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Abstract: The approval of monoclonal antibodies against programmed death-ligand 1 (PD-L1) and
programmed cell death protein (PD1) has changed the landscape of cancer treatment. To date, many
immune checkpoint inhibitors (ICIs) have been approved by the FDA for the treatment of metastatic
cancer as well as locally recurrent advanced cancer. However, immune-related adverse events (irAEs)
of ICIs highlight the need for biomarker analysis with strong predictive value. Liquid biopsy is an
important tool for clinical oncologists to monitor cancer patients and administer or change appropriate
therapy. CTCs frequently express PD-L1, and this constitutes a clinically useful and non-invasive
method to assess PD-L1 status in real-time. This review summarizes all the latest findings about
the clinical significance of CTC for the management of cancer patients during the administration of
immunotherapy and mainly focuses on the assessment of PD-L1 expression in CTCs.
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1. Introduction

Minimally invasive liquid biopsies allow the analysis of tumor elements, such as circu-
lating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in body fluids, mainly blood.
The liquid biopsy concept launched approximately 10 years ago, has opened new horizons
in cancer prevention, diagnosis, early identification of tumor recurrence, molecular char-
acterization of tumors, monitoring of response to treatment, and detection of resistance
mechanisms [1]. Clinical applications of CTCs have gained enormous attention over the
past few years, despite many limitations in CTC capture by current methodologies [2]. In-
deed, CTCs are being evaluated as predictive biomarkers since CTC analysis provides rapid,
tumor-specific information that can be repeatedly accessible during follow-up and enables
monitoring of response to treatment and early identification of resistance mechanisms.

The Food and Drugs Administration (FDA)-cleared CellSearch platform represents
the gold standard for CTC detection and enumeration in the bloodstream [3]. CTC enumer-
ation could provide the primary detection of metastatic cancer in contrast to radiological
tests [4]. This creates a huge prospect, especially in the field of early cancer diagnosis.
Moreover, one of the main advantages of CTC count using the CellSearch platform is that it
enables the stratification of metastatic breast cancer patients (MBC) [5]. Additionally, the
implementation of CellSearch allows the detection of CTC clusters that have high metastatic
potential and hold great promise for metastatic breast cancer therapy [6].

In recent years, the promising results yielded from the development of CTCs in
targeted therapies have paved the way for the implementation of CTCs into the domain of
immunotherapy. The most important biomarker for treatment decision-making in the era
of immunotherapy is programmed death-ligand 1 (PD-L1) expression, which is assessed
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by immunohistochemistry in tumor specimens [7]. However, several issues, such as intra-
and inter-tumor heterogeneity and expression of PD-L1 in both tumor and immune cells,
complicate the accurate measurement of PD-L1 expression in tumor tissues [8]. On the
other hand, the possibility of measuring PD-L1 positive CTCs using the CellSearch system
was a breakthrough in personalized therapy [9] since CTCs frequently express PD-L1,
and this constitutes a clinically useful and non-invasive method to assess PD-L1 status in
real-time [9,10].

2. CTC Interaction with Other Cells in the Blood Stream

CTC complex interaction with the immune cells of blood could provide a better un-
derstanding of the molecular pathways that are involved, leading to the improvement of
therapeutic drugs and reduction of mortality and morbidity associated with cancer [11–13].
The activation of platelets represents a critical biological mechanism for metastatic progres-
sion since they shield CTCs and protect them from the attack of natural killer (NK) cells or
macrophages and facilitate extravasation [14]. Neutrophils assist the metastasis of CTCs
and promote tumor development by initiating an angiogenic switch and facilitating the
colonization of CTCs [15]. It has also been reported that the abundance of tumor-associated
neutrophils (cTAN) in advanced cancer patients contributes to CTC survival by suppress-
ing peripheral leukocyte activation [16]. Moreover, neutrophils represent an important
constituent in the formation of CTC clusters [17]. Neutrophil–lung cancer cell interactions
are likely to be an important mechanism by which the progression of early malignancy
is facilitated [18]. Dendritic cells (DC) cells also play a significant role in the formation
of CTC clusters. Recently it was shown that DCs have a strong colocalization effect with
CTCs [19]. Moreover, it has been shown that CTCs are associated with abnormalities in
peripheral blood DCs in patients with inflammatory breast cancer (IBC). More specifically,
IBC patients with ≥5 CTCs have low percentages and impaired function in both subtypes
of DCs, indicating that immune cell profiling could add further prognostic value to CTCs
in IBC patients [20].

Macrophages prime the premetastatic site and promote tumor cell extravasation, sur-
vival, and persistent growth. Macrophages are also immunosuppressive, preventing tumor
cell attack by NK and T cells during tumor progression and after recovery from chemo- or
immunotherapy [21]. In small cell lung cancer (SCLC), CTCs seem to recruit and “educate”
a specific type of macrophages operative in the invasion, immune protection, extravasation,
and possibly cachexia [22]. However, macrophages in the liver are major effector cells
removing CTCs via antibody-dependent phagocytosis, an immune cell-mediated process
preventing liver metastasis [23]. Cancer-associated macrophage-like cells (CAMLs), which
are more frequent than CTCs, could provide complementary information for cancer de-
tection and diagnosis [24]. Enumeration of CAMLs using the CellSearch system is related
to worse progression-free survival (PFS) and overall survival (OS) compared to patients
without CAMLs [25].

