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Abstract: In sepsis, simultaneously elevated levels of pro-inflammatory cytokines and interleukin
(IL)-10 indicate immune response dysregulation, increasing the mortality of the host. As mesenchymal
stem cell (MSC) secretome is known to have immunomodulatory effects, we aim to assess the role of
MSC secretome in the inflammatory mediators (NF-κB p65 and p50, TNF-α, IL-10) and the survival
rate of a rat model of sepsis. In this study, forty-eight male Rattus norvegicus rats were divided into
one sham group and three groups with sepsis induction: the control group and the sepsis-induced
rat groups treated with 150 µL (T1) and 300 µL (T2) of secretome. The survival rate was observed
per 6 h for 48 h and plotted using the Kaplan–Meier method. Compared to the control group, T2
showed a significant decrease in the relative expression of NF-κB and the serum TNF-α level, and
a significant increase in the serum IL-10 level. Meanwhile, T1 showed a significant decrease in the
serum TNF-α level compared to the control group. The Kaplan–Meier Log Rank test did not show
significance in the distribution of survival between T1, T2, and the control group. However, from the
18th to the 36th hour, the survival rate of T2 was lower than the survival rate of the control group and
T1, with a noticeable difference between T2 and the control group, as well as T1 at the 36th hour. At
the 42nd hour, the survival rate of T2 was the same as the control group and remained lower than T1.
In conclusion, MSC secretome regulated the inflammatory mediators in rat model of sepsis, with a
dose of 150 µL being more effective.

Keywords: secretome; NF-κB; TNF-α; IL-10; survival rate; sepsis

1. Introduction

Sepsis is a medical emergency due to the dysregulation of the body’s immune response
to infection [1]. This dysregulation is initiated by the entry of pathogen-associated molecu-
lar patterns (PAMPs) such as bacteria, or damage-associated molecular patterns (DAMPs),
into the host, which activates nuclear factor kappa B (NF-κB). NF-κB is a central inflam-
matory mediator and a transcription factor regulating the expression of pro-inflammatory
cytokine genes through the activation of intracellular signal transduction pathways. NF-κB
activation, especially by pathogenic bacteria, is recognized by Toll-like receptors (TLR)-4.
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The recognition of lipopolysaccharide (LPS) complexes with the LPS binding protein by
TLR-4 leads to the stimulation of one or more redox-dependent kinases so that they phos-
phorylate IκB [2–4]. NF-κB also contributes to the regulation of the survival, activation,
and differentiation of various immune cells, such as innate immune cells and inflammatory
T cells. A dysregulation in the activation of NF-κB plays a role in the pathogenic process of
many inflammatory diseases [5].

Cytokines are small secreted proteins and important mediators in the regulation of
immune and inflammatory responses. The main pro-inflammatory cytokines that regulate
the early immune response include interleukin (IL)-1α, IL-1β, IL-6, and tumor necrosis
factor (TNF)-α. TNF-α is the most studied pro-inflammatory cytokine in sepsis due to its
deterministic role in the release of other cytokines. Many studies have found a significant
increase in this cytokine in septic patients and animal models [6–9]. The secretion of these
pro-inflammatory cytokines affects the secretion of anti-inflammatory cytokines in order
to balance the body defenses [10,11]. In this state, IL-10 will be produced to counteract
pro-inflammatory cytokines such as TNF-α [12,13]. However, TNF-α often causes NF-κB
activation by itself and forms a positive feedback circuit. Simultaneously, elevated levels
of pro-inflammatory cytokines and IL-10 indicate a dysregulation of the inflammatory
response. This dysregulation is known as a cytokine storm, which may cause organ
damage and secondary infection, leading to increased mortality [14–16].

