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Abstract: Breast cancer (BC), the most prevalent cancer in women, is a heterogenous disease. Despite
advancements in BC diagnosis, prognosis, and therapeutics, survival rates have drastically decreased
in the metastatic setting. Therefore, BC still remains a medical challenge. The evolution of high-
throughput technology has highlighted gaps in the classification system of BCs. Of particular interest
is the notorious triple negative BC, which was recounted as being heterogenous itself and it overlaps
with distinct subtypes, namely molecular apocrine (MA) and luminal androgen (LAR) BCs. These
subtypes are, even today, still misdiagnosed and poorly treated. As such, researchers and clinicians
have been looking for ways through which to refine BC classification in order to properly understand
the initiation, development, progression, and the responses to the treatment of BCs. One tool is
biomarkers and, specifically, microRNA (miRNA), which are highly reported as associated with
BC carcinogenesis. In this review, the diverse roles of miRNA in estrogen receptor negative (ER−)
and androgen receptor positive (AR+) BC are depicted. While highlighting their oncogenic and
tumor suppressor functions in tumor progression, we will discuss their diagnostic, prognostic, and
predictive biomarker potentials, as well as their drug sensitivity/resistance activity. The association
of several miRNAs in the KEGG-reported pathways that are related to ER-BC carcinogenesis is
presented. The identification and verification of accurate miRNA panels is a cornerstone for tackling
BC classification setbacks, as is also the deciphering of the carcinogenesis regulators of ER − AR + BC.

Keywords: breast cancer; triple negative breast cancer; molecular apocrine breast cancer; luminal
androgen breast cancer; biomarker; microRNA; androgen receptor

1. Introduction

Breast cancer (BC) is depicted as the most common cancer in women, with an estimated
number of 2.3 million new cases worldwide in 2020 [1]. This incidence is predicted to
increase in the next 15 years due to cancer screening tests, but also because of growing
risk factors like increases in excess body weight [2,3]. A recent analysis of United States
(US) cancer data, by The American Society of Cancer, revealed a slow increase in BC
incidence (0.5% per year) since the mid-2010s. In parallel, for 30 years, female BC mortality
has decreased, and this is mainly because of earlier diagnoses and improved treatments;
however, this effect has been slowing in the last few years. Thus, BC remained as among
the first causes of worldwide cancer deaths in 2020 [1], with 43.2 thousand estimated deaths
in the US for 2022 [4]. Although the 5-year relative survival rate of BC is 90%—constituting
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one of the best for prognostic cancers—late recurrences are frequent, and the survival rate
decreases dramatically in the metastatic setting [5].

All of these facts highlight the fact that BC remains a medical challenge, and that it
will continue to be one of the major health challenges in future years.

2. Breast Cancer Is a Highly Heterogeneous Disease

One of the main issues concerning BC is the high heterogeneity of the disease. In-
deed, BC includes a vast array of histological and molecular subtypes [6,7] with clinical
implications.

First, from a histological point of view, the large majority (70–80%) of invasive breast
neoplasms occur through the infiltration of ductal carcinomas of no special type (IDC-NST),
which is followed by invasive lobular carcinomas (8–15%) [8,9]. Other histologic types exist
but are less common, and these include micropapillary, papillary, metaplastic, and apocrine
carcinomas.

Second, at a molecular level, a variety of subtypes have been described since 2000
with high therapeutic implications. Indeed, the advances in high-throughput technologies
has allowed for a better biological demonstration of the BC heterogeneity at the molecular
level, raising five intrinsic subtypes, which are hierarchically clustered into luminal A,
luminal B, HER2-overexpressing, basal-like, and normal-like BCs [10]. Since this first
transcriptomic molecular portrait of BC, multiple histopathological and biological features
have been described for the purpose of a better classification and comprehension of the
breast neoplasm, and this development has continued to evolve. However, four coher-
ent groups can recurrently be defined by gene expression profiling [11]. This could be
conducted possibly by multiparameter molecular tests such as PAM50 and, as is more
often the case, with surrogate approaches such as by immunohistochemistry analysis. Ac-
cording to the St. Gallen 2013 consensus, BC molecular subtypes are defined according to
estrogen receptors (ERs), progesterone receptors (PRs), Human Epidermal Growth Factor
Receptor-2 (HER2), and the proliferation marker Ki67 expression as per the following:
luminal A-like (ER+/PR+, HER2−, Ki67+ < 20%); luminal B-like HER2− (ER+/PR+ < 20%,
HER2−, Ki67+ ≥ 20%); luminal B-like HER2+ (ER+/PR+, HER2 overexpression); HER2
overexpressed (non-luminal (ER−, PR−); HER2 overexpression); and basal-like and/or
triple-negative BC (TNBC) (ER−, PR−, HER2−) [12] (Figure 1).

The luminal A-like tumors have clear prognostic and treatment implications as they
proliferate less and are endocrine sensitive, thus it confers better prognosis but have a poor
response to chemotherapy [13]. Luminal B-like tumors are of a higher Ki67 expression
and grade, and they have less endocrine sensitivity and poorer prognoses [13,14]. HER2
overexpression leads to bad prognosis but also to a better prediction of the response to anti-
HER2 therapies, which drastically improves patient survival. However, the non-luminal
HER2+ group is fast growing, more aggressive, and presents a worse prognosis than
luminal groups [15]. Finally, TNBCs—which account for 20% of BCs and is defined by the
absence of the three major receptors of ER, PR, and HER2—present with an aggressive
behavior that have a high proliferation and the most pejorative survival rates [13]. Moreover,
as defined by what they are not, TNBCs remain a highly heterogeneous subgroup that need
to be better characterized.