3. Clinical Significance of CTCs in Immunotherapy
3.1. Clinical Significance of CTCs and PD-L1+CTCs in Immunotherapy Using CellSearch Platform

CTC enumeration for MBC, metastatic prostate cancer (mPC), and metastatic colorec-
tal cancer (MCC) using CellSearch technology enables the monitoring of cancer patients
during therapy. Moreover, this technology captures and identifies tumor cells in the
blood that are associated with poor clinical outcomes [26]. CTC counts have also been
associated in several studies with the prognosis of patients undergoing immunotherapy
(Table 1). Alama et al. evaluated CTCs in 89 previously treated non-small cell lung can-
cer (NSCLC) patients receiving nivolumab. In this study, patients with baseline CTC
numbers below their median values survived significantly longer [27]. Recent data have
highlighted that the metabolic status could affect PD-L1 expression, such as PD-L1 degra-
dation via mitochondria-associated oxidative phosphorylation inhibition [28]. In NSCLC
treatment-naïve patients, CTC count variation (∆CTC) was significantly associated with
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tumor metabolic response set by the European Organization for Research and Treatment of
Cancer (EORTC) criteria. Moreover, elevated CTC count, along with metabolic parameters,
were found to be prognostic factors for PFS and OS [29]. Tamminga et al. have shown
that CTCs occur in one-third of advanced NSCLC patients, and their presence is of high
prognostic and predictive value before and after immunotherapy [30]. In SCLC, that 5-year
relative survival rate is extremely low; the use of a much higher cut-off equivalent to
150 CTCs/7.5 mL of whole blood also has clinical utility [31]. In a phase II multicenter
adaptive immunotherapy trial of 457 longitudinal liquid biopsies from 104 patients with
Metastatic Renal Cell Carcinoma (mRCC), the change over time of CTC enumeration is of
prognostic importance [32].

An additional channel in the CellSearch system allows the examination of a fourth
molecule of interest beyond the detection of cancer cells of epithelial origin. Establishment
of the B7-H1/PD-L1 CTC analysis was performed for the first time by Mazel et al. showing
that PD-L1 is frequently expressed on metastatic cells circulating in the blood of hormone
receptor-positive, HER2-negative breast cancer patients [9]. This study was followed by
several other studies that evaluated the PDL1 status of CTCs in various cancers using
CellSearch (Table 1) [33–40].

Nicolazzo et al. showed that in NSCLC patients treated with the programmed cell
death protein (PD-1) inhibitor nivolumab at baseline and at 3 months of treatment, the
presence of CTCs and the expression of PD-L1 on their surface is associated with poor
patients’ outcome. Moreover, 6 months after treatment, patients harboring PD-L1 negative
CTCs obtained a clinical benefit, while patients with PD-L1+CTCs all experienced progres-
sive disease, suggesting that the persistence of PD-L1+CTCs might mirror a mechanism of
therapy escape [37].

Table 1. Clinical significance of CTCs and PD-L1+-CTCs in immunotherapy using CellSearch platform.

Type of Cancer Number of
Samples-Positivity Additional Marker Therapy Response Clinical

Significance Ref.

NSCLC 89 (91%); baseline No Nivolumab n.a Yes;
OS (p = 0.05) [27]

NSCLC 35 (45.7%); baseline
24 (41.7%); 8 weeks No Nivolumab or

Pembrolizumab

Yes;
tumor metabolic

response
(p = 0.004)

Yes;
PFS (p < 0.001)
OS (p = 0.024)

[29]

NSCLC 30 (36.7%); baseline
Yes;

PD-L1+CTCs17
(11.8%)

Pembrolizumab n.a
Yes;

PFS (p = 0.034)
OS (p = 0.023)

[36]

SCLC 21 (85.7%); baseline No
Chemotherapy or

chemotherapy/
immunotherapy

n.a

Yes;
cut-off ≥ 150
CTCs/7.5 mL
PFS (p = 0.02)

[31]

NSCLC
24 (83%); baseline

10 (67%); 3 months
10 (100%); 6 months

Yes;
PD-L1+CTCs

20 (95%); baseline
10 (100%); 3 months
10 (50%); 6 months

Nivolumab
Yes;

PD-L1-CTCs
clinical benefit

n.a [37]

NSCLC 53 (43.4%) Yes;
PD-L1+CTCs53 (9.4%) ICIs n.a

Yes;
CTC countPFS

(p = 0.006)
OS (p < 0.001)
PD-L1+CTCs
OS (p = 0.002)

[33]
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Table 1. Cont.

Type of Cancer Number of
Samples-Positivity Additional Marker Therapy Response Clinical

Significance Ref.

