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Abstract: Objective. To identify DNA methylation patterns of heavy smokers in oral rinse samples.
Methods. Genome-wide DNA methylation data was imported from Gene Expression Omnibus
GSE70977 using the GEOquery package. Two independent sets were analyzed: (a) 71 epigenomes of
cancer-free subjects (heavy smokers n = 37 vs. non-smokers n = 31); for concordance assessment (b)
139 oral-cancer patients’ epigenomes (heavy smokers n = 92 vs. non-smokers n = 47). Differential DNA
methylation for CpG positions and at the regional level was determined using Limma and DMRcate
Bioconductor packages. The linear model included sex, age, and alcohol consumption. The statistical
threshold was set to p < 0.05. Functional gene prioritization analysis was performed for gene-targeted
analysis. Results. In individuals without cancer and heavy smokers, the FAM184B gene was found
with two CpG positions differentially hypermethylated (p = 0.012 after FDR adjustment), in a region
of 48 bp with an absolute methylation difference >10% between groups (p = 1.76 × 10−8). In the
analysis corresponding to oral-cancer patients, we found AHRR differentially hypomethylated cancer
patients, but also in subjects without oral cancer in the targeted analyses. Remarkably, ADAMTS2
was found differentially hypermethylated in heavy smokers without a diagnosis of cancer in two
consecutive probes cg05575921 (p = 3.13 × 10−7) and cg10208897 (p = 1.36 × 10−5). Conclusions:
Differentially methylated AHRR, ADAMTS2, and FAM184B genes are biomarker candidates in oral
rinse samples.
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1. Introduction

Tobacco smoke is one of the biggest risk factors for the disease of the oral mucosa
caused by different mechanisms, including the induction of an increased number of Langer-
hans cells and greater induction of aldo-keto reductases, enzymes linked to genotoxicity [1].
In vitro studies report some regulatory dose-dependent changes in genes as CYP1A1,
CYP1B1, and AHRR at the transcriptional level [2].

Tobacco smoke has been related to different oral diseases, such as periodontal disease,
and some potentially malignant disorders, such as actinic cheilitis, nicotine stomatitis, and
oral cancer. Different studies around the world related smoking and oral cancer, with an
odds ratio (OR) of 6.19 (95% CI: 3.83–10.00) in Italy [3], 5.45 (95% CI: 2.74–10.85) in Brazil [3],
and 14.64 (95% CI: 10.2–21.1) in India [4].

The pack-year index measures smoking intensity defined as the number of packs of
cigarettes smoked per day multiplied by the number of years the person has smoked [5].
In heavy smokers, a high pack-year index increases cancer risk and associated mortality
compared to non-smokers and heavy non-smokers [6,7]. Additionally, heavy smokers
have a worse response to oral cancer treatment [8]. Smoking is known to affect the oral
microbiome, with high levels of Gram-negative organism colonization in the tongue, a
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site with high rates of malignant transformation. Smoking is also the strongest factor
in increasing microbial acetaldehyde production and reducing total salivary antioxidant
capacity [9,10].

In this context, some risk factors can favor tumor promoter gene expression or in-
hibit the antitumor immune response, modifying DNA methylation at specific CpG sites
in determined loci. If these specific loci are identified in risk factors, such as smoking,
screening strategies with specific biomarkers could be established. The ultimate goal of
discovering specific biomarkers is to facilitate early diagnosis, risk identification, targeted
prevention, the follow-up of proposed treatments, and prognosis to reduce morbidity and
mortality [11–14]. While some studies have been conducted to elucidate the carcinogenic
effects of tobacco smoke on the bronchial epithelium and other diseases, the epigenetic pro-
file of buccal cells [15] or DNA methylation differences in cancer [16], the epigenetic effect
underlying environmental risk factors remains poorly understood. Accessible biomarkers
of heavy smoking in oral tissue demand more research. Interestingly, a study in oral and
pharyngeal cancer made epigenome data from 223 oral rinse samples available with the
code GSE70977 in the Gene Expression Omnibus repository [16]. These data have been
exclusively used to study patients with oral cancer, without determining the differential
methylation patterns in oral rinse samples from cancer-free or cancer-diagnosed smokers
compared to nonsmokers or studying differentially methylated genomic patterns at the
regional level. The use of data from public repositories enables analyses that answer rele-
vant questions while rationalizing resources [17] and contribute to understanding harmful
phenotypic effects and to the progress of personalized medicine as a future guideline in the
staging, management, prevention, and subclassification of the different neoplasms of the
stomatognathic system [18]. Therefore, secondary bioinformatic analyses using available
datasets, performing a functional genetic prioritization analysis guided by the results of
positional and regional differential methylation analyses, could help to elucidate the clinical
differences in oral mucosa diseases related to smoking.