Importantly, the accurate definition of BC is necessary for proper diagnoses and
treatment strategies. The huge heterogeneity of this disease is described in the WHO tumor
classification [16], which was updated in 2019 [11].
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3. Triple Negative Breast Cancers: What Are They?

TNBCs are characterized by clinical and pathological differences, as well as by dis-
tinct molecular expression profiles that translate into distinct behaviors and responses to
chemotherapy. In general, TNBCs exert higher risks of recurrence with the emergence of
brain and lung metastases that occur more frequently than bone metastasis when compared
to other breast subtypes. Also, TNBC metastatic diseases appears rapidly within the first
3 years after diagnosis, thus leading to bad prognosis. However, when patients do not recur
during this time, the survival rate is comparable to ER+ BC. Moreover, 30–40% of TNBC pa-
tients experience a pathological complete response (pCR) after neoadjuvant chemotherapy,
and this constitutes a strong surrogate marker for overall survival. Therefore, it is clear that
TNBCs are not a single clinico-pathological entity, but they need a better characterization
of their more homogenous entities for the optimization of treatment.

Several gene expression studies have tried to dissect this heterogeneous group [17–19].
Initially, Lehmann et al. described six subgroups of TNBCs: basal-like 1 (BL1), basal-like
2 (BL2), immunomodulatory (IM), mesenchymal-(M), mesenchymal stem-like (MSL) and
luminal androgen receptor (LAR) [17,20]. Finally, after the removal of immunological
and stromal expression signals, this classification was refined into four tumor-specific
subtypes (TNBCtype-4): BL1, BL2, M, and LAR. These subtypes have clear differences in
their responses to chemotherapy [20]. Nevertheless, this subtyping is not currently used in
routine practice. Moreover, the LAR subtype, with luminal characteristics but androgen
receptor (AR) overexpression, should certainly be considered differently. In addition, the
2019 WHO classification recognized the existence of an ER− subtype, but AR+ mammary
carcinoma was categorized as a distinct type of BC [7].
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4. Apocrine Carcinoma: Just a Histology or a Molecular Entity?

Historically, breast apocrine carcinomas were defined by their particular morpholog-
ical and histological appearances, with their tumor cells possibly presenting abundant
granular cytoplasm, central nuclei positions, prominent nucleoli, and gross cystic disease
fluid protein-15 (GCDFP-15) positive expressions by IHC [21,22]. This particular histology
is also described in rare malignant adnexal neoplasms, which most commonly arise in areas
with high-apocrine-gland densities, such as the axilla.

In 2005, after the transcriptomic profiling of BC, Farmer et al. described a new subtype
of BC that is characterized by a luminal expression profile without ER but AR overexpres-
sion, as well as with a morphological apocrine differentiation (which was designated by
the term molecular apocrine breast cancer (MABC) [23]). Subsequently, different groups
have identified the MABC in non-redundant BC datasets [24]; these MABC tumors were
recurrently found to specifically overexpress the AR gene and its consecutive pathway
in an ER negative context with frequent expression/amplification of HER2 [23,24]. This
led to the proposal of a new BC classification by Guedj et al., who split the HER2-like
subtype of Perou and Sorlie into luminal B and MABC [25]. In parallel, Lehmann et al.
published the TNBC subclassification described above and defined the LAR subtype as
ER−/HER2−/AR+ [17,20]. Some confusion could be induced by these different descrip-
tions, but it can be assumed that LARs probably converge on the HER2− part of the initially
described MABC [25,26] (even if this has yet to be formally proven). Altogether, these data
recently contributed to the consideration of these invasive MABC/LAR carcinomas as a
subgroup of its own [27], leading to its inclusion in the WHO categorization of BC. This
individualization of a subtype makes sense if distinct diagnoses, prognoses, or treatments
are allowed by its identification as such.

5. MABC/LAR: How, and Why Are they Not Identified in Routine Practice?

MABC/LAR definition is based on the gene signatures obtained by messenger RNA
(mRNA) expression profiling when they are not routinely performed. Some groups, includ-
ing ours, have proposed MABC mRNA signatures or surrogate immunohistochemistry
(IHC) markers as they are easier to apply [24,26]. However, currently, MABC/LAR profiling
is not yet systematically performed.

Nevertheless, MABC/LARs are characterized by AR overexpression, and this can be
easily evaluated by pathologists. Thus, MABC/LARs are essentially characterized by AR
positive IHC in the context of an absence of ER and PR expressions. AR is a member of
the sex steroid hormone receptor family (like ER, PR, etc.), and it is expressed in several
human tissues including the breast [28]. In the context of BC, AR is overexpressed in more
than 70% of cases, so it represents the greatest largely expressed hormone receptor [29].
However, it seems clear that AR plays a different role if associated with the presence or
absence of ER overexpression [30].

In the ER−MABC/LAR context, the proof of concept and clinical trials supporting
the targeting of AR by anti-AR drugs has come away with modest and controversial
results [31–38]. Some inconsistencies could be explained by the lack of standardized AR
evaluation, which is an obstacle that constitutes a major limitation for the proper definition
of the subtype. Indeed, no consensus exists for the use of specific anti-AR antibodies,
protocols, and positive cut-off scores. Moreover, the comparison of AR IHC evaluation
and mRNA MABC signatures has demonstrated a weak concordance between these two
classification tools [26]. Finally, the identification of this subtype remains a challenge, and
better means for identifying it are hence needed to refine its diagnosis, prognosis, and
treatment. With respect to novel and potentially useful biomarkers, microRNA (miRNA)
appears to be a promising diagnostic biomarker. Moreover, the miRNA network could also
help to better define the carcinogenesis of MABC/LARs and their behavior. Accordingly,
in this review, we will focus on the potential role of specific dysregulated miRNA profiles
in TNBC. More interestingly (in that of the less known ER−AR+ subtypes), we will also
explore new approaches in order to understand and diagnose MABC/LAR breast tumors.
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6. Search Strategy

