lipid-metabolism-related genes) and provide
insights for future research. Utilizing single-cell RNA sequencing data, five distinct cell
types in PE were identified, including monocytes and NK cells, suggesting their poten-
tial involvement in PE development. Weighted gene co-expression network analysis
(WGCNA) identified two hub genes associated with PE. ROC curve analysis revealed
PLA2G7 and PTGS2 as potential biomarkers for PE diagnosis. GSEA and GSVA indicated
their associations with lipid metabolism, immune responses, and cellular processes,
supporting their roles in PE pathogenesis. This study contributes to understanding
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the molecular mechanisms of PE and identifies potential diagnostic biomarkers and
therapeutic targets.

2. Materials and Methods
2.1. Patients and Sample Collection

Sixteen placental tissue samples were collected from patients with PE and matched
healthy control individuals from the Obstetrics and Gynecology Department, Renmin
Hospital of Wuhan University (Wuhan, China) between July 2022 and October 2022
(Supplementary Table S1). We followed stringent inclusion criteria when procuring sam-
ples from patients with severe pre-eclampsia (Supplementary Figure S6). All collected
samples originated from patients diagnosed with early-onset pre-eclampsia with severe
complications. The 16 cases obtained represent the maximum sample volume that we
could amass within the specified time frame. We enhanced the robustness of our study by
employing four sampling points and acquiring multiple samples from disparate locations
(Supplementary Figure S7). Informed consent was obtained from each participant prior to
the study for the intended use of placental tissue samples. Placental tissues were collected
from women undergoing cesarean section in the late stages of pregnancy. The placental
specimens were rinsed with sterile PBS and subsequently preserved in liquid nitrogen
for further analysis [34]. The collection of human samples was authorized by the Ethical
Review Board of Renmin Hospital, Wuhan University (WDRY2021-K177) and conducted
in accordance with the principles of the Helsinki Declaration.

2.2. Data Recruitment and Processing

The microarray-based RNA expression data corresponding to GSE48424 were retrieved
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/, accessed on 14 June 2023).
This consisted of 19 PE patient samples and 19 control samples. The dataset was generated
using the GPL6480 ([PrimeView] Affymetrix Human Gene Expression Array) platform.
Additionally, the GSE192693 dataset contained single-cell RNA sequencing data from six PE
samples and four normal samples based on 10× Genomics. For comprehensive processing
of the scRNA-seq data, the following sequential steps were taken. The initial step of the
analysis involved preprocessing the scRNA-seq data using the “Seurat” package. This
preprocessing encompassed several procedures, including assessing the proportion of
mitochondrial genes using the PercentageFeatureSet function and conducting correlation
analysis to explore relationships between sequencing depth, mitochondrial gene sequences,
and total intracellular sequences [35].

To ensure robust analysis, gene filtering was applied, requiring a minimum expression
in at least 5 cells. Furthermore, a stringent selection process was implemented to retain
cells that met specific criteria. These criteria encompassed gene expression counts ranging
from over 300 to under 5000, mitochondrial content below 10%, and a minimum UMI
count of 1000 per cell. Upon completing the data filtering steps, normalization of the
scRNA-seq data was carried out using the LogNormalize method, enhancing the accuracy
of downstream analysis and interpretation.

For downstream analysis, the top 20 principal components (PCs) were subjected
to Seurat’s Elbow plot program. Primary cell clusters were identified using Seurat’s
Find Clusters tool with a resolution of 1.2. These clusters were subsequently visualized
using two-dimensional t-SNE or UMAP plots. Each cell was classified into a recognized
biological cell type using conventional markers established in prior studies. From the
MSigDB database [36], we obtained a total of 418 LMRGs.

2.3. Identification of DEGs and Construction of Weighted Gene Co-Expression Networks

The limma package in R was used to identify DEGs with adjusted p < 0.05 and |Log2
fold change| > 1. Heatmaps and volcano plots were generated utilizing the Pheatmap
and ggplot2 packages in the data analysis process. The WGCNA package [37] was used
to analyze the gene co-expression network of the GSE48424 dataset. The samples were
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subjected to clustering analysis, and outliers were subsequently removed from the dataset.
A scale-free network was built with a soft threshold of β = 2. Module-gene correlations
were calculated using WGCNA. Modules highly correlated with PE were selected. A total
of 451 PE-related genes were obtained by intersecting DEGs and key module genes. They
were cross-referenced with LMRG using “VennDiagram”. Finally, 11 LMRG-PE expression
profiles were obtained.

2.4. KEGG and GO Enrichment Analysis

LMRG-PE was functionally annotated using the R package “clusterProfiler” [38], con-
taining Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis. GO terms comprised biological processes (BPs), cellular components
(CCs), and molecular functions (MFs) [39] and were utilized for the identification of bio-
logical characteristics pertaining to genes and genomes across all organisms. Enrichment
pathway analysis using KEGG was performed to identify pathways associated with the
studied conditions. A statistically significant threshold was set at an adjusted p < 0.05.

2.5. ROC Curve Analysis and Expression Analysis

Using the GSE48424 dataset, we employed 19 PE samples and 19 control samples
to generate receiver operating characteristic (ROC) curves. Using the “pROC” package,
a robust tool for assessing the diagnostic performance of genes, the area under the ROC
curve (AUC) was computed. Core genes with an AUC > 0.7 were identified as valuable
biomarkers for disease diagnosis. Boxplots generated utilizing the R package “ggplot2”
were employed to visualize the expression levels of these core genes.

2.6. Correlation Analysis between Core Genes and Infiltrated Immune Cells

Immune infiltration analysis was conducted utilizing the single-sample gene set enrich-
ment analysis (ssGSEA) algorithm. Correlation analysis was conducted using the Spearman
method to assess the relationship between essential genes and 28 immune cell types. The
results were visually presented. Furthermore, to determine the association between core
genes and distinct immune cell populations, correlation analysis was performed.

2.7. Prediction of Networks Mutually Regulated by miRNAs and TFs

The miRNet database [40] was employed to predict the upstream transcription
factors (TFs) and miRNAs. The resulting predictions were visualized using Cytoscape
software v.3.8.2 (U.S. National Institute of General Medical Sciences (NIGMS), Bethesda,
MD, USA).