Data obtained in 2016 from studies in several high-income countries found more than
30 million cases of sepsis receiving hospital care, and it was estimated that 5.3 million patients
died from sepsis [17]. A global estimation in 2017 found 48.9 million cases of sepsis and
11 million deaths due to sepsis [18]. The rapid administration of the appropriate antimicrobial
therapy is key to maximizing the survival rate for sepsis, but the distribution of causative
pathogens is constantly changing [19,20]. Moreover, the global increase in antimicrobial-
resistant pathogens renders broad-spectrum antimicrobial therapy less effective [20–23].
Therefore, there is a need for a supportive therapy that can alleviate the cytokine storm
and reduce the mortality caused by sepsis.

Mesenchymal stem cells (MSCs) have drawn much interest for their immunomod-
ulatory effects [24]. Many studies have reported that the therapeutic potential of MSCs
stems from the paracrine effect of the secreted molecules [25,26]. MSC secretome is known
to have immunomodulatory effects, hence its potential in the management of infectious
diseases, especially sepsis. The regenerative properties of the secretome also contribute
to the repair of organs with pathological conditions associated with inflammation [27].
One study showed that the administration of human embryo MSC secretome significantly
increased survival and improved the histopathological score of a mouse model of sepsis. It
increased IL-10 without affecting IL-1β and TNF-α [28]. Another study also showed that
administering 300 µL of hypoxic-conditioned media from adipose MSC can improve the
inflammation in the gastric mucosa of rats [29].

Due to the aforementioned reasons, we aim to assess the role of MSC secretome in
inflammatory mediators (NF-κB p65 and p50, TNF-α, IL-10) and the survival rate of rat
model of sepsis.

2. Materials and Methods
2.1. Ethics

The implementation of this research was approved by the Health Research Ethics Com-
mittee of Universitas Sumatera Utara (USU) with Letter Number: 541/KEPK/USU/2022.
Rats were given food and drink ad libitum and treated according to ethical principles: free
from hunger, thirst, discomfort, pain, fear, or stress.

2.2. MSC Isolation, Flow Cytometry and Differentiation Analysis

We collected umbilical cords from Wistar rats with a gestational age of 19 days for
MSC isolation based on the method used in a past report [30]. The MSCs were cultured in
a culture flask containing Dubbelco’s Modified Eagle Medium (DMEM) (Sigma-Aldrich,
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St. Louis, MO, USA), with 10% Fetal Bovine Serum (FBS) (Gibco™ Invitrogen, Grand Island,
NY, USA), 0.25% amphotericin B (Gibco™ Invitrogen, Grand Island, NY, USA) and 1.5%
penicillin (100 U/mL)/streptomycin (100 µg/mL) (Gibco™ Invitrogen, Grand Island, NY,
USA). The MSCs were incubated at 37 ◦C with 5% CO2 and a medium renewal every three
days. At 80% confluency, the MSCs were moved into a new flask. For this study, we used
the MSCs from the fourth passage.

Next, we performed a validation test on the cell surface markers using flow cytometry
following the instructions of the manufacturer. To stain the membrane antigens, we
incubated MSC at 4th passage using CD90.1-PerCP (Clone OX-7), CD29-PE (Clone Ha2/5),
CD31-APC (Clone MEC 13.3), and CD45-FITC (Clone OX-1) rat antibodies (BD Bioscience,
San Jose, CA, USA) in the dark for 20 min at room temperature. After incubation, we
washed the cells twice using 500 µL of phosphate buffer saline (PBS). We then centrifuged
the sample at 500× g for 5 min. After centrifugation, we then diluted our sample in 300 µL
of PBS before analysis. The cells were then investigated using a BD Accuri C6 Plus flow
cytometer (BD Bioscience, San Jose, CA, USA). The data were interpreted using BD Accuri
C6 Plus software (BD Bioscience, San Jose, CA, USA). Once the MSC culture in the standard
medium at 37 ◦C and 5% CO2 reached 95% confluency, the medium was replaced with
Rat MesenCult™ adipogenic and osteogenic differentiation basal medium. The medium
was supplemented with respective supplement (Stem Cell Technologies, Singapore), 1% L-
glutamine (Gibco™ Invitrogen, Grand Island, NY, USA), 1% penicillin (Gibco™ Invitrogen,
Grand Island, NY, USA), and 0.25% amphotericin B (Gibco™ Invitrogen, Grand Island,
NY, USA), with a renewal every three days. After 21 days of incubation, oil red O and
alizarin red (Sigma-Aldrich, St. Louis, MO, USA) staining were performed to identify the
adipogenic and osteogenic differentiation, respectively.