A search strategy was adopted for the following part of the study, and two approaches
were applied. The miRNAs in TNBCs were targeted by using the PubMed medical subject
heading (MeSH) database. PubMed was searched for the following: “Breast Neoplasms”
[MeSH] AND “MicroRNA” [MeSH] AND biomarkers AND prognosis AND diagnosis. For
miRNA-AR interaction, the following terms were searched: “MicroRNA”[MeSH Terms]
AND (“receptors, androgen”[MeSH Terms] OR (“receptors”[All Fields] AND “andro-
gen”[All Fields]) OR “androgen receptors”[All Fields] OR (“androgen”[All Fields] AND
“receptors”[All Fields])) AND (“breast neoplasms”[MeSH Terms].

7. microRNA

miRNAs are small non-coding RNAs of about 18–25 nucleotides in length. Most of
these miRNAs bind to the 3′ untranslated regions of target mRNAs, thus regulating gene
expression at the post-transcriptional level and leading to mRNA cleavage, translational
suppression, or deadenylation [39–41]. In humans, it is estimated that almost a third of
mRNAs are controlled by miRNAs. In fact, this is a complex network of interactions where
one miRNA may bind to as much as 200 targets, and a single gene can be regulated by vari-
ous miRNAs [42,43]. Rarely does a miRNA activate mRNA translation and elevate target
protein levels [44]. The miRNA-mediated regulation of gene expression was highlighted
by a number of studies that revealed that miRNAs play a pivotal role in physiological and
pathological processes [45,46]. miRNA dysregulation is implicated in a number of diseases,
including cancer [46–51]. miRNAs are associated with cancers that are generally referred to
as either oncomiRs (which are highly expressed often and can promote tumor development
by the targeting of tumor suppressor genes) or tumor suppressive miRNA (which are often
downregulated and inhibit cancer by regulating oncogenes [52]). Some cancer-associated
miRNAs are known as context-dependent miRNAs. This is highly attributed to the fact that
they can act in a tissue-specific manner so that single miRNAs can have either oncogenic or
tumor suppressive roles in different cancers. Collectively, a surfeit of studies has reported
alterations in miRNA expression in different types of cancers. Of particular interest, some
miRNAs are related to cancer development, progression, and the response of the tumor to
therapy [53–55]. Moreover, miRNAs can be secreted into body fluids and are referred to as
circulating miRNAs [56]. They are highly stable and exist as free miRNA, or are released
in exosomes [57,58]. The underlying mechanism of the relationship between tissue and
circulating miRNA is not well known; yet, it seems that the extracellular miRNA levels
reflect deregulated signaling pathways in cancer cells [59]. Finally, these small molecules,
considered as one of the largest groups of gene regulators [60,61], are easily accessible,
sensitive, specific, and stable; furthermore, they accordingly have a great potential to be
considered as diagnostic, prognostic, and predictive biomarkers [46,49,62–64].

8. miRNA Implications in Breast Cancer

miRNA deregulation in BC was first reported in 2005 by Iorio, after which substantial
evidence in research has depicted deregulated miRNA expression to be involved in BC
initiation, progression, and metastasis [65–70]. Blenkiron et al., in 2007, analyzed the
miRNA expression in human BCs and demonstrated distinct miRNA signatures for the
different molecular BC subtypes [71,72]. The association of miRNA activity with BC biology
and its behavior was further supported by the proof that miRNAs are implicated in the
regulation of ER and HER2 [73]. Moreover, there is good evidence that miRNA expression
differs between primary and metastatic BCs [74,75]. This consequently led researchers
to consider miRNA signatures as potential biomarkers that would help to further the
understanding of BC subtypes, as well as help to predict metastasis or therapeutic resistance,
thus leading to prolonged patient survival [74,76,77].

The poor prognosis of TNBCs, as well as their aggressive behavior, frequent recur-
rence, and poor survival has provoked a great deal of studies, which investigated miRNA
signatures as a tool through which to identify patients with TNBC apart from other BC
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subtypes, or from healthy individuals [60,78,79]. The dysregulation of certain miRNAs
appears to also have a prognostic value in TNBCs [80]. Over the past few years, and
with the advancement in sequencing, several studies identified miRNA changes that were
associated with TNBC development and progression (detailed in Table 1).

Table 1. The dysregulated tissue and circulating miRNAs along with their various reported roles in
TNBC carcinogenesis and their response to treatment.

miRNA Status miRNA
Annotation Type Role Implications Reference

Upregulated

miR-10b Non-circulating oncomiR
-Promotes proliferation,

invasion, metastasis, and
angiogenesis

[49,68,81,82]

miR-181 Non-circulating oncomiR

-Repressed by ER
-Regulates the genes involved

in cell growth and
proliferation, including the

progesterone receptor gene (a
key player in estrogen

signaling)