2.8. Laboratory Measurements

This study involved RNA isolation, followed by quantitative reverse transcription
polymerase chain reaction (qRT–PCR) analysis. The results obtained from this study
were validated using qRT–PCR after RNA was isolated from human placental tissue.
Total RNA extraction was performed using RNAiso Plus (TRIzol) reagent, followed by
analysis using a NanoDrop 2000 spectrophotometer. Based on the instructions provided
by the manufacturer, the TSK301 reverse-transcription system kit was used for the RT
reaction and quantitative real-time PCR. The qRT–PCR analysis employed SYBR Green
qRT–PCR Master Mix. (all from Servicebio, Wuhan, China). A primer was designed
and synthesized by Wuhan Servicebio Co., Ltd. An amplification procedure of 40 cycles
was conducted at 95 ◦C for 10 s, 60 ◦C for 30 s, and 60 ◦C for 30 s of denaturation,
annealing, and extension, respectively. To normalize the expression levels of the target
genes, GAPDH was utilized as an internal reference. The following is a list of the primer
sequences for each signature:
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PLA2G7: TCAATGACAACTCCTGCAAACTG (sense primer);
PLA2G7: TCCTCCTCTTGTTTCAGGGTTCT (antisense primer);
PTGS2: GGGTTGCTGGTGGTAGGAATG (sense primer);
PTGS2: CATAAAGCGTTTGCGGTACTCAT (antisense primer);
GAPDH: GGAAGCTTGTCATCAATGGAAATC (sense primer);
GAPDH: TGATGACCCTTTTGGCTCCC (antisense primer).

2.9. Statistics

In this study, all parametric analyses were performed using two-tailed tests, with
a significance threshold set at p < 0.05. Statistical analysis was performed using R soft-
ware v.4.1.3 (R Foundation for Statistical Computing, Vienna, Austria). Unless explicitly
mentioned, group comparisons for categorical and continuous variables were respectively
assessed using Fisher’s exact test and t-test assuming equal variances. ROC curve analysis
and calculation of the AUC values were performed to assess the diagnostic accuracy of
gene expression levels in predicting pre-eclampsia. Statistical significance was defined as
p < 0.05, unless stated otherwise.

3. Results
3.1. scRNA-Seq Data Preprocessing and PCA

After data filtering, the scRNA sequencing dataset contained a total of 15,311 clean
cells. Subsequent processing of the dataset using PCA, Harmony, and t-SNE techniques
allowed us to examine the results. Following quality analysis of the PE scRNA-Seq data,
we excluded zero low-quality cells. We observed a positive correlation between the number
of detected genes and the total number of genes identified through sequencing.

Figure 1A displays a strong association between the number of UMIs and mRNAs,
but no correlation was found between the number of UMIs/mRNAs and the content
of mitochondrial genes. Violin plots before and after quality assurance are shown in
Figure 1B,C. By performing variance analysis on 18,357 genes, we identified the top
2000 genes that exhibited the highest variation. Among them, the top 10 genes were
HBB, HBA2, HBA1, IGHV3−66, ALAS2, IGKV3−15, JCHAIN, CA1, STMN1, and MZB1
(Figure 1E).

To estimate the available dimensions, we employed principal component analysis
(PCA) and found no significant distinction between PE cells. Although the top 2000 genes
underwent PCA dimension reduction, PC_1 and PC_2 did not demonstrate significant
discriminatory capability among cells from different PE samples (Figure 1D). The distri-
bution of cells from the pre-eclampsia and control groups is shown in Figure 2A. Finally,
we selected 20 principal components (PCs) based on evaluation (p < 0.05) for subsequent
analyses (Figure 2B).
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Figure 1. Single-cell sequencing analysis of PE and control samples. (A) Analysis of the correlation 
between nFeature and nCount, percent.mt and nCount, and percent.mt and nFeature. (B) Violin 
plots illustrating the RNA characteristic number (nFeature RNA) and absolute UMI count (nCount 
RNA) before quality control screening of cells. (C) The figure displays the total count number of 
each cell after quality analysis. (D) PCA plot. (E) Red dots represent the top 2000 high-variation 
genes obtained through variance analysis. 

Figure 1. Single-cell sequencing analysis of PE and control samples. (A) Analysis of the correlation
between nFeature and nCount, percent.mt and nCount, and percent.mt and nFeature. (B) Violin
plots illustrating the RNA characteristic number (nFeature RNA) and absolute UMI count (nCount
RNA) before quality control screening of cells. (C) The figure displays the total count number of each
cell after quality analysis. (D) PCA plot. (E) Red dots represent the top 2000 high-variation genes
obtained through variance analysis.
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guished by different colors. (B) The t-SNE plot is colored according to various cell types. (C) Cell 
types are identified based on marker genes, enabling the reconstruction of the developmental rela-
tionship of trophoblast cells using pseudotime analysis. (D) The biaxial scatter plot visualizes the 
developmental trajectory of trophoblastic cells, with dark colors indicating early development. (E) 
The distribution of trophoblast states along the trajectory is illustrated. 

3.2. Cell-Type Annotation and Single-Cell Differentiation Trajectory Analysis 
Nineteen clusters were assigned to known cell lineages based on marker genes, as 

reported in a previous study. Cell annotation was performed using the R package “Sin-
gleR”, which identified a total of five cell types (Figure 2C). Monocytes were annotated to 
clusters 1, 3, 4, 5, 6, 7, 11, 14, and 18. NK cells were annotated to clusters 0 and 9. T cells 
were annotated to clusters 2, 10, 15, 17, and 19. Platelets were annotated to clusters 8 and 
12. HSC-G-CSF was annotated to clusters 13 and 16. 

Subsequent trajectory analysis was conducted on the annotated cells. To explore the 
potential relationships between different cell types, we performed pseudotime trajectory 
analysis. The results revealed that these cells could be divided into three states with a 
common origin (Figure 2D). Cluster 1 was found at the beginning of the trajectory, while 
most of the cells were mainly concentrated in states 4 to 15 (Figure 2E). 

Figure 2. (A) The t-SNE plots represent tumor and normal cells in PE and normal samples, distin-
guished by different colors. (B) The t-SNE plot is colored according to various cell types. (C) Cell
types are identified based on marker genes, enabling the reconstruction of the developmental re-
lationship of trophoblast cells using pseudotime analysis. (D) The biaxial scatter plot visualizes
the developmental trajectory of trophoblastic cells, with dark colors indicating early development.
(E) The distribution of trophoblast states along the trajectory is illustrated.