2.3. Secretome Preparation and Content Analysis

MSCs at 80% confluency were put in the hypoxic chamber. Nitrogen was channeled
through the inlet valve, and an oxygen meter was placed in the sensor hole to measure the
oxygen concentration within the chamber. Nitrogen was added until the indicator needle
showed a concentration of 5% oxygen. The chamber containing the flask was incubated for
24 h at 37 ◦C.

Upon collection, the cells were centrifuged at 13,000× g for ten minutes at 4 ◦C. The
secretome isolation was performed using the Tangential Flow Filtration (TFF) strategy
(Formulatrix, Bedford, MA, USA) with molecular weight cut-off categories in accordance
with past research [31], using 10–50 kDa 50%, 50–100 kDa 25%, and 100–300 kDa 25% filter
cassettes (Formulatrix, Bedford, MA, USA). The secretome was then stored at −80◦C before
an enzyme-linked immunosorbent assay (ELISA) was performed to analyze the contents,
in accordance with the manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA).

2.4. Examination of Microbial Contamination in Feces

The most probable number (MPN) method was used to estimate the concentration of
microorganisms in feces by replicating growth broth in a tenfold dilution of 1 mL of sample.
Each dilution was inoculated into a triple tube of broth culture for incubation. The nutrient
broth was meant to support the growth of organisms and become murky. The assessment
was performed based on the MPN table from the Food and Drug Administration (FDA)
bacterial analysis manual [32].

2.5. Sample Size dan Animal Model Procedure

Male Rattus norvegicus rats aged 10–12 weeks and weighing 200–300 g were obtained
from the Animal House of Stem Cell Research Center (SCCR) of Universitas Islam Sultan
Agung (Unissula) Faculty of Medicine, Semarang. Rats were kept in different cages at
room temperature (37 ◦C) and given food and drink in moderation, as well as 12 h of
light intensity. Before sepsis induction, rats were reared for 7 days to ensure that no other
diseases were present.
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Based on the power analysis formula, with the possibility of dropping out taken
into account [33,34], the sample size for this study was 48, with each group consisting of
12 rats. The rats were divided into four groups: the sham group, the sepsis-induced control
group, and the sepsis-induced rat groups, which were given 150 µL (T1) and 300 µL (T2)
of secretome.

To obtain the animal model of sepsis, feces was obtained from the cecum of fresh donor
rats and then mixed with sterile saline solution at a concentration of 90 mg/mL to produce
a fecal suspension. The suspension was injected intraperitoneally at a dose of 1 g/kg body
weight [35] to the lower-right quadrant of the rat abdomen using a 21-gauge needle. To
avoid trauma from needle insertion, the abdominal wall was lifted with tweezers [36].
Four hours after the sepsis induction, the antibiotic imipenem at a dose of 25 mg/kg body
weight in 150 µL of physiological saline was administered intraperitoneally to the septic
rat groups for ethical considerations [37,38]. Secretome was administered to T1 and T2 four
hours after sepsis induction [29,35,36].

2.6. Survival Rate

The sepsis survival rate was observed in each group of rats per 6 h for 48 h [31].
Observations were analyzed as a percentage based on the number of dead (non-survivor)
and surviving (survivor) septic rats.