The main objective of this work was to evaluate the buccal rinse cell genome-wide
DNA methylation signature in heavy smokers using available Illumina DNA methylation
450 K BeadChip data from oral rinse-derived DNA. A secondary objective was to direct the
evaluation of DNA methylation in heavy smokers, restricting the analysis to oral cancer-
related genes selected by a gene prioritization bioinformatic approach. Therefore, this
work is proposed as a secondary bioinformatic analysis, relevant to oral epigenetics and
dentistry, to study the epigenome of smoking habits on the Illumina HumanMethylation450
BeadChip platform by identifying differentially methylated genomic sites and regions and
addressing the knowledge gap about epigenetic patterns in cells collected from oral rinse
in patients with a smoking habit, which are relevant in multiple oral diseases [19,20].

2. Materials and Methods
2.1. Available Data (Population)

We evaluated available data from 223 DNA methylation epigenomes assessed by
the Infinium Illumina 450 K platform corresponding to buccal rinse cells primarily used
in a cancer study with different aims and analyses [21]. Data were imported from the
public dataset GSE70977, freely available in the Gene Expression Omnibus for secondary
analyses [22].

The accessible population corresponded to 223 epigenomic profiles from buccal rinses
collected at different hospitals in Boston, MA, USA [21]. Seventy-four patients were
nonsmokers, and 149 patients were heavy smokers. The present study aimed to compare
the DNA methylation profiles of heavy smokers in separate subsets (with or without
cancer). However, a supplementary analysis including both subsets may be provided on
reasonable request.

For each subset of the genome datasets, with and without a cancer diagnosis, we
performed a separate analysis to compare heavy smokers with the respective control
group [23]. For each subset, the corresponding heavy smoker group included individuals
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with a pack-year smoking history index >10, e.g., one daily cigarette pack for 10 years
(1 × 10) or half daily cigarette pack for 20 years (0.5 × 20) [5]; for each control group,
the epigenomic profiles from subjects with a pack-year smoking index less than 1 were
selected. Considering the objective of the present study, all analyses were performed in a
stratified form for each subset, avoiding mixing patients of different cancer statuses. The
data subset of noncancer subjects had 71 epigenomes. The data subset of cancer subjects
diagnosed with head and neck cancer had 152 epigenomes. We evaluated for inclusion
all the data available in dataset GSE70977. Therefore, no sample size calculation was
performed; however, adequate power was found in the Results section.

2.2. Data Importation, Cleansing, and Quality Control

DNA methylation, clinical and demographic data were imported from the GSE70977
dataset using the GEOquery R Bioconductor package [24] for the corresponding statistical
and bioinformatics analyses. The dataset content consistency was manually visualized
and cross-checked through verification data importation/verification R scripts for both
the phenotypic and epigenetic data. Quality control processes were performed, including
the corresponding fluorescence detection validation. Only data with a detection p value of
less than 0.0000001 compared to the background signal passed this QC step. As a result,
both samples and probes with more than 2% were excluded. In addition, QC included
bimodal pattern density plot verification of beta values through the minfi package. For
this purpose, we used the beta values normalized via the preprocess Funnorm of the minfi
package available in the GEO dataset [25].

2.3. Statistical and Bioinformatic Analyses

This study used R Bioconductor, a statistical and bioinformatics platform to favor the
reproducibility of bioinformatic analyses, based on an open-source policy, which allowed the
design of scripts for all relevant analyses [26]. The statistical analysis was performed using
the Limma package to compare differential methylation positions (DMPs) and differentially
methylated regions (DMRs) in heavy smokers and nonsmokers as described below.

2.4. Genome-Wide Differential Methylation Positions Analysis for Heavy Smokers

Genome-wide DNA methylation was analyzed at the CpG position level to detect
differentially methylated positions (DMPs) by modeling the study variable (heavy smokers
or controls) and covariables, i.e., age, sex, and alcohol consumption, using robust methods.
The delta of the beta filter for DMP was set at 0.09. The statistical significance threshold
after FDR correction applied to genome-wide analysis was set at p < 0.05. Subsequently,
gene assignment to identified DMPs was performed, considering a 2 kb distance from each
probe to the nearby transcription start site (TSS associated with the gene), as previously
used elsewhere [27,28].

2.5. Genome-Wide Differentially Methylated Regions Analysis for Heavy Smokers

In addition, we performed a differentially methylated region (DMR) analysis using
the DMRcate package based on the Limma package [29] with code built in-house. We
previously used to add a ‘delta of beta’ filter set to >6% [28].