[68,83,84]

miR-301 Non-circulating oncomiR

-Correlates with a poor
prognosis of TNBCs

-Promotes the development of
BCs

[85–87]

miR-629-3p Non-circulating oncomiR
-Serves as a biomarker and a

therapeutic target for lung
metastasis in TNBCs

[88]

miR-454 Non-circulating oncomiR
-Associated with a poor

prognosis and overall survival
in TNBPC patients

[89]

miR-301a Non-circulating oncomiR
-Correlated with a decreased

overall survival and poor
prognosis in TNBCs

[85,90]

miR-182-5p Non-circulating oncomiR

-Promotes the proliferation
and invasion of TNBCs
-Associated with DNA

damage repair
-Correlated with cell

proliferation and apoptosis

[91,92]

miR-96-5p Non-circulating oncomiR -Plays an important role in
proliferation [93]

miR-135b Non-circulating oncomiR/
Suppressor

-Controls proliferation and
invasion

-Contributes to tumor
development and progression
-Worse survival in ER patients

[94–96]

miR-138 Non-circulating oncomiR
-Poor prognosis

-Supports cell survival in
cultures

[97]

miR-20a-5p Non- circulating oncomiR -Enhances metastasis
-Implicated in apoptosis [98,99]

miR-455-3p Non- circulating oncomiR -Improves metastasis
-Increases proliferation [100]
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Table 1. Cont.

miRNA Status miRNA
Annotation Type Role Implications Reference

Upregulated

miR146b-5p Non-circulating oncomiR -Increases proliferation [101]

miR-324-5p Non-circulating oncomiR -Implicated in apoptosis [98]

miR-939 Non-circulating oncomiR -Contributes to metastatic
processes [102]

miR-362-5p Non-circulating oncomiR
-Facilitates proliferation and

chemoresistance
-Short overall survival

[103,104]

miR-493 Non-circulating Suppressor
-Better survival

-Suppresses the invasiveness
and tumorigenicity of BC cells

[105,106]

miR-638 Non-circulating Suppressor -Better survival [107]

miR-146a Non-circulating Suppressor -Better survival [107]

miR-182-3p Non-circulating Suppressor

-Reduces cell growth and
activates apoptosis

-Induces tumor inhibition in
TNBCs

[108]

miR-30 Non-circulating Suppressor

-Activates p53
-Associated with good

prognosis
-miR-30c serves as an

independent predictor in the
clinical therapy of ER+ BC

-Reduces cell proliferation and
invasion in TNBCs

[68,109–112]

miR-518a-3p Non-circulating Suppressor
-Inhibits cell migration and

invasion
-Better overall survival

[113]

miR-522 Non-circulating oncomiR

-Implicated in proliferation,
invasion, and migration

-High incidence of lymph
node metastasis

-Poor overall survival

[114]

miR-934 Non-circulating oncomiR Cell proliferation [115,116]

miR-93-5p Circulating oncomiR

-Promotes chemoresistance
-Acts as a diagnostic
biomarker in TNBCs

-Involved in TNBC metastasis
and progression

-Poor overall survival

[117–119]

miR-105 Circulating oncomiR

-Promotes metastasis,
stemness, and

chemoresistance
-Poor overall survival

[118,120]

miR-19a Circulating oncomiR
-Regulates anti-tumor

immunity
-Poor overall survival

[117,121]



Biomedicines 2023, 11, 2300 8 of 30

Table 1. Cont.

miRNA Status miRNA
Annotation Type Role Implications Reference

Upregulated

miR-19b Circulating oncomiR -Promotes cell proliferation
-Poor overall survival [117,122]

miR-22 Circulating oncomiR
-Involved in cancer drug

resistance
-Promotes EMT

[117,123–125]

miR-25-3p Circulating and
non-circulating oncomiR

-Implicated in the inhibition
of apoptosis

-Promotes TNBC cell
proliferation

[117,126]

miR-210 Circulating and
non-circulating oncomiR

-Involved in microtubule
regulation, drug efflux

metabolism, and the oxidative
stress response

-Involved in cell proliferation,
migration, and invasion

-Associated with poor clinical
outcomes in ER+ BC

-Modulates the immune
response

[68,117,127–129]

miR-21 Circulating and
non-circulating oncomiR

-Promotes metastasis and
proliferation

-A marker of aggressiveness
-Potentially prognostic in

TNBC tumor stromata

[68,109,130–138]

miR-19 Circulating and
non-circulating oncomiR

-Promotes EMT, migration,
and invasion

-Potential candidate for the
diagnosis of BC when using

blood samples

[139,140]

miR-182 Circulating and
non-circulating oncomiR

-Targets the FOXO3
transcription factor expression

-Promotes the macrophage
activation that initiates cancer

development

[141,142]

miR-24 Circulating and
non-circulating oncomiR

-Predictor of BC relapse
-Induces chemotherapy

resistance
-Regulates the proliferation

and invasion of BC

[68,84,143–145]

miR-503-3p Circulating and
non-circulating oncomiR -Promotes EMT [146]

miR-92 Circulating and
non-circulating oncomiR -Enhances proliferation and

migration [147,148]

miR-221/222 Circulating and
non-circulating

oncomiR/
Suppressor

-Promotes EMT
-Restores the expression of ER [68,149–152]
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Table 1. Cont.

miRNA Status miRNA
Annotation Type Role Implications Reference

Upregulated

miR-155 Circulating and
non-circulating

oncomiR/
Suppressor

-Cancer progression
-Inversely correlated with the

EMT in TNBCs
-Associated with better clinical

outcome in TNBCs
-Enhances the antitumor

immune response
-Reverses paclitaxel resistance

-A predictor of BC relapse

[53,68,109,153–155]

miR-27b-3p Circulating and
non-circulating

oncomiR/
Suppressor

-A predictor of poor prognosis
in invasive ductal TNBCs

-Promotes tumor progression
by inhibiting the peroxisome

proliferator-activated receptor
gamma in TNBCs

[156,157]

miR-29a Circulating and
non-circulating

oncomiR/
Suppressor

-Promotes EMT, migration,
and invasion by

downregulating histone
H4K20 trimethylation in

TNBCs and ER+ cell lines
-Decreases invasive BC cell

proliferation, migration, and
invasion in invasive breast

cancers

[68,136,158,159]

miR-200 family Circulating and
non-circulating

oncomiR/
Suppressor

-Promotes metastasis
-Promotes EMT in aggressive

cancers
-Inhibits the growth and
metastasis of claudin-low

mammary cancers (TNBCs)