3.2. Cell-Type Annotation and Single-Cell Differentiation Trajectory Analysis

Nineteen clusters were assigned to known cell lineages based on marker genes, as
reported in a previous study. Cell annotation was performed using the R package “SingleR”,
which identified a total of five cell types (Figure 2C). Monocytes were annotated to clusters
1, 3, 4, 5, 6, 7, 11, 14, and 18. NK cells were annotated to clusters 0 and 9. T cells were
annotated to clusters 2, 10, 15, 17, and 19. Platelets were annotated to clusters 8 and 12.
HSC-G-CSF was annotated to clusters 13 and 16.

Subsequent trajectory analysis was conducted on the annotated cells. To explore the
potential relationships between different cell types, we performed pseudotime trajectory
analysis. The results revealed that these cells could be divided into three states with a
common origin (Figure 2D). Cluster 1 was found at the beginning of the trajectory, while
most of the cells were mainly concentrated in states 4 to 15 (Figure 2E).
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3.3. Immune Characterization Analysis

To investigate the relative proportion of the 22 immune cell types, the CIBERSORT
algorithm was implemented on a dataset comprising 16 PE samples and 16 normal control
samples. Additionally, to gain insights into the immune microenvironment of PE, the
ssGSEA technique was employed to analyze specific immune cell types within the PE
patient cohort (Figure 3A). Furthermore, a visually informative heatmap was generated
to depict the ssGSEA estimation of immune cell infiltration (Figure 3B). The levels of
activated NK cells and M2 macrophages were significantly elevated (p < 0.05) in the PE
group (Figure 3C). Conversely, the abundance of neutrophils was higher in the normal
control group. These observations strongly suggest the potential involvement of immune
cells in mitigating the incidence rate of PE.
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Figure 3. Immune infiltration analysis. (A) The bar plot visualizes the relative percentages of 22 immune
cell types in each sample. Different colors represent distinct immune cell types. (B) Heatmap depicting
the identification of differentially infiltrating immune cells. (C) The violin plot illustrates the differences
in proportions of these immune cells between the control (Con) group and the PE group. The PE
group is represented in red, and the Con group is represented in blue. A p-value < 0.05 indicates
statistical significance.
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3.4. Identification of DEGs and Construction of Co-Expression Networks

Our investigation yielded a comprehensive set of findings. A total of 186 differentially ex-
pressed genes (DEGs) were identified. Of these DEGs, 67 genes were significantly upregulated
and 119 genes were significantly downregulated in the PE samples compared with the control
samples (Figure 4A). The heatmap displayed in Figure 4B illustrates the top 10 upregulated
and downregulated DEGs. The sample clustering tree, as depicted in Figure 5A, indicated
the absence of any abnormal samples. Subsequently, through thorough calculations, we
determined that the optimal soft-thresholding power was set at 2 (Figure 5B,C). Consequently,
a distinct color was assigned to each module in GSE48424, resulting in a total of nine modules.
(Figure 5C,D). Furthermore, Figure 5D illustrates the outcomes of the module–feature relation-
ship analysis, indicating a robust correlation between PE and the green module (correlation
coefficient = −0.48, p value = 0.04). Consequently, a total of 265 genes belonging to the green
module were selected for subsequent investigation and analysis.
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Figure 5. Construction of WGCNA co-expression modules and selection of hub modules. (A) Den-
drogram of module eigengenes and heatmap of eigengene network. (B) Scale-free fit index for soft-
thresholding powers. Left: relationship between soft-threshold and scale-free R2. Right: relationship
between soft-threshold and mean connectivity. (C) Dendrogram of differentially expressed genes
(DEGs) clustered in the training dataset. (D) Heatmap displaying the correlation between module
eigengenes and pre-eclampsia (PE).

3.5. Identification of LMRG-PE and Functional Enrichment Analysis

Then, after taking the intersection of PE-related genes and LMRGs, we obtained
11 LMRG-PEs (Figure 6A). The heatmap shows the expression of 11 candidate genes
ordered by adjusted p-value (Figure 6C). To explore the pathways of 11 LMRG-PEs, KEGG
analysis was performed. As depicted in Figure 6B, these 11 LMRG-PEs (liver metabolism-
related genes associated with pre-eclampsia) are primarily enriched in processes related
to primary bile acid biosynthesis, fat digestion and absorption, and arachidonic acid
metabolism. GO analysis was conducted to explore the functional characteristics of these
11 LMRG-PEs, with the corresponding GO terms shown in Figure 6D. LMRG-PEs were
found to be primarily involved in lipid metabolism and biosynthetic processes. In MF
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analysis (Figure 6E), LMRG-PE was involved in the activities of lipid transporters, steroid
hydroxylase, and transmembrane transporters.

Biomedicines 2023, 11, 2328 11 of 19 
 

analysis (Figure 6E), LMRG-PE was involved in the activities of lipid transporters, steroid 
hydroxylase, and transmembrane transporters. 

 
Figure 6. Screening of hub genes and candidate gene enrichment analysis. (A) Venn diagram illus-
trating the overlap of hub genes in the pre-eclampsia (PE)-related co-expression genes and LMRG 
(largest module of the weighted gene co-expression network analysis). (B) Heatmap displaying the 
expression of 11 candidate genes, ordered by adjusted p-value. (C) KEGG pathway analysis of the 
11 candidate genes. (D) Gene Ontology enrichment analysis of the eleven hub genes in biological 
processes. (E) Gene Ontology enrichment analysis of the 11 hub genes in molecular functions. The 
color gradient from green to red represents the increasing significance of enrichment. The size of 
the dot represents the number of different genes included in the corresponding pathway. 