2.6. Gene Prioritization for Analysis Focused on Specific Genes

Endeavour Bioinformatics tools facilitate the identification of promising candidate
genes related to a condition or disease, based on training genes previously identified as
associated with a condition or disease and curated annotations bioinformatic datasets (e.g.,
‘Gene Ontology’, ‘InterPro’, ‘Biomolecular pathways’ such as ’Reactome’ gene interaction
and protein interaction networks, e.g., ‘BioGrid’, and ’IntAct’, between others. The list of
bets candidates is determined by their connections with the training genes [28,30]. This
strategy allows complementation of the initial result using a list of genes in a directed
analysis, as has been performed in previous studies [31]. Here, we used a combination of a
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results-driven approach, and a direct evaluation of candidate genes was performed using a
prioritization analysis through the Endeavour Bioinformatic tool [28,30].

2.7. Endeavour Parameters Were Set As Follows:

(a) Input 1 (list of training): genes identified in the nondirected analysis (AHRR, ADAMTS2,
FAM184B) and with an OMIM assignation for “Orolaryngeal cancer” (CDKN2A).

(b) Input 2 (list of candidates): genes evaluated/annotated by Infinium Illumina DNA
Methylation 450 K.

(c) For the gene prioritization analysis, the statistical threshold for identification was
p < 0.01; otherwise, the settings in Endeavour were set to default [32].

2.8. Analyses of Differentially Methylated Positions (DMPs) and Regions (DMRs) of Specific Loci

The DMP and DMR analyses were performed only for the genes identified in the
gene prioritization analysis using the same procedure as the untargeted analysis. The
prerequisites for DMPs in this targeted analysis were a limit of significance p value < 0.005
and a minimum DNA methylation difference between groups of 6%.

2.9. Effect of Cell Composition Sensitivity Analysis

To address a potential confounding factor due to cell composition, we used a recently
available data [33], considering cell composition heterogeneity as a confounding variable
in a sensitivity analysis using the estimateLC function from ewastools r-package in con-
junction with BeadSorted.Saliva.EPIC Bioconductor package [34]. The results of these cell
estimations of leucocytes vs. epithelial cells were included in the final model using Limma
Bioconductor Package with the same parameters described above.

3. Results

Of the 71 available noncancer methylomes, 68 were included for analysis to identify
DNA methylation differences associated with heavy smokers (HSs). Three methylomes
were excluded by applying the selection criteria to the set of subjects without cancer
diagnosis (two samples) and excluding such with poor quality findings in the quality
control (QC) step (one sample). Of the 68 noncancer methylomes analyzed, 37 belonged to
heavy smokers, and 31 belonged to controls.

No significant differences in age or gender were found between heavy smokers and
nonsmokers in the subset of patients without cancer (Figure 1).

However, differences were found between smokers and nonsmokers regarding alcohol
consumption; therefore, this variable was included in the model to eliminate its effect on
differential DNA methylation results. Demographic data are shown by subset for each
group of interest (heavy smokers vs. nonsmokers) (Table 1).

Of the initial subset of 152 available methylomes corresponding to subjects with
cancer, 139 were finally included for the analyses to identify DNA methylation differences
associated with heavy smokers (HSs). Twelve were excluded by applying the selection
criteria, and one more was ruled out due to poor-quality findings in the quality control (QC)
step. Of the 139 subjects in this subset, 92 were heavy smokers and 47 were nonsmokers
(Figure 1). No differences were found regarding age and gender. However, regarding
alcohol consumption, significant differences were found between smokers and nonsmokers
in the cancer patient subset (Table 1); therefore, for this analysis, the alcohol variable was
also included in the model to eliminate its effect on differential methylation results.

In the noncancer subset, the genome-wide hypothesis-free analysis showed differen-
tially hypermethylated positions in the ADAMTS2 and FAM184B genes in the initial model
(Table 1) and the final model including alcohol consumption (Table 2). Two positions were
found in the final model that considered alcohol consumption (Table S1).
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‡: 0.041 * 
No alcohol consumption, n (%) 4 (10.81%) 7 (22.58) 
Alcohol low frequency, n (%)  20 (54.05) 21 (67.74) 
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DNA methylomes from cancer-diagnosed subset  
 Heavy smokers (n = 92) Controls (n = 47) p-values 
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Males, n (%) 69(76) 22(66) †: 0.286 

Alcohol consumption   

‡: 0.002 * 
No alcohol consumption, n (%) 4 (0.44%) 6 (13%) 
Alcohol low frequency, n (%)  42 (45.6%) 31 (67%) 
Alcohol high frequency, n (%) 46 (50%) 10 (21%) 

n number of subjects. § Student’s t-test. † chi-square test. ‡ Fisher’s exact test. * Statistical signifi-
cance. 
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Figure 1. Study selection flowchart. A. Selection of DNA methylomes for the heavy smoker and
control groups, in the cancer-free subset. B. Selection of DNA methylomes for the heavy smoker and
control groups, in the cancer-diagnosed subset.

Table 1. Demographic characteristics of the participants corresponding to the DNA methylomes
included in the study.