[160–163]

miR-107 Circulating and
non-circulating

oncomiR/
Suppressor

-Inhibits proliferation and
migration

-Associated with cell cycles,
migration, invasion,

revascularization, prognosis,
and chemosensitivity

-Improves overall survival

[98,164–166]

miR-9 Circulating and
non-circulating

oncomiR/
Suppressor

-Associated with poor
disease-free survival and

distant-free survival
-Enhances cell motility

invasion and angiogenesis
-Inhibits cell proliferation

[49,68,155,167,168]

Downregulated miR-29c Non-circulating Suppressor

-Correlated with poor overall
survival

-Its loss is associated with the
early development of TNBCs

[169]
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Table 1. Cont.

miRNA Status miRNA
Annotation Type Role Implications Reference

miR-17-5p Non-circulating Suppressor -Prognostic factor for TNBCs [170]

miR-148a Non-circulating Suppressor

-Suppresses metastasis
in vitro by reducing

extravasation
-Poor prognosis in basal and

luminal B subtypes

[171]

miR-126-5p Non-circulating Suppressor -Impedes the metastasis of
non-small cell lungs [172]

miR-1976 Non-circulating Suppressor -Bad overall survival
-Promotes EMT [173]

miR-190a Non-circulating Suppressor

-Suppresses metastasis and
angiogenesis

-Correlated with a better
overall survival

[96,174,175]

miR-139-5p Non-circulating oncomiR -Implicated in metastasis and
chemoresistance [176]

miR-136-5p Non-circulating oncomiR -Suppresses tumor invasion
and metastasis [96,177]

miR-770-5p Non-circulating oncomiR -Implicated in
chemoresistance [178]

miR-4306 Non-circulating oncomiR

-Lymph node metastasis
-Poor survival

-Promotes TNBC cell
proliferation

-Invasion and migration

[179]

miR-196a-3p Non-circulating oncomiR
-Associated with lymph node

metastasis
-Pathological differentiation

[180]

miR486-5p Non-circulating oncomiR -Implicated in metastasis and
chemoresistance [181–183]

miR-185 Non-circulating Suppressor -Inhibits TNBC cell
proliferation [184]

miR-34 Non-circulating Suppressor

-Induces apoptosis, cell cycle
arrest, or senescence

-Regulates cell growth,
migration, invasion,

angiogenesis, as well as
epigenetic silencing and

methylation
-Promotes EMT

[49,68,109,185–188]

miR-127 Non-circulating Suppressor

-Suppresses proliferation,
migration, and invasion

-Sensitizes TNBC cells to
chemotherapy

[189]
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Table 1. Cont.

miRNA Status miRNA
Annotation Type Role Implications Reference

miR-93 Non-circulating Suppressor

-Suppresses tumor
development

-Enhances chemosensitivity
-Mediates immunoregulation

in BCs

[68,190–192]

miR-124 Non-circulating Suppressor -Suppresses bone metastasis
by repressing Interleukin-11 [193]

miR-126 Non-circulating Suppressor

-Associated with decreased
cell proliferation

-Targets the VEGF in MCF-7
cells

-Inhibits the migration,
invasion, and angiogenesis of

TNBCs

[68,194–197]

miR-133 Non-circulating Suppressor -Inhibits the growth of TNBCs [198]

miR-15/16 Non-circulating Suppressor
-Inhibits cell proliferation in

TNBCs
-Controls angiogenesis

[199,200]

miR-329 Non-circulating Suppressor -Correlates with metastasis [201]

miR-29a Non-circulating Suppressor -Serves as a biomarker for BC
diagnosis [202]

miR-4458 Non-circulating Suppressor -Regulates proliferation and
apoptosis [203]

miR-4417 Non-circulating Suppressor -Prognostic biomarker for
TNBCs [204]

miR-206 Non-circulating oncomiR/
Suppressor

-Promotes cancer progression
in TNBCs and HER2+ BC by

targeting neurokinin-1
receptor

-Inhibits stemness and
metastasis by targeting the

MKL1/IL11 pathway
-Suppresses EMT by targeting
the TGF-β pathway in ER+ BC

[68,109,205–207]

miR-31 Non-circulating oncomiR/
Suppressor

-Correlated with poor
prognosis [208]

miR-2117 Non- circulating oncomiR -Poor survival
-Large tumor size [116]

miR-519c-3p Non-circulating oncomiR -Associated with a large
tumor size [116]

miR-873-5p Non-circulating Suppressor -Promotes tumor
development and metastasis [209]

miR-133 Non-circulating oncomiR -Induces proliferation and
colony formation [198]

miR-585 Non-circulating oncomiR

-Promotes cell proliferation,
migration, and invasion

-Significantly associated with
poor prognosis

[210]
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Table 1. Cont.

miRNA Status miRNA
Annotation Type Role Implications Reference

miR-367 Circulating Suppressor -Regulates metastasis [211]

miR-494-3p Circulating oncomiR -Implicated in immune
system response [212]

miR-342 Circulating Suppressor -Biomarker for TNBCs [168]

miR-205 Circulating oncomiR/
Suppressor

-Targets AR
-A predictive marker of lymph
node metastasis in luminal B-

HER2+BC subtypes
-miR-205-5p inhibits the

proliferation and
chemoresistance in TNBCs by
targeting the HOXD9-Snail-1

axis
-Expression decreases from

less aggressive to more
aggressive TNBCs

-Inhibits proliferation and
induces the EMT in TNBCs

[213–216]

miR-199a Circulating oncomiR -Affects chemosensitivity [117,120]

miR-195 Circulating and
non-circulating Suppressor

-Inhibits cell proliferation,
glycolysis, and overall

survival in ER+ BC
-Differentiates metastatic BCs

from the local luminal

[217,218]

miR-205 Non-circulating oncomiR

-Inversely associated with the
tumor stage and distal
metastasis of TNBCs

-Poor prognosis

[219]