3.6. Expression Analysis of Core Genes at the Single-Cell Level and Bulk RNA-seq Level 
In the single-cell expression analysis of the 11 LMRG-PEs, our findings revealed that 

PTGS2 was enriched in the control group (Supplementary Figure S3). Furthermore, both 
PTGS2 and PLA2G7 showed enrichment in monocytes. To assess the expression levels of 
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Figure 6. Screening of hub genes and candidate gene enrichment analysis. (A) Venn diagram
illustrating the overlap of hub genes in the pre-eclampsia (PE)-related co-expression genes and LMRG
(largest module of the weighted gene co-expression network analysis). (B) Heatmap displaying the
expression of 11 candidate genes, ordered by adjusted p-value. (C) KEGG pathway analysis of the
11 candidate genes. (D) Gene Ontology enrichment analysis of the eleven hub genes in biological
processes. (E) Gene Ontology enrichment analysis of the 11 hub genes in molecular functions. The
color gradient from green to red represents the increasing significance of enrichment. The size of the
dot represents the number of different genes included in the corresponding pathway.

3.6. Expression Analysis of Core Genes at the Single-Cell Level and Bulk RNA-seq Level

In the single-cell expression analysis of the 11 LMRG-PEs, our findings revealed that
PTGS2 was enriched in the control group (Supplementary Figure S3). Furthermore, both
PTGS2 and PLA2G7 showed enrichment in monocytes. To assess the expression levels
of these 11 LMRG-PEs between PE and control samples, we examined the GSE48424
dataset. Interestingly, we observed significantly lower expression levels of two key
genes (PLA2G7 and PTGS2) in the PE samples, indicating the most prominent changes
(Supplementary Figure S5A).

To evaluate the sensitivity and specificity of PE diagnosis, we performed ROC curve
analysis, as illustrated in Supplementary Figure S5B. The diagnostic accuracy of PLA2G7
and PTGS2 in identifying PE was evident from their respective AUC values of 0.836 and
0.735, indicating high sensitivity and specificity.
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3.7. Associations of Core Genes with Immune Cells

In this study, Spearman correlation analysis was conducted to investigate the potential
association between PLA2G7 and PTGS2 and immune cell infiltration. During the correla-
tion analysis, a positive relationship was observed between PLA2G7 and natural killer T
cells, myeloid-derived suppressor cells (MDSCs), effector memory CD8 T cells, and central
memory CD4 T cells. Conversely, a negative correlation was found between PLA2G7 and
mast cells. (Figure 7A). PTGS2 exhibited a significantly positive correlation with neutrophil
cells, mast cells, macrophages, eosinophil cells, central memory CD4 T cells, CD56 bright
and CD56 dim natural killer (NK) cells, and activated CD4 T cells (Figure 7A). Specifically,
we observed a close association between both PLA2G7 and PTGS2 and the functionalities
of mast cells and central memory CD4 T cells.
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Figure 7. Relationship between the two hub genes and immune infiltration, gene set enrichment
Analysis (GSEA), and targeted drugs. (A) Associations between immune cell infiltration and the two
hub genes. (B,C) Top 5 pathways (based on GSEA enrichment score) enriched in the high-expression
group and the low-expression group of PLA2G7 (B) and PTGS2 (C). (D,E) Gene set variation analysis
(GSVA) of the two hub genes, PLA2G7 and PTGS2, in pre-eclampsia (PE).
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3.8. GSEA and GSVA of Two Hub Genes

In this study, we conducted an exploration of the functional roles of PLA2G7 and
PTGS2 through GSEA. The low-expression cohorts of PLA2G7 were found to be highly
enriched in several pathways, including spliceosome, minoacyl-tRNA biosynthesis, ol-
factory transduction, and drug metabolism–cytochrome P450 pathways, as illustrated in
Figure 7B. However, the low-expression cohorts of PTGS2 exhibited significant enrichment
in Toll-like receptor signaling, Fc gamma R-mediated phagocytosis, limonene and pinene
degradation, maturity onset diabetes of the young (MODY), metabolism of xenobiotics
by cytochrome P450, and drug metabolism–cytochrome P450 pathways, as demonstrated
in Figure 7C. Notably, both PLA2G7 and PTGS2 were found to be associated with drug
metabolism–cytochrome P450 pathways.

Gene set variation analysis (GSVA) was utilized to conduct a comprehensive investiga-
tion of the expression levels of these two hub genes in the pathological condition of PE. The
results revealed that the downregulation of PTGS2 expression was significantly associated
with folate biosynthesis, dorsoventral axis formation, renal cell carcinoma, regulation of
autophagy, glycosphingolipid biosynthesis (lacto and neolacto series), pantothenate and
coenzyme A (CoA) biosynthesis, and O-glycan biosynthesis pathways. The downregula-
tion of PLA2G7 expression was significantly associated with aminoacyl tRNA biosynthesis
as depicted in Figure 7D,E.

3.9. Drug–Gene Networks and Prediction of Key miRNAs and TFs

Potential drugs or molecular compounds that could reverse the downregulation of
PLA2G7 and PTGS2 in PE were determined using DGIdb. As shown in the drug–gene
interaction network (Figure 8A), darapladib and rilapladib were found to interact with
PLA2G7. In addition, sedalate, valdecoxib, and carprofen were found to interact with
PTGS2. Utilizing miRNet, we established miRNA and TF regulatory networks pertaining
to PLA2G7 and PTGS2. According to Figure 8B, ninety-one and twenty-three miRNAs
were predicted to target PTGS2 and PLA2G7, respectively. Specifically, both miR-335-5p
and miR-124-3p had the potential to be related not only to PTGS2, but also to PLA2G7.
Some target miRNAs of PLA2G7 (e.g., miR-34a-5p, miR-126-3p, miR-27a-3p, miR-342-3p,
miR-335-5p and miR-124-3p) and of PTGS2 (e.g., miR-21-3p, mir-155-5p, mir146a-5p, miR-
181a-5p, miR-335-5p and miR-124-3p) are involved in lipid metabolism and immunity. We
found that 43 TFs, such as JUN, PPARG, FOS, STAT3, and RELA, not only regulate PTGS2,
but also participate in regulating lipid metabolism and immunity. No TFs were found to
regulate PLA2G7.
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Figure 8. Network construction. (A) Drug–gene interaction network retrieved from the DGIdb
database. Yellow nodes represent genes, and blue nodes represent drugs. (B) The networks of target
gene–miRNA and target gene–TF. The red nodes are the TFs, the yellow nodes are the genes, and
the blue nodes are the miRNAs. Red box highlights the emphasis on the potential association of
miR-335-5p and miR-124-3p with both PTGS2 and PLA2G7.