DNA Methylomes from Cancer-Free Subset

Heavy Smokers (n = 37) Controls (n = 31) p-Values

Age, years (mean ± standard deviation) 62.73 ± 8.044 58.45 ± 12.01 §: 0.097
Males, n (%) 24 (64.86%) 19 (61.29) †: 0.959

Alcohol consumption

‡: 0.041 *No alcohol consumption, n (%) 4 (10.81%) 7 (22.58)
Alcohol low frequency, n (%) 20 (54.05) 21 (67.74)
Alcohol high frequency, n (%) 13(35.14) 3 (9.68)

DNA methylomes from cancer-diagnosed subset

Heavy smokers (n = 92) Controls (n = 47) p-values

Age, years (mean ± standard deviation) 57.57 ± 12.55 60.77 ± 11.07 §: 0.144
Males, n (%) 69(76) 22(66) †: 0.286

Alcohol consumption

‡: 0.002 *No alcohol consumption, n (%) 4 (0.44%) 6 (13%)
Alcohol low frequency, n (%) 42 (45.6%) 31 (67%)
Alcohol high frequency, n (%) 46 (50%) 10 (21%)

n number of subjects. § Student’s t-test. † chi-square test. ‡ Fisher’s exact test. * Statistical significance.

In the cancer-diagnosed subset, the genome-wide hypothesis-free analysis showed
four differentially hypomethylated positions, one in the AHRR gene and three in intergenic
regions (Table 3). Two of these positions were also found after applying the final model
including alcohol consumption (Table S2).

In the noncancer subset, DMR analysis found 18 regions supported by more than
one differential CpG for smokers compared to nonsmokers in the initial model. Among
them is the gene FAM184B (Table S3). In the final model, DMR analysis showed 12 regions
supported by more than one differential CpG, including the FAM184B and AHRR genes
(Table 4).
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Table 2. Differentially methylated positions (DMPs) were found in genome-wide analysis with the
initial statistical model for heavy smokers in the cancer-free subset.

Probe ID Gene Symbol GeneID logFC AveExpr t p-Value Adj.P.Val B ∆β Dir

cg02599361 ADAMTS2 9509 0.133 0.664 4.93 5.8 × 10−6 0.026 2.45 0.10 ↑
cg04450456 FAM184B 27146 0.101 0.811 5.75 2.42 × 10−7 0.008 5.57 0.10 ↑
cg15017067 FAM184B 27146 0.093 0.766 4.65 1.62 × 10−5 0.037 1.44 0.09 ↑

Note: The initial statistical model included sex and gender variables in addition to comparing heavy smokers
and nonsmokers to identify genomic regions with different DNA methylation patterns. Abbreviations: Probe
ID: code of Illumina 450 K probe. Adj.P.Val: adjusted p value for multiple tests with Benjamini & Hochberg.
Gene Symbol: Unique symbol of the NCBI Gene database. B: logarithm of the probability of difference between
groups. LogFC: maximum value of relative change (fold change) between smoking and nonsmoking groups. ∆β:
Absolute difference between β methylation between heavy smokers and nonsmokers. Dir: direction of DNA
methylation difference where ↑ corresponds to differentially hypermethylated positions in heavy smokers.

Table 3. Differentially methylated genomic positions in the initial statistical model for heavy smokers
in the cancer-diagnosed subset.

Probe ID Gene GeneID AveExpr t p-Value Adj.P.Val B ∆β Dir

cg05575921 AHRR 57491 0.72 −5.37 3.20 × 10−7 2.23 × 10−2 4.86 −0.13 ↓
cg05951221 - - 0.40 −7.16 4.32 × 10−11 9.05 × 10−6 13.63 −0.10 ↓
cg06126421 - 0.50 −5.22 6.55 × 10−7 3.92 × 10−2 4.21 −0.11 ↓
cg21566642 - - 0.40 −6.44 1.81 × 10−9 2.53 × 10−4 9.95 −0.10 ↓

Note: The initial statistical model included sex and gender variables and compared heavy smokers and non-
smokers to identify genomic regions with different DNA methylation patterns. Abbreviations: Probe ID: code of
Illumina 450 K probe. Adj.P.Val: adjusted p value for multiple tests with Benjamini & Hochberg. Gene Symbol:
Unique symbol of the NCBI Gene database. B: logarithm of the probability of difference between groups. LogFC:
maximum value of relative change (fold change) between smoking and nonsmoking groups. ∆β: Absolute
difference between β methylation between heavy smokers and nonsmokers. Dir: direction of DNA methylation
difference where and ↓ corresponds to differentially hypomethylated positions in heavy smokers.