2.7. Biomarker Measurement

After 48 h of survival rate observation, all rats were terminated by administering anes-
thesia using 80 mg/kgBW of ketamine and 4 mg/kgBW of xylazine via the intramuscular
route. Blood was taken to measure the relative expression of NF-κB p65 and p50 and the
serum levels of TNF-α and IL-10.

2.8. Real-Time Polymerase Chain Reaction (RT-PCR) of Gene Expression

To measure the relative expression of NF-κB p65 and p50, we used lysing solution (BD
Bioscience, San Jose, CA, USA) to isolate the peripheral blood mononuclear cells (PBMCs)
from the rat blood. The effect of secretome on the relative expression of NF-κB was measured
via RT-PCR (Tri Reagent, Merck, Readington, NJ, USA). RNA was isolated using ready-
to-use kit according to the instructions of the manufacturer. For the experiment, we used
the following primers: NF-κB p65 forward 5′-AACACTGCCGAGCTCAAGAT-3′ and re-
verse 5′-CATCGGCTTGAGAAAAGGAG-3′ primer; NF-κB p50 forward 5′-AGAGCAACC
GAAACAGAGAGG-3′ and reverse 5′-TTTGCAGGCCCCACATAGTT-3′ primer; β-actin
forward 5′-GTCAGGTCATCACTATCGGCAAT-3′ and reverse AGAGGTCTTTACGGATGT-
CAACGT primer [39,40].

2.9. ELISA of Serum Cytokine Levels

Blood was taken from the rats’ orbital and centrifuged at 2000× g for 20 min. The
serum was then taken and frozen at−20 ◦C. Serum levels of TNF-α and IL-10 were analyzed
following the instructions of the ELISA kit (Bio-Rad, Hercules, CA, USA).

2.10. Statistical Analysis

The data concerning NF-κB expression and TNF-α and IL-10 levels were presented
as means. Data with a normal distribution were analyzed using one way ANOVA, and
an LSD post hoc test was performed on the significant data. Meanwhile, data without
normal distribution were analyzed using Kruskal–Wallis analysis and a Mann–Whitney
post hoc test was performed on the significant data. p < 0.05 indicates significance. The
sepsis survival data were plotted using the Kaplan–Meier method and analyzed using the
log rank test.
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3. Results
3.1. MSC Characterization and Secretome

The cell specimen attached to the bottom of the flask showed spindle-like cell mor-
phology under microscopic examination (Figure 1).
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MSC flow cytometry analysis showed a high expression of CD90.1 and CD29 MSC
markers and a low expression of CD45 and CD31 hematopoietic markers (Figure 2).
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Figure 2. (a) Flow cytometry analysis showed that MSC expressed CD90.1 and CD29, and did not
express CD45 and CD31. (b) On the other side, the isotype showed the negative expression of CD90.1,
CD29, CD45, and CD31.

Oil red O and alizarin red staining of the MSC culture showed lipid and calcium
deposition, indicating adipogenic and osteogenic differentiation, respectively (Figure 3).

3.2. Secretome Content Analysis

In this study, the normoxic MSC secretome consisted of IL-10 at 150.61 ± 15.32 pg/mL,
transforming growth factor (TGF)-β at 73.53± 7.15 pg/mL, and TNF-α at 3.55 ± 0.59 pg/mL.
On the other hand, the hypoxic MSC secretome consisted of IL-10 at 269.57± 38.39 pg/mL,
TGF-β at 138.15 ± 6.12 pg/mL, and TNF-α at 4.93 ± 1.04 pg/mL (Table 1).
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Figure 3. (a) Adipogenic differentiation is represented by lipid deposition on the MSC culture,
indicated by the color red; (b) Osteogenic differentiation is represented by calcium deposition on the
MSC culture, indicated by the color red.

Table 1. Analysis of soluble molecules from normoxic and hypoxic MSC secretome. The analysis was
employed using ELISA.