3.10. Validation of the mRNA Expression Levels of Hub Genes

Tissue samples were subjected to qPCR analysis to validate the expression levels of
PTGS2 and PLA2G7. Our findings from qRT–PCR analysis revealed that normal tissues
exhibited significantly higher expression levels of PTGS2 and PLA2G7 than PE tissues. This
observation suggests that these genes may function as novel suppressors in the context of
PE (Figure 9A). These findings are consistent with the data obtained from the bioinformatics
analysis (Supplementary Figure S5A).
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4. Discussion

As a hypertensive disorder complicating pregnancy, PE induces fetal growth restric-
tion, preterm birth, abortion, renal function damage, and other common complications [22].
It was reported that lipid metabolism, immune cell infiltration, oxidative stress, and inflam-
matory endothelial dysfunction played an important role in the pathogenesis of PE [22,26].
The objective of this study was to identify a pivotal LMRG-PE module to elucidate its
pathogenesis and offer novel insights for future investigations.

This study employed publicly available databases to utilize single-cell RNA sequenc-
ing data to investigate the functional attributes associated with PE. Through dimensionality
reduction and cell-type annotation, we identified five distinct cell types in PE. The majority
of cells belonged to the monocyte and NK cell populations, suggesting potential involve-
ment of monocyte and NK cells in the pathogenesis of PE. Additionally, we performed
pseudotime analysis to visualize the clustering results of the cells along the trajectory of
cellular differentiation. Then, we explored the relationship between PE and the immune
system, highlighting the potential role of immune cells in reducing PE incidence. To identify
markers associated with PE, we conducted differential gene expression analysis and subse-
quently constructed a weighted gene co-expression network using the WGCNA approach.
The green co-expression module was chosen for analysis due to its highest correlation
and strongest association with PE among the nine co-expression modules obtained. By
combining DEG analysis and WGCNA, we identified common genes associated with PE,
which were further narrowed down to 11 LMRG-PEs through intersection with literature-
based marker-related genes. Enrichment analysis and PPI network analysis of these
11 genes revealed two significant hub genes, warranting further investigation. The re-
duced expression of placental lipases, including hormone-sensitive lipase, lipoprotein
lipase, and endothelial lipase, may contribute to elevated levels of placental triglycerides in
PE [6,41]. Previous studies have indicated that dyslipidemia can lead to elevated oxidative
stress, endothelial dysfunction, and increased triglyceride levels as a consequence of dimin-
ished activity of lipoprotein lipases [42]. In PE, the occurrence of endothelial damage and
lipid accumulation results in the development of atherosclerosis and abnormal narrowing
of spiral arterioles [28].

After ROC curve analysis, we found that PLA2G7 and PTGS2 had high sensitivity and
specificity in the diagnosis of PE. Thus, these two hub genes with decreased expression
in the PE group might be potential biomarkers for predicting and diagnosing PE. Phos-
pholipase A2 group VII (PLA2G7), also known as lipoprotein-associated phospholipase A2
(Lp-PLA2), is the gene encoding the protein platelet-activating factor acetylhydrolase (PAF-
AH). This secreted enzyme plays a crucial role in the degradation of PAF into biologically
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inactive metabolites. Thromboxane production, platelet aggregation, and inflammation are
mediated by the involvement of PAF and PAF-like oxidized phospholipids. The findings
of this study suggest that the G994T variant of PLA2G7 may be linked to reduced or ab-
sent activity of PAF-AH and altered distribution of enzymatic activity across lipoproteins.
These alterations have the potential to promote heightened inflammation and oxidative
stress, thereby increasing susceptibility to PE [43]. Prostaglandin-endoperoxide synthase
2 (PTGS2), also referred to as cyclooxygenase 2 (COX-2), functions as a pivotal enzyme
in prostaglandin biosynthesis and mitogenesis. It has been postulated that COX-2 plays a
regulatory role in the invasion of human trophoblast cells [44–46]. Multifactorial pregnancy
disorders, including impaired placentation characterized by inadequate trophoblast inva-
sion, have the potential to result in PE [47]. Yi et al. [48] discovered that the upregulation of
COX-2 expression is facilitated by TGF-β1 through the activation of SMAD2/3-SMAD4
signaling. Moreover, the inhibition of trophoblast cell invasion by TGF-β1 necessitates
the induction of COX-2. Prior studies [44] have demonstrated the ability of vitamin D to
mitigate the risk of PE by downregulating both COX-2 expression and PGE2 signaling.

According to the GSEA results, the expression of PLA2G7 exhibited significant associa-
tions with pathway enrichment in pathways related to spliceosomes [49], minoacyl-tRNA
biosynthesis, olfactory transduction, and drug metabolism–cytochrome P450. In addition,
the cohorts with low PTGS2 expression demonstrated noteworthy enrichment in immune-
related pathways [50], including Toll-like receptor signaling and Fc gamma R-mediated
phagocytosis. In GSVA, the downregulation of PTGS2 expression was significantly associ-
ated with various pathways [51], including folate biosynthesis, dorsoventral axis formation,
renal cell carcinoma, regulation of autophagy, glycosphingolipid biosynthesis (lacto and
neolacto series), pantothenate and CoA biosynthesis, and O-glycan biosynthesis. The
downregulation of PLA2G7 expression was significantly associated with aminoacyl tRNA
biosynthesis [52].

However, there are certain limitations in our study that should be acknowledged. First,
we relied exclusively on target data sourced from the GEO public database and employed
biological algorithms for analysis, which may introduce inherent limitations and biases.
Additionally, while we identified 11 hub genes as potential biomarkers associated with
lipid metabolism in PE, it is crucial to conduct larger-scale, multicenter, prospective clinical
cohort studies to evaluate the clinical applicability and validity of our findings. Our inves-
tigation specifically targeted protein-coding genes; however, emerging evidence suggests
that noncoding RNAs, including long noncoding RNAs (lncRNAs) and microRNAs, exert
significant influences on the pathogenesis of PE. Therefore, in future research, we will
aim to address multiple aspects. First, our study has identified PLA2G7 and PTGS2 as
potential diagnostic biomarkers; however, further validation through larger, multicenter,
and prospective clinical cohort studies is necessary to establish the clinical applicability and
reliability of our findings. Second, there is increasing evidence supporting the significant
role of noncoding RNAs, such as long noncoding RNAs (lncRNAs) and microRNAs, in
the pathogenesis of PE. Hence, our future research will investigate the involvement of
these noncoding RNAs in the development of PE. Third, we plan to explore the role of
the immune system in PE development, building on the potential involvement of immune
cells, as indicated by our study. Understanding the interplay between immune system
components and PE could enhance our comprehension of the pathogenesis of this disor-
der and may lead to the identification of new targeted therapies. Fourth, to gain further
insights into the cellular and molecular mechanisms related to PE, it is essential to conduct
additional investigations on the pathways identified by GSEA and GSVA to be associated
with the expression of PLA2G7 and PTGS2. By pursuing these future directions, our aim is
to contribute to a more comprehensive understanding of PE, improve its diagnosis, and
facilitate the development of potential therapeutics for this disorder.
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5. Conclusions