Table 4. DMRs identified in genome-wide analysis using the final statistical model for heavy smokers
in the cancer-free subset.

hg19 Coordinates Width Gene(s) Group #p Minpval Meanpval Maxbetafc Mean Dbeta Dir

chr12:2943902-2944493 592 NRIP2
1st exon,
5′UTR,
TSS200

8 2.50 × 10−8 3.72 × 10−8 0.015 0.066 ↑

chr4:17643702-17643749 48 FAM184B Body 2 3.11 × 10−6 3.11 × 10−6 0.015 0.098 ↑
chr2:233215939-233217079 1141 6 2.89 × 10−3 6.95 × 10−3 0.015 0.071 ↑
chr1:102312608-102312671 64 OLFM3 Body 3 8.87 × 10−3 8.89 × 10−3 0.013 0.078 ↑
chr19:49001890-49002477 588 LMTK3 Body 3 9.16 × 10−3 2.16 × 10−2 0.012 0.071 ↑
chr17:80708279-80708513 235 FN3K, TBCD Body,

TSS1500 3 1.25 × 10−2 1.26 × 10−2 0.018 0.093 ↑
chr19:18888799-18889003 205 CRTC1 3′UTR 2 1.41 × 10−2 1.84 × 10−2 0.011 0.075 ↑
chr5:373299373887 589 AHRR Body 3 1.61 × 10−2 2.34 × 10−2 −0.019 −0.069 ↓
chr1:19110734-19110978 245 3 2.51 × 10−2 2.55 × 10−2 0.029 0.132 ↑
chr7:52341648-52342124 477 3 3.43 × 10−2 4.09 × 10−2 0.010 0.062 ↑
chr21:37437505-37437565 61 SETD4 TSS1500 2 4.17 × 10−2 4.24 × 10−2 −0.025 −0.062 ↓
chr4:100242862-100242957 96 ADH1B TSS1500 2 4.23 × 10−2 4.50 × 10−2 0.013 0.074 ↑

Note: The final statistical model included sex, gender, and alcohol consumption level in addition to the com-
paring heavy smokers and nonsmokers to identify genomic regions with different DNA methylation patterns.
Abbreviations. hg19 coordinates: coordinates of localization in the human genome hg19, starting with the chro-
mosome number, followed by the coordinates where the differential DNA methylation was found. Width: the
width of the genomic region in bp. Gene(s): the corresponding gene(s) associated with the region according to
DMRcate’s function. Group: Illumina intergenic position original annotation. #p: Number of probes/CpGs that
support the corresponding genomic ranges. minpval: minimum of the p value corresponding to neighboring
probes/CpGs. meanpval: mean of the p value corresponding to neighboring probes/CpGs. maxbetafc: the major
fold change M value corresponding to the probes inside the corresponding genomic range. mean Dbeta: the net
difference between beta values between groups (HS-control). Dir: direction of DNA methylation difference where
↑ corresponds to differentially hypermethylated regions in heavy smokers, and ↓ corresponds to differentially
hypomethylated regions in heavy smokers.

In the cancer subset, DMR analysis found one region supported by more than one
differential CpG for smokers in contrast to nonsmokers in the initial model corresponding
to the AHRR gene (Table S4). In the final model, DMR analysis showed only two DMR
regions, only the one corresponding AHRR supported by more than one differentially
methylated CpG (Table 5).
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Table 5. DMRs were identified in genome-wide analysis with the final statistical model for heavy
smokers in the cancer-diagnosed subset.

hg19 Coordinates Width Gene(s) Group #p Minpval Meanpval Maxbetafc Mean Dbeta Dir

chr5:373299-373887 589 AHRR Body 3 7.58 × 10−5 3.75 × 10−3 −0.02 −0.07 ↓
chr19:17000585-17000585 1 F2RL3 Body 1 4.50 × 10−2 4.50 × 10−2 −0.01 −0.08 ↓

Note: The final statistical model included sex, gender, and alcohol consumption level in addition to comparing
heavy smokers and nonsmokers to identify genomic regions with different DNA methylation patterns. Abbrevia-
tions. hg19 coordinates: coordinates of localization in the human genome hg19, starting with the chromosome
number, followed by the coordinates where differential DNA methylation was found. Width: the width of the
genomic region in bp. Gene(s): the corresponding gene(s) associated with the region according to DMRcate’s
function. Group: Illumina intergenic position original annotation. #p: Number of probes/CpGs that support the
corresponding genomic ranges. minpval: minimum of the p value corresponding to neighboring probes/CpGs.
meanpval: mean of the p value corresponding to neighboring probes/CpGs. maxbetafc: the major fold change
M value corresponding to the probes inside the corresponding genomic range. mean Dbeta: the net differ-
ence between beta values between groups (HS-control). Dir: direction of DNA methylation difference where ↓
corresponds to differentially hypomethylated regions in heavy smokers.