Let-7 family Circulating and
non-circulating Suppressor

-Suppresses invasion and
migration

-Regulates cancer stem cell
properties (self-renewal,
de-differentiation, and

therapy resistance)

[117,220–222]

miR-145 Circulating and
non-circulating Suppressor

-Suppresses metastasis and
angiogenesis

-Inhibits BC progression by
inhibiting SOX2

-Diagnostic biomarker
-Inhibits apoptosis by

targeting cIAP1 (the cellular
inhibitor of apoptosis)

[223–226]

miR-335 Circulating and
non-circulating Suppressor

-Suppresses the immune
escape in TNBCs

-Enhances sensitivity to
treatment and chemotherapy

[202,227–229]
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Table 1. Cont.

miRNA Status miRNA
Annotation Type Role Implications Reference

miR-128 Circulating and
non-circulating Suppressor

-Suppresses metastasis by
targeting metadherin
-Regulates glucose

metabolism and proliferation
in TNBCs

[230,231]

miR-365 Circulating and
non-circulating Suppressor -Anti-proliferative role

-Controls invasion [95,232]

miR-503 Circulating and
non-circulating

oncomiR/
Suppressor

-Enhances metastasis in
metastatic BCs by activating

the TGF-β pathway
-Suppresses metastasis in ER+

BC cells
-Inhibits proliferation by
suppressing the CCND1

expression in BCs
-Loss of miR-503 leads to

chemoresistance

[233–236]

Indeed, both tissue and circulating miRNAs are deregulated in TNBCs and are im-
plicated with the various pathophysiological processes of initiation, development, and
the progression of tumors, which may have the potential to help in the discovery of new
diagnostic, prognostic, and therapeutic strategies.

In an effort to better understand how these miRNAs are having such an impact on
TNBC carcinogenesis, we executed in-silico analysis to determine which pathways these
miRNAs are regulating. First of all, we had to identify the predominant miRNAs in cases
where they were not reported in the literature as 3p or 5p. This was conducted through the
MiRBase Converter, which is embedded in the online miRNA Enrichment and Annotation
Analaysis (miEAA) tools. We also checked the miRNA annotations through using the
miRbase. After which, an over-representation analysis was performed for the dysregulated
miRNAs by using (miEAA), as well as by selecting the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways database as a reference. Then, we manually filtered the
results to include pathways that are solely associated to BC initiation, progression, and
response to therapy. Also, only the significantly deregulated pathways were accounted for,
whereby significance was determined based on there being a minimum of two miRNAs
present in a pathway and those which had an adjusted p-value < 0.05 (Figure 2). Afterward,
we identified the pathways that were found to be deregulated by a common set of more
than 20 miRNAs (Figure 3). Out of the fifty-eight identified miRNA, twenty-one miRNA
(hsa-miR-34a-5p; hsa-miR-93-5p; hsa-miR-124-3p; hsa-miR-15a-5p; hsa-miR-15b-5p; hsa-
miR-16-5p; hsa-miR-195-5p; hsa-miR-145-5p; hsa-let-7e-5p; hsa-let-7b-5p; hsa-miR-301b-3p;
hsa-miR-301a-3p; hsa-miR-30a-5p; hsa-miR-30c-5p; hsa-miR-9-5p; hsa-miR-210-3p; hsa-
miR-19a-3p; hsa-miR-24-3p; hsa-miR-92a-3p; hsa-miR-222-3p; and hsa-miR-155-5p) were
implicated in all of the pathways that are presented in Figure 3.
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Figure 2. Bar plot depicting the significantly dysregulated pathways for all the dysregulated miRNAs
in TNBCs, and adjusted for the decreasing p-values.
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Figure 3. Bar plot depicting the significantly dysregulated pathways common to more than 20 miR-
NAs, and adjusted for the decreasing p-values.

Our analysis reflects the complexity of miRNA interactions in TNBC carcinogenesis,
i.e., where the existence of a set of signaling pathways that are reported to be implicated
in TNBC hostility is indicated. Indeed, Javier Martinez et al. described epigenetic modi-
fications as pivotal in TNBC development, as they appear to impact both oncogenes and
tumor suppressor factors, which influence various molecular pathways such as WNT/β-
catenin, MAPK, and PI3K-mTOR [237]. Another implication of WNT/β-catenin alongside
JAK/STAT is that they regulate BC stem cell survival and thus raise the risk of TNBC
relapse [238]. TNBCs’ genomic instability, metabolic plasticity, and mutation in genes
(including p53 and MAPK influence signaling pathways) are associated with the immune
response [239]. Also, several studies have described deregulated lipid metabolism as a
contributor in cancer cell survival, and these studies also further showed that it was me-
diated by PPAR-α signaling pathway [240]. A major glitch in the treatment of TNBCs is
reportedly chemoresistance. It is suggested that the EGFR-K-RAS-SIAH pathway activation
is a major tumor driver in chemoresistant TNBC patients [241]; another pathway that is
being investigated is cAMP and its anti-proliferative role [242]. Also, oxidative phospho-
rylation (OXPHOS) is associated with several cancers; however, TNBC patients with a
higher expression of OXPHOS have been reported to have the worst outcome [243]. In
addition, checkpoint inhibitor therapy holds promise, especially in the context of metastatic
TNBCs where programmed death ligand 1 (PD-L1) and PD-1 pathways are being targeted
by inhibitors in combination with other adopted treatments to try to alleviate patient
response [244]. Finally, it is interesting to note that the ferroptosis pathway is largely
represented. This type of cell death is increasingly studied in the context of cancer [245] in
line with non-coding RNAs [246], as well as recently—in particular—in the ER−/AR+ BC
subtype [247].