In conclusion, our study utilizing single-cell analysis and WGCNA identified the
potential involvement of PLA2G7 and PTGS2 in the progression of PE. The identification of
these genes presents promising prospects as diagnostic biomarkers and therapeutic targets
in the context of PE. To gain a comprehensive understanding of the functional mechanisms
of these genes in the pathogenesis of PE, additional prospective and large-scale studies
are imperative.
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Figure S3: Difference analysis of fatty acid metabolism-related genes between the PE and control groups.
(A) The differential expression of fatty acid metabolism-related genes between the PE and control groups.
(B) The differential expression of PTGS2, PLA2G7, CYP2C8, and CYP4B1. (C) The differential expression
of fatty acid metabolism-related genes between the PE and control groups across 20 clusters. (D) The
differential expression of fatty acid metabolism-related genes between the PE and control groups across
5 cell types; Figure S4: (A) The violin plot illustrates the expression of fatty acid metabolism-related
genes in each cell type. (B) The violin plot illustrates the expression of PTGS2, PLA2G7, CYP2C8, and
CYP4B1 in each cell type. (C) The heatmap shows the expression of the top 5 marker genes in different
cell clusters; Figure S5: (A) Expression of hub genes (B) ROC of hub genes; Figure S6: Inclusion criteria
for sample collection; Figure S7: The location where the sample was taken during sample collection;
Table S1: Clinical features of PE and control subjects.

Author Contributions: Y.L. and B.X. conducted the experiment. Y.L. was involved in the data
analysis. Y.L. and B.X. prepared figures and table. C.F. designed the study and helped draft the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Ethical Review Board of Renmin Hospital, Wuhan University
(WDRY2021-K177) for studies involving humans.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All data associated with this study are available in the main text or the
supplementary materials.

Acknowledgments: The author of this article expresses gratitude for the collaborative efforts and
contributions made by all members involved.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. ACOG. Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin Number 202. Obstet. Gynecol. 2019, 133, 1.

[CrossRef]
2. Ives, C.W.; Sinkey, R.; Rajapreyar, I.; Tita, A.T.N.; Oparil, S. Preeclampsia-Pathophysiology and Clinical Presentations: JACC

State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 1690–1702. [CrossRef] [PubMed]
3. Gammill, H.S.; Chettier, R.; Brewer, A.; Roberts, J.M.; Shree, R.; Tsigas, E.; Ward, K. Cardiomyopathy and Preeclampsia. Circulation

2018, 138, 2359–2366. [CrossRef]
4. Laissue, P.; Vaiman, D. Exploring the Molecular Aetiology of Preeclampsia by Massive Parallel Sequencing of DNA. Curr.

Hypertens. Rep. 2020, 22, 31. [CrossRef]
5. Rana, S.; Burke, S.D.; Karumanchi, S.A. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and

related disorders. Am. J. Obstet. Gynecol. 2022, 226, S1019–S1034. [CrossRef]
6. Khaire, A.A.; Thakar, S.R.; Wagh, G.N.; Joshi, S.R. Placental lipid metabolism in preeclampsia. J. Hypertens. 2021, 39, 127–134.

[CrossRef]
7. Canfield, J.; Arlier, S.; Mong, E.F.; Lockhart, J.; VanWye, J.; Guzeloglu-Kayisli, O.; Schatz, F.; Magness, R.R.; Lockwood, C.J.;

Tsibris, J.C.M.; et al. Decreased LIN28B in preeclampsia impairs human trophoblast differentiation and migration. FASEB J. 2019,
33, 2759–2769. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/biomedicines11082328/s1
https://www.mdpi.com/article/10.3390/biomedicines11082328/s1
https://doi.org/10.1097/AOG.0000000000003018
https://doi.org/10.1016/j.jacc.2020.08.014
https://www.ncbi.nlm.nih.gov/pubmed/33004135
https://doi.org/10.1161/CIRCULATIONAHA.117.031527
https://doi.org/10.1007/s11906-020-01039-z
https://doi.org/10.1016/j.ajog.2020.10.022
https://doi.org/10.1097/HJH.0000000000002596
https://doi.org/10.1096/fj.201801163R
https://www.ncbi.nlm.nih.gov/pubmed/30307771


Biomedicines 2023, 11, 2328 18 of 19

8. Brouwers, L.; van der Meiden-van Roest, A.J.; Savelkoul, C.; Vogelvang, T.E.; Lely, A.T.; Franx, A.; van Rijn, B.B. Recurrence of
pre-eclampsia and the risk of future hypertension and cardiovascular disease: A systematic review and meta-analysis. BJOG Int.
J. Obstet. Gynaecol. 2018, 125, 1642–1654. [CrossRef]

9. Sanapo, L.; Bublitz, M.H.; Bourjeily, G. Sleep Disordered Breathing, a Novel, Modifiable Risk Factor for Hypertensive Disorders
of Pregnancy. Curr. Hypertens. Rep. 2020, 22, 28. [CrossRef] [PubMed]

10. Theilen, L.H.; Meeks, H.; Fraser, A.; Esplin, M.S.; Smith, K.R.; Varner, M.W. Long-term mortality risk and life expectancy following
recurrent hypertensive disease of pregnancy. Am. J. Obstet. Gynecol. 2018, 219, 107.e1–107.e6. [CrossRef] [PubMed]

11. Dimitriadis, E.; Rolnik, D.L.; Zhou, W.; Estrada-Gutierrez, G.; Koga, K.; Francisco, R.P.V.; Whitehead, C.; Hyett, J.; da Silva Costa, F.;
Nicolaides, K.; et al. Pre-eclampsia. Nat. Rev. Dis. Primers 2023, 9, 8. [CrossRef] [PubMed]