Gene Prioritization Results and Corresponding DNA Methylation Analysis

The genes found to be differentially methylated in the genome-wide analysis, sup-
ported by DMPs and DMRs, were used as training input in the prioritization software;
the results of the prioritization in Endeavour showed the following 167 genes signifi-
cantly related to the training genes: CDK4, TP53, CDKN1A, CDK6, CCND1, RB1 CDKN2B,
CDKN2D, CDKN1B, CDKN2C, CCND2, MYC, CCND3, MDM2, E2F1, KRAS, THBS1, ARNT,
ATM, BRCA1, ERBB2, SIM1, CDC6, EGFR, AKT1, CDK2, CHEK2, TP73, MMP2, PIK3R1,
HRAS, BCL2, PTEN, MLH1, CCNB1, ATR, CASP3, TGFB1, CCNA2, SMAD4, CDC7, CCNH,
IGF1R, ANKRD12, NFKB1, PCNA, RBL1, MAPK14, E2F3, PDGFRA, RUNX1, SP1, SMAD3,
HIF3A, E2F2, MYCN, RASSF1, STAT3, MMRN1, PLK1, MET, RELA, CCNE1, NCOA3,
HIF1A, JUN, TFDP1, CHEK1, SKP2, TBRG1, PARP1, CREBBP, COL1A1, TGFBR2, NFK-
BIA, ABL1, FAS, PDGFRB, E2F4, ESR1, CASP8, NOTCH1, TP63, CDK7, IGF1, CDC25A,
SMAD2, PML, CCNE2, NPM1, CTNNB1, AHR, HDAC1, MMP14, RAF1, SIM2, SIRT1, BAX,
PIK3CA, CDKN1C, MCM5, EP300, BRCA2, APC, APAF1, COL1A2, MAP2K1, MCM3, MSH2,
MCM2, MAPK1, DAPK1, CDK1, MCM7, FASLG, PRKCA, NCOA2, RBL2, CREB1, TSC1,
AURKA, MCM6, TGFBR1, MCM4, CCNB2, PLEKHA8, NCL, NCOA1, BIRC5, NRAS, TNF,
ADAMTS12, GSK3B, NF1, GLI2, HDAC2, AKT2, VEGFA, MAPK3, TERT, HIC1, MAPK9,
PIK3CB, ADAMTS9, ESR2, BRAF, TFAP2A, CCNG1, EGR1, CEBPB, LMNA, ORC1, ORC6,
ADAMTS1, RET, VHL, CCNA1, VDR, TWIST1, DHFR, FOS, MYOD1, ORC4, IKBKB,
ADAMTS5, CYCS, and ADAM12 (20 duplicated registers). In the noncancer epigenome
subset, the DNA methylation analysis focused on the prioritized genes revealed three dif-
ferentially methylated genes, TFAP2A, AHRR, and MAPK14, in addition to FAM184B and
ADAMTS2, which were already present in the results of genome-wide DNA methylation
analysis (Table S5). In cancer-diagnosed subjects, two probes corresponding to AHRR were
found (Table S6); one of them, cg05575921, overlapped with the results in the noncancer
subset (Tables S5 and S6).

Furthermore, DMPs of AHRR, ADAMTS2, and FAM184 genes passed the sensitivity
analysis for cell composition as follows: For the cancer-free subset, cg04450456 for FAM184B,
cg02599361 for ADAMTS2. For the cancer-diagnosed subset, cg05575921 for the AHRR
gene and two probes cg21566642 and cg05951221 for intergenic regions (Table 6).
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Table 6. Differentially methylated genes/regions that pass cell composition sensibility analysis.

Gene ProbeID logFC r t p-Value Adj.P.Val B ∆β Dir

Cancer diagnosed subset
FAM184B cg04450456 0.10 0.81 5.37 1.16 × 10−6 9.24 × 10−3 3.98 0.10 ↑
ADAM2 cg02599361 0.13 0.66 5.34 1.27 × 10−6 9.31 × 10−3 3.89 0.10 ↑

Cancer-free subset
AHRR cg05575921 −0.10 0.72 −5.66 8.89 × 10−8 5.31 × 10−3 6.07 −0.13 ↓

Intergenic cg21566642 −0.10 0.40 −6.65 6.62 × 10−10 1.38 × 10−4 10.91 −0.10 ↓
Intergenic cg05951221 −0.10 0.40 −6.12 9.69 × 10−9 1.35 × 10−3 8.24 −0.10 ↓

Note: The sensitivity statistical model included cell composition of leucocytes versus epithelial cells, in addition to
sex, gender, and alcohol consumption levels, further supporting the findings. Dir: direction of DNA methylation
difference where ↑ corresponds to differentially hypermethylated genes and ↓ corresponds to differentially
hypomethylated genes heavy smokers.