Molecules Normoxic MSC Secretome
Value ± SE (pg/mL)

Hypoxic MSC Secretome
Value ± SE (pg/mL)

IL-10 150.61 ± 15.32 269.57 ± 38.39 ***

TGF-β 73.53 ± 7.15 138.15 ± 6.12 ***

TNF-α 3.55 ± 0.59 4.93 ± 1.04
*** indicates significance.

3.3. Examination of Microbial Contamination in Feces

The microbial contamination test found 40 MPN/gr (67%) of Escherichia coli (E. coli)
and 20 MPN/gr (33%) of Staphylococcus aureus (S. aureus) in the rat feces (Figure 4).
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3.4. Effect of Secretome on NF-κB

To determine the effect of secretome on immune system recovery during sepsis, we
assessed the relative expression of NF-κB p65 (Figure 5a) and p50 (Figure 5b) via RT-PCR.
The results showed a significant difference between the effect of secretome administration
and the decrease in the relative expression of p65 and p50 mRNA in T2 compared to the
control group (p = 0.049; p = 0.042), but not between T1 and the control group (p = 1.000;
p = 0.357).
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Figure 5. Effect of MSC secretome on the relative expression of NF-κB (a) p65 and (b) p50 in a
rat model of sepsis. Rats were given secretome with different doses (150 and 300 µL). * indicates
significance at p < 0.05.

3.5. Effect of Secretome on Pro-Inflammatory and Anti-Inflammatory Secretome

Next, we assessed the levels of TNF-α and IL-10 in rat serum via ELISA. The results
showed a significant decrease in the serum TNF-α level in T1 and T2 compared to the
control group, with p < 0.05 (p = 0.024; p = 0.001, Figure 6a). On the other hand, the results
also showed that there was a significant increase in the serum IL-10 level in T2 compared
to the control group (p = 0.008), but not between T1 and the control group (p = 0.132,
Figure 6b).

Biomedicines 2023, 11, x FOR PEER REVIEW 7 of 14 
 

3.4. Effect of Secretome on NF-κB 

To determine the effect of secretome on immune system recovery during sepsis, we 

assessed the relative expression of NF-κB p65 (Figure 5a) and p50 (Figure 5b) via RT-PCR. 

The results showed a significant difference between the effect of secretome administra-

tion and the decrease in the relative expression of p65 and p50 mRNA in T2 compared to 

the control group (p = 0.049; p = 0.042), but not between T1 and the control group (p = 

1.000; p = 0.357). 

 

 

(a) (b) 

Figure 5. Effect of MSC secretome on the relative expression of NF-κB (a) p65 and (b) p50 in a rat 

model of sepsis. Rats were given secretome with different doses (150 and 300 μL). * indicates sig-

nificance at p < 0.05. 

3.5. Effect of Secretome on Pro-Inflammatory and Anti-Inflammatory Secretome 

Next, we assessed the levels of TNF-α and IL-10 in rat serum via ELISA. The results 

showed a significant decrease in the serum TNF-α level in T1 and T2 compared to the 

control group, with p < 0.05 (p = 0.024; p = 0.001, Figure 6a). On the other hand, the results 

also showed that there was a significant increase in the serum IL-10 level in T2 compared 

to the control group (p = 0.008), but not between T1 and the control group (p = 0.132, 

Figure 6b). 

 

 

(a) (b) 

Figure 6. Effect of MSC secretome on the levels of (a) TNF-α and (b) IL-10 in a rat model of sepsis. 