12. Melzer, K.; Schutz, Y.; Boulvain, M.; Kayser, B. Physical activity and pregnancy: Cardiovascular adaptations, recommendations
and pregnancy outcomes. Sports Med. 2010, 40, 493–507. [CrossRef] [PubMed]

13. Duhig, K.E.; Myers, J.; Seed, P.T.; Sparkes, J.; Lowe, J.; Hunter, R.M.; Shennan, A.H.; Chappell, L.C. Placental growth factor testing
to assess women with suspected pre-eclampsia: A multicentre, pragmatic, stepped-wedge cluster-randomised controlled trial.
Lancet 2019, 393, 1807–1818. [CrossRef] [PubMed]

14. Burton, G.J.; Redman, C.W.; Roberts, J.M.; Moffett, A. Pre-eclampsia: Pathophysiology and clinical implications. Br. Med. J. 2019,
366, l2381. [CrossRef] [PubMed]

15. ACOG. ACOG Committee Opinion No. 743-Low-Dose Aspirin Use During Pregnancy. Obstet. Gynecol. 2018, 132, e44–e52.
[CrossRef] [PubMed]

16. Duley, L.; Henderson-Smart, D.J.; Meher, S.; King, J.F. Antiplatelet agents for preventing pre-eclampsia and its complications.
Cochrane Database Syst. Rev. 2007, 10, CD004659. [CrossRef] [PubMed]

17. Rolnik, D.L.; Wright, D.; Poon, L.C.; O’Gorman, N.; Syngelaki, A.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.;
Singh, M.; et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N. Engl. J. Med. 2017, 377, 613–622.
[CrossRef]

18. Zeisler, H.; Llurba, E.; Chantraine, F.; Vatish, M.; Staff, A.C.; Sennström, M.; Olovsson, M.; Brennecke, S.P.; Stepan, H.;
Allegranza, D.; et al. Predictive Value of the sFlt-1:PlGF Ratio in Women with Suspected Preeclampsia. N. Engl. J. Med.
2016, 374, 13–22. [CrossRef]

19. Richter, A.E.; Scherjon, S.A.; Dikkers, R.; Bos, A.F.; Kooi, E.M.W. Antenatal Magnesium Sulfate and Preeclampsia Differentially
Affect Neonatal Cerebral Oxygenation. Neonatology 2020, 117, 331–340. [CrossRef]

20. ACOG. Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet. Gynecol. 2020, 135, e237–e260.
[CrossRef]

21. Luo, S.; Cao, N.; Tang, Y.; Gu, W. Identification of key microRNAs and genes in preeclampsia by bioinformatics analysis. PLoS
ONE 2017, 12, e0178549. [CrossRef] [PubMed]

22. Meng, Y.; Li, C.; Liu, C.X. Immune cell infiltration landscape and immune marker molecular typing in preeclampsia. Bioengineered
2021, 12, 540–554. [CrossRef] [PubMed]

23. Lee, S.M.; Moon, J.Y.; Lim, B.Y.; Kim, S.M.; Park, C.W.; Kim, B.J.; Jun, J.K.; Norwitz, E.R.; Choi, M.H.; Park, J.S. Increased
biosynthesis and accumulation of cholesterol in maternal plasma, but not amniotic fluid in pre-eclampsia. Sci. Rep. 2019, 9, 1550.
[CrossRef] [PubMed]

24. Girardi, G. Complement activation, a threat to pregnancy. Semin. Immunopathol. 2018, 40, 103–111. [CrossRef] [PubMed]
25. Yang, F.; Zheng, Q.; Jin, L. Dynamic Function and Composition Changes of Immune Cells During Normal and Pathological

Pregnancy at the Maternal-Fetal Interface. Front. Immunol. 2019, 10, 2317. [CrossRef] [PubMed]
26. Ding, X.; Yang, Z.; Han, Y.; Yu, H. Correlation of long-chain fatty acid oxidation with oxidative stress and inflammation in

pre-eclampsia-like mouse models. Placenta 2015, 36, 1442–1449. [CrossRef] [PubMed]
27. Huang, X.; Jain, A.; Baumann, M.; Korner, M.; Surbek, D.; Butikofer, P.; Albrecht, C. Increased placental phospholipid levels in

pre-eclamptic pregnancies. Int. J. Mol. Sci. 2013, 14, 3487–3499. [CrossRef]
28. Nelson, D.B.; Ziadie, M.S.; McIntire, D.D.; Rogers, B.B.; Leveno, K.J. Placental pathology suggesting that preeclampsia is more

than one disease. Am. J. Obstet. Gynecol. 2014, 210, 66.e1–66.e7. [CrossRef]
29. Zhang, Q.; Huang, Y.; Zhang, K.; Huang, Y.; Yan, Y.; Wang, F.; Wu, J.; Wang, X.; Xu, Z.; Chen, Y.; et al. Cadmium-induced immune

abnormality is a key pathogenic event in human and rat models of preeclampsia. Environ. Pollut. 2016, 218, 770–782. [CrossRef]
30. Zhang, Q.; Huang, Y.; Zhang, K.; Yan, Y.; Wu, J.; Wang, F.; Zhao, Y.; Xu, H.; Jiang, W.; Yu, D.; et al. Progesterone attenuates

hypertension and autoantibody levels to the angiotensin II type 1 receptor in response to elevated cadmium during pregnancy.
Placenta 2018, 62, 16–24. [CrossRef]

31. Liu, H.; Cheng, F.; Xu, Q.; Huang, W.; Wang, S.; Sun, R.; Ye, D.; Zhang, D. Lipoxin A4 suppresses angiotensin II type 1 receptor
autoantibody in preeclampsia via modulating caspase-1. Cell Death Dis. 2020, 11, 78. [CrossRef]

32. Stadler, J.T.; Scharnagl, H.; Wadsack, C.; Marsche, G. Preeclampsia Affects Lipid Metabolism and HDL Function in Mothers and
Their Offspring. Antioxidants 2023, 12, 795. [CrossRef]