4. Discussion

The present work determined a genome-wide DNA methylation signature in heavy
smokers using available Illumina DNA methylation 450 K data from oral rinse-derived DNA.
This is a secondary study that has provided new insights into DNA methylation profiles
by focusing the analysis on the search for potential biomarkers of heavy smokers, which
differs from the research of previous authors. In complementation of the described approach,
we also conducted a directed evaluation of DNA methylation in heavy smokers of genes
selected by bioinformatic gene prioritization software, a promising tool not previously used
for this question. With this approach, the main results presented here support AHRR as an
epigenomic biomarker of tobacco smoking in oral rinse but also identified ADAMTS2 and
FAM184 as new genes involved in tobacco smoking as candidate biomarkers.

The present study was not limited to evaluating each differentially methylated CpG site
regardless of its nearness to other CpGs. In contrast, we analyzed the data to detect differential
DNA methylation at a regional level, bearing in mind the integration between DMP and DMR
analyses, which was not previously achieved. In addition, we performed a combined strategy
including (I) a hypothesis-free genome-wide approach for differential methylation analysis
and (II) a prioritization approach that integrated the newly discovered genes and the genes
previously related to oropharyngeal cancer. Therefore, the identified genes are suggested to
be tobacco-related markers that are possibly related to cancer pathogenesis.

4.1. AHRR

Here, we found that the AHRR gene was differentially hypomethylated at the CpG site
corresponding to the Illumina probe cg05575921 (hg19 coordinates chr5:373,378), which also
intersected with a genomic region of 589 bp in chromosome 5 identified in our DMR analy-
sis (hg19 coordinates chr5:373299-373887); this region was concordantly hypomethylated
in heavy smoker subjects in both subsets of the present study (cancer-free and cancer-
diagnosed), indicating the utility of this epigenetic pattern in both subsets. The AHRR gene
encodes the protein aryl hydrocarbon receptor repressor, which represses the transcrip-
tional activity of the aryl hydrocarbon receptor and mediates dioxin toxicity, xenobiotic
metabolism, and the immune response [35,36]. Concordantly, another epigenome-wide
association study (EWAS) focused not on oral rinse but on an invasive procedure to analyze
solid tissue samples from the oral masticatory mucosa of the hard palate and concluded
that hypomethylation of the aryl hydrocarbon receptor repressor AHRR is differentially
methylated genes in smokers [37]. The concordance of the present result with that reported
by Richter et al. demonstrates the possibility of using AHRR DNA methylation in smokers
in a routine noninvasive screening test in saliva.

4.2. ADAMTS2

The present work identified a pattern of ADAMTS2 differential hypermethylation
in heavy smoker subjects in comparison with controls in two neighboring CpGs corre-
sponding to the cg02599361 and cg10208897 Illumina probes in the cancer-free subset
(Tables 2, 6, S1 and S6), located in CpG islands in the gene body of ADAMTS2. This gene
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encodes a protein that cleaves the pro-peptides of collagen and has been implicated in con-
nective tissue disorders and fibrosis (disintegrin-like and metalloproteinase domain with
thrombospondin motifs). Interestingly, ADAMTS2 has been found to be upregulated in
cancer [38,39]. Further, this gene was not differentially methylated in the cancer-diagnosed
subset; therefore, future studies could explore whether an increase in DNA methylation in
the CpG islands of ADAMTS2 could be adaptative or protective for cancer development in
heavy smokers.

4.3. FAM184B

FAM184B is a family with sequence similarity 184 member B gene expressed in dif-
ferent tissues, including mononuclear cells and the digestive system, according to GTEx
Consortium dataset annotation across human tissues [40]. In the present study, we found
that FAM184B was differentially hypermethylated in cancer-free subjects in oral rinse
samples (Tables 2, 4, and 6). However, at present, its function has not been clarified.
Interestingly, the DNA methylation at two CpGs represented by the probes cg16449012
and cg08644678 (localized in different parts of the gene body) was hypermethylated in
newborns of mothers exposed to smoking during their pregnancy [41]. In addition, by
evaluating DNA methylation using Sequenom MassARRAY, this gene was reported to be
differentially hypermethylated in oral cancer compared to adjacent tissue; unfortunately,
the exact differentially methylated probe is not available to identify exact concordances [42].
Interestingly, the FAM184B gene was found to be downregulated in striated muscle tis-
sue and therefore possibly involved in skeletal muscle dysfunction, which is a frequent
extrapulmonary manifestation in chronic obstructive pulmonary disease [43].

4.4. MAPK14 and TFAP2A Genes Found by Gene Prioritization

MAPK14, a gene of the mitogen-activated protein kinase family, is involved in pro-
cesses such as proliferation, differentiation, and transcription regulation [44]. MAPK14 was
significantly differentially hypermethylated even after including the alcohol consumption
variable in the model (p = 0.00158, 1.58 × 10−3, Table 6). The MAPK14 gene has been
related to signaling pathways that act as an immune response against oral pathogens [45].
This gene codes for the MAPK14 enzyme, which has been identified as a possible regula-
tor of inflammation and is a key component of the tumor microenvironment, as chronic
inflammation contributes to the development, progression, and regional metastasis of
oral carcinomas [46]. MAPK14 gene expression seems to be decreased at the transcription
level in response to tobacco metabolites in RNAseq, but this was not confirmed by qPCR.
Interestingly, MAPK14 was also found to decrease progressively at higher grades of renal
clear cell carcinoma [47].