Rats were given secretome with different doses (150 and 300 μL). * indicates significance at p < 0.05; 

** indicates significance at p < 0.01. 

3.6. Kaplan-Meier Analysis of Survival 

The Kaplan–Meier Log Rank test did not show significance (p = 0.770) in the distri-

bution of survival between the control group, T1, and T2. As shown by the graph (Figure 

7), all the rats in the sham group survived throughout the observation. At the 12th hour 

of the observation, the survival rate of the control group was lower than the survival rate 

of T1 and T2. However, at the 18th hour, the survival rate of T2 was lower than the sur-

vival rate of the control group and T1. This trend persisted to the 36th hour of the ob-

servation, with a noticeable difference between T2 and the control group, as well as T1 at 

the said hour. At the 42nd hour, the survival rate of T2 was the same as the control group 

Figure 6. Effect of MSC secretome on the levels of (a) TNF-α and (b) IL-10 in a rat model of sepsis.
Rats were given secretome with different doses (150 and 300 µL). * indicates significance at p < 0.05;
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3.6. Kaplan-Meier Analysis of Survival

The Kaplan–Meier Log Rank test did not show significance (p = 0.770) in the distribu-
tion of survival between the control group, T1, and T2. As shown by the graph (Figure 7),
all the rats in the sham group survived throughout the observation. At the 12th hour of the
observation, the survival rate of the control group was lower than the survival rate of T1
and T2. However, at the 18th hour, the survival rate of T2 was lower than the survival rate
of the control group and T1. This trend persisted to the 36th hour of the observation, with
a noticeable difference between T2 and the control group, as well as T1 at the said hour.
At the 42nd hour, the survival rate of T2 was the same as the control group and remained
lower than T1. These results indicate that the administration of MSC secretome at 150 µL
in T1 increased the survival rate in septic rats.
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4. Discussion

Sepsis is a condition consisting of an impaired host response to infection and can occur
in infections with bacteria that produce pathogenic products. S. aureus and Streptococcus
pneumoniae are the most common Gram-positive bacteria found in blood cultures of sepsis
patients, while E. coli, Klebsiella sp., and Pseudomonas aeruginosa are predominant among
Gram-negative bacteria [41,42]. In this study, an experimental animal model of sepsis was
obtained via the fecal-induced peritonitis (FIP) method in Rattus norvegicus rats. Although
cecal ligation and puncture (CLP) is a gold standard for sepsis induction in a murine model,
FIP shows less variability among the individual animals. FIP is minimally invasive and
does not result in surgical trauma and tissue ischemia, unlike CLP [43,44].

The feces used in this study were first subjected to microbiological tests to determine
the content of bacterial contamination. We calculated the MPN of the microorganism for mi-
crobiological tests. We used the MPN method because it can detect the fermentative nature
of coliforms in samples. The MPN also showed better sensitivity than the colony-forming
unit (CFU) method. A previous study revealed that performing the E. coli calculation using
the MPN resulted in more preferable concentrations than the CFU method [45]. In this
study, we reported that the microbial fecal contamination of E. coli was 40 MPN/gr (67%)
and that of S. aureus was 20 MPN/gr (33%). The administration of Gram-positive (Strep-
tococcus pneumoniae and S. aureus) or Gram-negative (E. coli, Bacteroides fragilis, Klebsiella
pneumonia, Acinetobacter baumannii, and Pseudomonas aeruginosa) bacteria is an easily repro-
ducible and less invasive method of inducing sepsis, suitable for activating the immune
response to specific pathogens without surgery. E. coli is commonly used among Gram-
negative bacteria, while Staphylococcus and Pseudomonas are commonly used among
Gram-positive bacteria. As commensal bacteria living in the digestive tract of rats, S. aureus
and E. coli can be found in rat feces [46–48].