33. Bu, C.; Wang, Z.; Ren, Y.; Chen, D.; Jiang, S.W. Syncytin-1 nonfusogenic activities modulate inflammation and contribute to
preeclampsia pathogenesis. Cell. Mol. Life Sci. 2022, 79, 290. [CrossRef] [PubMed]

https://doi.org/10.1111/1471-0528.15394
https://doi.org/10.1007/s11906-020-1035-7
https://www.ncbi.nlm.nih.gov/pubmed/32166454
https://doi.org/10.1016/j.ajog.2018.04.002
https://www.ncbi.nlm.nih.gov/pubmed/29630888
https://doi.org/10.1038/s41572-023-00417-6
https://www.ncbi.nlm.nih.gov/pubmed/36797292
https://doi.org/10.2165/11532290-000000000-00000
https://www.ncbi.nlm.nih.gov/pubmed/20524714
https://doi.org/10.1016/S0140-6736(18)33212-4
https://www.ncbi.nlm.nih.gov/pubmed/30948284
https://doi.org/10.1136/bmj.l2381
https://www.ncbi.nlm.nih.gov/pubmed/31307997
https://doi.org/10.1097/AOG.0000000000002708
https://www.ncbi.nlm.nih.gov/pubmed/29939940
https://doi.org/10.1002/14651858.CD004659.pub2
https://www.ncbi.nlm.nih.gov/pubmed/17443552
https://doi.org/10.1056/NEJMoa1704559
https://doi.org/10.1056/NEJMoa1414838
https://doi.org/10.1159/000507705
https://doi.org/10.1097/AOG.0000000000003891
https://doi.org/10.1371/journal.pone.0178549
https://www.ncbi.nlm.nih.gov/pubmed/28594854
https://doi.org/10.1080/21655979.2021.1875707
https://www.ncbi.nlm.nih.gov/pubmed/33535891
https://doi.org/10.1038/s41598-018-37757-3
https://www.ncbi.nlm.nih.gov/pubmed/30733456
https://doi.org/10.1007/s00281-017-0645-x
https://www.ncbi.nlm.nih.gov/pubmed/28900713
https://doi.org/10.3389/fimmu.2019.02317
https://www.ncbi.nlm.nih.gov/pubmed/31681264
https://doi.org/10.1016/j.placenta.2015.10.014
https://www.ncbi.nlm.nih.gov/pubmed/26582505
https://doi.org/10.3390/ijms14023487
https://doi.org/10.1016/j.ajog.2013.09.010
https://doi.org/10.1016/j.envpol.2016.07.073
https://doi.org/10.1016/j.placenta.2017.12.004
https://doi.org/10.1038/s41419-020-2281-y
https://doi.org/10.3390/antiox12040795
https://doi.org/10.1007/s00018-022-04294-2
https://www.ncbi.nlm.nih.gov/pubmed/35536515


Biomedicines 2023, 11, 2328 19 of 19

34. Pang, H.; Lei, D.; Chen, T.; Liu, Y.; Fan, C. The Enzyme 15-Hydroxyprostaglandin Dehydrogenase Inhibits a Shift to the
Mesenchymal Pattern of Trophoblasts and Decidual Stromal Cells Accompanied by Prostaglandin Transporter in Preeclampsia.
Int. J. Mol. Sci. 2023, 24, 5111. [CrossRef] [PubMed]

35. Zhou, J.; Wen, T.; Li, Q.; Chen, Z.; Peng, X.; Wei, C.; Wei, Y.; Peng, J.; Zhang, W. Single-Cell Sequencing Revealed Pivotal Genes
Related to Prognosis of Myocardial Infarction Patients. Comput. Math. Methods Med. 2022, 2022, 6534126. [CrossRef] [PubMed]

36. Li, S.; Shui, K.; Zhang, Y.; Lv, Y.; Deng, W.; Ullah, S.; Zhang, L.; Xue, Y. CGDB: A database of circadian genes in eukaryotes.
Nucleic Acids Res. 2017, 45, D397–D403. [CrossRef] [PubMed]

37. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559.
[CrossRef]

38. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics
2012, 16, 284–287. [CrossRef]

39. The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 2017, 45,
D331–D338. [CrossRef]

40. Fan, Y.; Xia, J. miRNet-Functional Analysis and Visual Exploration of miRNA-Target Interactions in a Network Context. Methods
Mol. Biol. 2018, 1819, 215–233. [CrossRef]

41. Barrett, H.L.; Kubala, M.H.; Scholz Romero, K.; Denny, K.J.; Woodruff, T.M.; McIntyre, H.D.; Callaway, L.K.; Dekker Nitert, M.
Placental lipase expression in pregnancies complicated by preeclampsia: A case-control study. Reprod. Biol. Endocrinol. 2015, 13,
100. [CrossRef] [PubMed]

42. Hentschke, M.R.; Poli-de-Figueiredo, C.E.; da Costa, B.E.; Kurlak, L.O.; Williams, P.J.; Mistry, H.D. Is the atherosclerotic
phenotype of preeclamptic placentas due to altered lipoprotein concentrations and placental lipoprotein receptors? Role of a
small-for-gestational-age phenotype. J. Lipid Res. 2013, 54, 2658–2664. [CrossRef] [PubMed]

43. Zhou, M.; Chen, M.; Bai, H.; He, G.L.; Liu, Q.Q.; Guan, L.B.; Liu, X.H.; Fan, P. Association of the G994T and R92H genotypes
of platelet-activating factor acetylhydrolase with risk of preeclampsia in Chinese women. Pregnancy Hypertens. 2020, 20, 19–26.
[CrossRef] [PubMed]

44. Cao, Y.; Jia, X.; Huang, Y.; Wang, J.; Lu, C.; Yuan, X.; Xu, J.; Zhu, H. Vitamin D stimulates miR-26b-5p to inhibit placental COX-2
expression in preeclampsia. Sci. Rep. 2021, 11, 11168. [CrossRef] [PubMed]

45. Voutetakis, A.; Pervanidou, P.; Kanaka-Gantenbein, C. Aspirin for the Prevention of Preeclampsia and Potential Consequences for
Fetal Brain Development. JAMA Pediatr. 2019, 173, 619–620. [CrossRef]

46. Szczuko, M.; Kikut, J.; Komorniak, N.; Bilicki, J.; Celewicz, Z.; Ziętek, M. The Role of Arachidonic and Linoleic Acid Derivatives
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