Finally, the present study found that the TFAP2A gene was differentially hypomethy-
lated in heavy smokers compared to controls in the analysis of noncancer subjects (Table
S6) but not for the subset of cancer-diagnosed subjects. TFAP2A encodes the transcription
factor AP-2 alpha protein, which binds specific ADN sequences to activate or inhibit gene
expression. Interestingly, in cancer (melanoma cells), it has been related to nasopharyngeal
cancer growth [48], and aberrant DNA hypermethylation has been found at its promoter, as-
sociated with reduced expression and proposed as a possible target/marker [49]. MAPK14
and TFAP2A genes were not identified in the genomic approach, which considers FDR
correction. Instead, these genes were detected through gene prioritization for targeted DNA
methylation analysis, demonstrating statistical significance. However, could be important
to be included both genes in future studies.

Previous studies reported DNA differentially methylated genes in smoking. Richter
et al. [37] reported significant hypomethylation of AHRR and CYP1B1 in the buccal and
airway epithelium of smokers. Our study showed concordat differential hypomethylation
for the AHRR gene (cg04066994) but not for the CYP1B1 gene, in mouthwashes, with CpG
sites evaluated a very low delta of Betas showing <0.05 and with no significant p-values
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(p value > 0.5). Considering that the buccal rinse uses different cell types than the biopsies
in the cited study [37], only partial coincidences of DNA methylation are expected.

The results from epithelial cells may have significant implications for epithelial cancer.
On the other hand, the buccal rinse procedure is noninvasive and could make the AHRR
marker, more easily usable on tests with personalized medicine applications. In another
study on smoking and DNA methylation, Christiansen et al. identified the SLAMF7 gene
as differentially hypomethylated in smokers using blood samples [50]. In our all CpG sites
evaluated for SLAMF7 (cg23844325, cg07837085, cg11721194, cg04244970, and cg04345766
probes) showed a very low delta of betas values (delta of beta <<0.05) with no significant
differences between groups (p-value > 0.5). This discrepancy may be due to the differences
in the tissues evaluated between the two studies.

DNA methylation plays a particular role in cell differentiation and the maintenance of
cell specificity. It represents an important mechanism for cells to react to persistent external
stimuli, allowing somatic cells to adjust gene expression to a particular environment in a
long-term manner that can be passed on to daughter cells [51]. Therefore, the deleterious
effects of smoking on tissue integrity are driven by mechanisms such as changes in DNA
methylation patterns and reduced expression of repair genes [52]. It is appropriate to test
the DNA methylation patterns reported here in the low-cost molecular assays [53].

There are several limitations to the present study. As this investigation is a secondary
analysis, we could only access the data included in the Gene Expression Omnibus Repository,
and full raw fluorescence data were unavailable. The cell composition analysis in this study
differentiates merely two cell types (epithelial cells and leukocytes) and is optimized for
children, potentially reducing its effectiveness for adults. Nevertheless, we employed the most
suitable and currently available tool to account for cell composition heterogeneity, ensuring
reliable results. Lastly, this study does not address transcriptomic analysis due to the lack of
expression data, a limitation linked to the mouthwash samples examined in this research.

This study contributes new markers to be verified in future longitudinal studies in
oral rinse samples, which are local but noninvasive specimens, promising for future routine
screening and implementable for precision/personalized medicine. Identifying altered
epigenetic patterns also allows us to focus future studies on identifying strategies to restore
or modify gene regulation in the cells of patients for convenience and to handle plastic
epigenetic changes/patterns to benefit patient health [54].

5. Conclusions

Differential methylation in FAM184B, AHRR, and ADAMTS2 genes establish these
genes as biomarker candidates in mouthwash samples, relevant for further studies in
clinical settings. Analysis targeting these genes and related pathways is warranted.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines11071797/s1, Table S1: Genomic differentially
methylated probes in the final statistical model for heavy smokers, inside the cancer-free subset;
Table S2: Genomic differentially methylated probes in the final statistical model for smoking habit,
inside the cancer-diagnosed subset; Table S3: Differentially methylated regions in the initial statis-
tical model for smoking habit in the group, inside the cancer-free subset; Table S4: Differentially
methylated regions in heavy smokers, genome wide-analysis for the cancer-free subset; Table S5:
Differentially methylated probes focused on genes prioritized using the final statistics model; inside
the cancer-free subset; Table S6: Differentially methylated probes focused on genes prioritized using
the final statistics model; resulting in the cancer-diagnosed subset.
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