In this study, MSC secretome was prepared from the umbilical cord of pregnant rats
in several stages. We applied controlled hypoxia to MSCs to obtain a higher number of
anti-inflammatory molecules on the MSC secretome. Under hypoxic conditions, MSCs
exhibit increased expressions of anti-inflammatory molecules and growth factors. This
phenomenon is attributed to the controlled stress caused by oxygen deficiency, which can
affect the activation of various hypoxia-dependent pathways, including HIF-1a and STAT-
3 [49,50]. An analysis of the hypoxic MSC secretome contents showed a higher amount
of IL-10 and TGF-β compared to normoxic MSC secretome. On the other hand, both
normoxic and hypoxic MSC secretome have low levels of TNF-α, indicating low levels of
pro-inflammatory mediators in MSC secretome. MSC secretome contains various cytokines,
one of which is IL-10. IL-10 has anti-inflammatory effects and is capable of inhibiting the
NF-κB pathway. IL-10 reduces the degradation of IκB-α and the translocation of p65 to
the nucleus, suppressing pro-inflammatory activity [1,11]. IL-10 can act as a regulator of
T helper 2 (Th2) cells and as an immunomodulator directly on CD4+ T cells to stimulate
Th2 polarization [51]. Th2 produces IL-4 and leads to increased IL-10 secretion through a
positive feedback loop by stimulating the polarization of M1 to M2 macrophages [52,53].
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In addition to cytokines, MSC secretome contains growth factors, including TGF-β.
The name TGF-β originates from its ability to cause normal cell transformation. However,
TGF-β also functions outside of cellular transformation. It can induce the expression of
SMAD7, which inhibits the activation of TGF-β-activated kinase 1 (TAK1). This inhibits the
phosphorylation of IκB-kinase α (IKKα) and thus prevents NF-κB activation [54,55].

This is in line with our findings, which showed a significant decrease in the mRNA
expression of NF-κB (p65 and p50) upon the administration of MSC secretome in septic
rats. The administration of 300 µL of secretome significantly reduced the mRNA expression
of p65 and p50 compared to the control group. The IL-10 within MSC secretome exerts
anti-inflammatory effects through the IκB-α degradation pathway and p65 translocation, as
well as the activation of T-regulatory cells (Treg), while TGF-β inhibits the NF-κB pathway.
These will reduce the production of pro-inflammatory cytokines such as TNF-α. TNF-α is a
major pro-inflammatory molecule first identified in 1975 and known to exert inflammatory
effects. TNF-α is often the main target in the treatment of various inflammatory diseases
and plays a role in infectious disease and sepsis pathophysiology [56,57]. In this study, we
found a significant decrease in the serum TNF-α level in the septic rat group after MSC
secretome administration at a dose of 150 µL and 300 µL compared to the control group.

In an inflammatory environment, TGF-β also plays a role in the polarization of M1 to
M2 macrophages via the Akt/FoxO1 pathway. FoxO1 is one of the downstream targets
of the Akt pathway and has been reported to regulate macrophage polarization through
phosphorylation. TGF-β increases the phosphorylation of FoxO1, which causes the translo-
cation of the biomolecule and ultimately M2 polarization. M2 macrophages produce
anti-inflammatory cytokines such as IL-10 [58–60]. In line with this, we also found an
increase in the IL-10 level in the serum of the septic rat group after MSC secretome admin-
istration compared to the control group, with significance found in the rat group given
300 µL of MSC. IL-10 is a homodimeric cytokine produced by immune cells such as natural
killer (NK) cells, macrophages, monocytes, and B and T lymphocytes. IL-10 can suppress
the secretion of pro-inflammatory cytokines, such as TNF-α [11,12].

However, studies have shown that extreme levels of these biomarkers are associated
with poor outcomes due to immunoparalysis. Previous studies have demonstrated that
knock-out studies of mice deficient in components of the NF-κB system had an increased
susceptibility to infection, whereas overactivation resulted in multiorgan inflammation
and failure [24,61–63]. Moreover, extremely low levels of TNF-α reduce the ability to
recruit immune cells through chemokine induction and the supraregulation of adhesion
molecules. Overly low pro-inflammatory cytokine levels can interfere with the function
of these cytokines in controlling mycobacterial infections [8,64]. Meanwhile, IL-10 could
increase Treg proliferation, which contributes to immunoparalysis through the anergy of T
cell lymphocytes, which is the failure of cells to proliferate, secrete cytokines, and respond
to antigens. This prevents the septic individual from setting up an effective immune
response to secondary infections, increasing the severity of sepsis and leading to a poor
prognosis [54,65–67].