The predicted pathways in Figure 3 are not novel in terms of TNBC; yet, those path-
ways have also not been studied in terms of miRNA interaction. This sheds light on the
importance of investigating the panels of miRNAs in the context of studying carcinogenesis
pathways.
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9. miRNA-Implications in AR+ Tumors

Recent investigations highlighted that AR expression may be regulated by a variety
of miRNAs either directly or indirectly by affecting the expression of co-activators or co-
repressors. The latter would shape the AR functions [248–251]. AR is a nuclear receptor
made up of a single gene that is located on the X-chromosome [252–254]. Androgens are
usually depicted as male hormones, yet they were found to also play important biological
roles in female development and physiology [255]. Dehydroepiandrosterone sulphate
(DHEAS), dehydroepiandrosterone (DHEA), androstenedione (A4), testosterone, and di-
hydrotestosterone (DHT) are kinds of androgenic hormones that are present in the blood
stream [256].

First of all, a correlation between AR expression and miRNA is particularly depicted
in prostate cancer (PC) [257,258]. This interaction was found to be associated with tumor
initiation and development in PC. The androgen regulation of miRNAs was examined by
Waltering et al. in 2011, where DHT was found to positively regulate 17 miRNAs, out of
which only 4 (miR-10a, miR-141, miR-150, and miR-1225-5p) exhibited similar androgen
regulation in both in vitro and in vivo studies [259]. AR activation in PC patients reduces
miR-190a expression, thus enhancing tumor-free survival [250].

By contrast, the impact of AR in BC tumorigenesis remains controversial, for it was
reported that women with increased levels of androgens have increased risk of BC, while it
was also reported that AR expression is a favorable BC prognostic indicator (but it has to
be noticed that this is mainly true in ER+ contexts [260–262]). The imbalance of miRNA
levels in AR+ BC cells compared to AR− BC cells implies that miRNA has a crucial role
in the function of AR in BCs [263]. However, studies on the miRNA–AR interactions in
BCs are limited [257,258]. Some data indicate that miR-21, an oncomiR, is upregulated in
hormone-dependent neoplasms including PC and BCs [264,265], and this is reported to
reduce BC cell proliferation [130]. Interestingly, AR was found to repress the transcription
of miR-21 expression [266]. This suggests that more has to be evaluated in this context.

Nevertheless, some studies have focused on BCs, especially ER− ones. Shi et al. per-
formed miRNA expression profiling in ER−/AR+ BC and revealed a total of 153 differen-
tially expressed miRNAs in AR+ compared to AR− BC. The most significantly upregulated
miRNAs were miR-933 and miR-5793, and the most downregulated was miR-4792 [263].
miR-221 and 222 that are upregulated in BC and PC are considered as oncogenes where
they promote proliferation. Of interest are the miRs that are repressed by AR [130]. An-
other miRNA that plays an essential role in ER−/AR+ cells is miR-30b, which has been
reported to inhibit cell growth [267]. miR-9-5p has an inverse relationship with AR in
BCs where it exerts an anti-proliferative role [268]. miR-328-3p suppression by DHT in
MDA-MB-231, suppressed CD44 expression and consequently cell adhesion. Conversely,
an opposite effect was obtained upon transfection with an AR antagonist, whereby the idea
that miRNAs regulate BCs was emphasized [269]. miR-190a was previously reported to
be implicated in BC metastasis [270]. miR-135b, a direct regulator of AR in PC cells, was
shown to have a lower expression in ER+ breast tumors when compared to ER−, as well as
a higher expression in AR-low BC patient samples. It also reduces proliferation in AR+ PC
cells [260]. A study conducted by Guo et al. depicted that miR-520g-3p and miR-520h are
both downregulated, and that they have a significant potential in AR+ TNBC diagnosis
and prognosis [271]. miR-3163 that is downregulated in AR+ ER− tumors was found to
have good prognostic value [272].

MABC/LARs, i.e., the scope of this review, are characterized by AR overexpression
and hyperactivation. Little is known about the miRNAs associated with this subtype. This
subtype has been investigated, in vitro, via BC cell lines, in which AR expression was
shown to promote their growth [273]. Of interest, in the MDA-MB-453 cell line, is an MABC
model, whereby the miRNA expression that was investigated by Lyu et al. in 2014 was
found to reveal four upregulated miRNAs (let-7a, let-7b, let7-c, and let7-d), where let-7a
decreased cell proliferation, invasion, and migration, as well as self-renewal capacities
when treating cells with DHT. In addition, this process showed a better outcome in patients
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with invasive BCs [274,275]. AR activity is repressed indirectly by miR-let-7c [276]. Another
study investigated the role of miR-30a in MDA-MB-453, after DHT treatment, and revealed
that the stimulation of AR expression inhibits miR-30a and consequently suppresses cell
growth [277]. In response to AR agonists, the miR-100 and miR-125 expression was
significantly reduced in MDA-MB-453 BC cells, consequently leading to the increased
expression of miR-100 and miR-125 target metalloprotease-13 (MMP13) [278].

A summary of the miRNAs implicated in AR+ BC and PC is summarized in Table 2.