Although the Kaplan–Meier Log Rank test did not show significance in the distribution
of survival, the survival rate of the rat group treated with 300 µL of MSC secretome
remained consistently lower than the survival rate of the control group and the rat group
treated with 150 µL of MSC secretome from the 18th to the 36th hour of the observation.
There was also a noticeable difference at the 36th hour of the observation. It is worth
noting that the rat group given 300 µL of MSC secretome showed a significant decrease in
the mRNA expression of NF-κB and serum TNF-α levels compared to the control group.
The serum IL-10 levels of this rat group showed a significant increase compared to the
control group. Taken together, this suggests that a secretome at a higher dose caused
immunoparalysis to occur earlier in septic rats.

On the other hand, the septic rats treated with 150 µL of MSC secretome showed a
stabler survival rate compared to the control group and the rat group treated with 300 µL
of MSC secretome. In particular, the rat group treated with 150 µL of MSC had a higher
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survival rate compared to the control group at the 12th, 18th, and 42nd hours. At the end
of the observation period, this rat group also had a higher survival rate compared to the
control group and the rat group treated with 300 µL of MSC secretome. Interestingly, the
rat group given 150 µL of MSC secretome showed only a significant decrease in the serum
TNF-α level when compared to the control group. Therefore, the balance in the immune
response is crucial in treating sepsis.

Another interesting observation that we found was that, on the 12th hour of the
observation, the control group showed a lower survival rate compared to both septic rat
groups with MSC secretome administration. These data suggest that the survival rate of
the septic rats treated with MSC secretome at a higher dose than the control group is at
a point in which cytokine imbalance or immune system dysregulation has not occurred.
It is suspected that the dysregulation caused by an alteration in the T cell compartment
is associated with high mortality caused by sepsis [68,69]. Past studies have also noted
the importance of the timing of MSC secretome administration in sepsis, as it plays an
important role in determining the positive or negative effects of IL-10. In the early phase of
sepsis, IL-10 provides a protective effect. Administering IL-10 within hours of the onset
of sepsis suppresses TNF-α secretion and prolongs the therapeutic potential of rescue
surgery [13,70,71]. However, over-administration of the IL-10 contained in MSC secretome
could play a role in immunosuppression in the later phases of sepsis, which correlates with
increased sepsis severity and poor prognosis [11–13,72–74].

The strength of this study is that it observes the effect of MSC secretome administration
on the biomolecular changes and survival in a rat model of sepsis, as well as how the dose
of secretome impacts the survival rate. However, this study also has its limitations. It
does not assess the effect of secretome on organ degeneration, such as changes in the
histopathological features of the lungs or kidneys. It does not examine the improvement
in organ function either, such as assessing kidney function through urea-creatinine levels.
We also did not assess the mRNA or intracellular protein expression of IL-10 and TNF-α
in PBMCs of septic rats. By measuring only serum levels, it may introduce bias regarding
whether IL-10 and TNF-α belong to PBMCs or MSC secretome. We hope to address this
limitation in our future study.

5. Conclusions

The administration of MSC secretome gave an immunoregulatory effect in the form of
a decreased expression of NF-κB p65 and p50, as well as a decrease in the serum TNF-α
level, and an increased serum IL-10 level in rat model of sepsis. However, rats given MSC
secretome at a dose of 150 µL showed a stabler survival rate compared to the rats given
MSC secretome at a dose of 300 µL. This could be attributed to the paralytic effect due
to excessive immunosuppression at higher doses. Therefore, we recommend a dose of
150 µL in treating sepsis to avoid inducing an immunoparalytic state. Further studies of this
therapy from a clinical perspective assessment are recommended for a better evaluation of
the effectiveness of MSC secretome.
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