Table 2. Dysregulated tissue and the circulating miRNAs along with their various reported roles in
AR+ BC and PC carcinogenesis, as well as their response to treatment.

Cancer Type miRNA Status miRNA
Annotation Type Role

Implications of
miRNA–AR
Interaction

References

Breast cancer

Upregulated

miR-100 Non-circulating Suppressor -Extracellular
release of MMP-13 [278,279]

miR-125 Non-circulating Suppressor -Extracellular
release of MMP-13 [278]

miR-205 Non-circulating oncomiR -Metastasis [213]

miR-204 Non-circulating Suppressor -Promotes EMT [280]

miR-363 Non-circulating oncomiR/
Suppressor

-AR induces
miR-363 expression [281]

miR-let-7a Non-circulating Suppressor

-Tumor
suppression, and

AR induces a
negative correlation

between the
expression of

miR-let-7a and its
target oncogenes of
CMYC and KRAS

[274,275]

miR-328-3p Non-circulating oncomiR
-Partially mediates
the AR regulation

of BCs
[269]

Downregulated

miR-30a Non-circulating Suppressor

-Positive feedback
mechanism

-Suppresses cell
growth

[282]

miR-3163 Non-circulating Suppressor -Good prognostic
role [272]

miR-520g-3p and
miR-520h Non-circulating oncomiR -Prognostic and

diagnostic markers [278]

Differentially
expressed

153 differentially
expressed miRNAs
in AR+ vs. AR− BC
cell lines (miR-143,

-4792,-145, -31, -30c,
-30b-3p, 199a, and

-181 downregulated
in AR+ cells, while
miR-933 and -5793

upregulated)

Non-circulating oncomiR/
Suppressor

-The AR-mediated
regulation of BCs is

promoted by
miRNAs

[263]
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Table 2. Cont.

Cancer Type miRNA Status miRNA
Annotation Type Role

Implications of
miRNA–AR
Interaction

References

Prostate
cancer

Upregulated

miR-17-92a Non-circulating oncomiR
-AR upregulates the

expression of the
miR-17-92a cluster

[281]

miR-221/222 Non-circulating oncomiR -AR represses these
miRNAs [236]

miR-190a Non-circulating oncomiR

-Contributes to
tumor growth

-Prognostic
biomarker

[270]

Downregulated miR-760 Non-circulating Suppressor

-AR downregulates
miR-760, thus
promoting PC

growth

[283]

miR-1205 Non-circulating Suppressor -Tumor suppressor [284]

Differentially
expressed

miR-25 and miR-92b
(downregulated)

miR-3195, miR-3687,
and miR-4417
(upregulated)

Non-circulating oncomiR/
Suppressor

-AR upregulates the
expression of these

miRNAs
[285]

miR-210-3p, miR-23c,
miR-592, and

miR-93-5

Circulating and
non-circulating

oncomiR/
Suppressor

-Diagnostic
biomarker [286]

10. Challenges

Despite the fact that BC is a highly investigated research topic, and that miRNAs
can serve as a biomarker for BCs, the reports on MABC are not frequent, and—in most
cases—not clear. MABC is often described as under TN in the literature but also as an
ER− subtype with AR overexpression, yet the mention of the name itself is not stated.
This also has an impact on the search for miRNA-MABC reports. Another obstacle with
most of the miRNAs reported in the literature is the lack of full miRNA annotation. This
requires the use of in silico programs to predict the isoforms of miRNAs, and these might
not always end up in providing the isoform investigated in the literature. Moreover,
miRNAs’ specificity is often questioned, since in many cases the data are unreproducible
in different datasets. This could be explained by ethnic differences, age groups, or the
standardization of miRNA quantification assays in all studies. In addition to this, pathway
analysis is mostly dependent on algorithms and predictions. It is worthwhile to note that
all the predicted actors need to be experimentally validated before clinical utility; however,
this kind of analysis could be highly valuable for new hypotheses, and could promote
further pathway explorations that could help with deciphering these poorly understood
BCs. Furthermore, this inventory could be a starting point through which to develop new
approaches for MABC/LAR BC subtypes by including the miRNA network in the picture.

11. Conclusions

Differential gene expression, epigenetic modification, IHC along with other current
techniques in BC classification have revealed the huge heterogeneity of this disease. There-
fore, understanding the different subtypes of BCs may benefit its diagnosis, prognosis,
and therapeutics. This is essential in understanding poorly diagnosed and misclassified
subtypes such as MABC/LARs, as well as the consequent impact on the health manage-
ment of its corresponding patients. miRNAs are reported to be deregulated in various
cancers, specifically in BC and in different BC subtypes (including ER−/AR+ ones). Hence,
miRNAs are a highly stable and easily detectable molecule, and they may assist in a bet-
ter understanding of MABC carcinogenesis. Thus, the verification of miRNA panels in
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MABC patients might create a distinctive definition of this subtype, and could depict an
improved understanding of the signal networks driving the biology of MABCs. In addition
to this, there is piling evidence of miRNA–AR interactions in development, as well as the
progression of cancer that might elucidate on MABC initiation and progression. Moreover,
specific miRNAs might actually serve as diagnostic or prognostic biomarkers, but more
research needs to be conducted to verify the potential clinical application of these findings.
Therefore, the search for ideal biomarkers necessitates the standardization of panels in
different groups, and this is subject to continuous updates that are based on advances
in research and molecular technology. In this context, exploring the state-of-the-art de-
velopments of miRNAs in the MABC/LAR subtype, and attempting to extract the main
miRNAs of interest could shed light on this other level of complexity, as well as help to
generate new hypotheses from new angles for approaching this BC subtype that is still
poorly understood.
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