NSCLC 104 (32%); baseline
63 (27%); 4 weeks No ICIs Yes; T0 (p = 0.02)

T1 (p < 0.01)

Yes;
baseline

PFS (p = 0.05)
OS (p < 0.01)
4 weeks (T1)
PFS (p < 0.01)
OS (p < 0.01)

[30]

NSCLC 39 (15.4%)
Yes;

PD-L1+CTCs39
(33.3%)

ICIs n.a
Yes;

PFS (p = 0.040)
OS (p < 0.001)

[35]

mPC
10 (50%); pre-ARSI
10 (50%); post-ARSI
10 (40%); mHSPC

Yes;
≥1 PD-L1+CTC10
(60%); pre-ARSI

10 (70%); post-ARSI
10 (40%); mHSPC

Abiraterone, ac-
etate/prednisone
or enzalutamide

n.a n.a [40]

MBC 124 (42%) Yes;≥1 PD-L1+CTC
52 (40%)

Chemotherapy,
endocrine

therapy, targeted
therapy

n.a n.a [34]

MBC 16 (100%); ≥1 CTC
16 (81.3%); ≥5 CTC

Yes;
≥1 PD-L1+CTC

16 (68.8%)
n.a n.a n.a [9]

aUC 57 (47.4%); ≥1 CTC
57 (24.6%) ≥5 CTCs

Yes;
≥1 PD-L1+CTC

16 (62.5%)

Palliative
systemic
treatment

n.a
Yes;

≥5 CTC
OS (p = 0.007)

[38]

MCC
51 (41%); ≥1 CTC
51 (33%); >1 CTC

51 (12%); ≥5 CTCs

Yes;
≥1 PD-L1+CTC
4 pts (<1% CTCs

weak PD-L1)

n.a n.a

Yes;
≥1 CTC

OS (p = 0.030)
>1 CTC

OS (p < 0.020)
≥5 CTCs

OS (p < 0.0001)

[39]

Sinoquet et al. have shown similar results concerning the worse outcome of PD-
L1+CTCs, while PD-L1 expression in tumor tissue failed to prove any prognostic signifi-
cance [33]. Apart from whole blood, different kinds of biological samples could be analyzed
in a CellSearch analyzer, such as pleural fluid specimens. In NSCLC, the non-invasive
measurement of PD-L1 expression in pleural EpCAM-positive cells (PECs), using the
CellSearch® technology, provides prognostic information and may improve the diagnostic
accuracy of malignant pleural effusion (MPE) [41].

In mPC, immunotherapy against immune checkpoint inhibitors (ICIs) seems to be
effective. For this purpose, identifying suitable biomarkers could facilitate the selection of
the best candidates for this therapy [42]. Expression of PD-L1+ on CTCs in mPC patients
during the administration of next-generation AR axis inhibitors is feasible and may enable
monitoring of immunotherapy [40]. The expression of PD-L1 on CTCs in blood from
patients with advanced urothelial cancer (UC) has also been analyzed. CTC detection and
the presence of CTCs with moderate or strong PD-L1 expression are correlated with worse
overall survival [38].

The assessment of PD-L1+CTC could also be applied in patients with Merkel cell
carcinoma (MCC), which is a rare, aggressive skin cancer with increasing incidence and
high mortality rates. Riethdorf et al. show that even though a high prevalence of CTC occurs
at first blood collection that is associated with a worse prognosis, the overall frequency of
PD-L1 production in CTCs is very low [39].
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3.2. Prognostic and Predictive Value of PD-L1+CTCs in Various Types of Cancers
3.2.1. NSCLC

In recent years, immunotherapy has become the first-line treatment for patients with
NSCLC, with excellent responses in many patients [43]. However, many patients do not
respond to this treatment, so the existence of biomarkers that can direct oncologists to
appropriate treatment selection for each patient is essential. According to CheckMate
227, combined immunotherapy has demonstrated durable long-term efficacy benefits over
chemotherapy in patients with advanced NSCLC and tumor PD-L1 expression greater
than or equal to 1% or less than 1% across nonsquamous and squamous histologies [44].
However, apart from the analysis of PD-L1 in the tissue, its expression can also be studied
in CTCs with proven clinical relevance (Tables 2 and 3) [45]. Ilie et al. reported that PD-L1
expression in CTCs and circulating white blood cells obtained from 106 NSCLC patients
correlated with the PD-L1 status in matched tumor-tissue samples [46]. Similar results
were also reported by Abdo et al. in a comparative evaluation of PD-L1 in NSCLC patients
showing good agreement rates on PD-L1 positivity (TPS ≥ 1%) and high PD-L1 expression
(TPS ≥ 50%) [47].

Table 2. Prognostic value of PD-L1+CTCs in various types of cancers.

Type of Cancer CTC Isolation
Technique

CTC Detection
Method

Number of Samples
(Positivity) Therapy Clinical

Outcome Ref.

NSCLC
CellSieve

Microfiltration
Assay

LifeTracDx PD-L1
test

30 (87%); low PD-L1
30 (13%); high PD-L1 ICIs

Yes;
PFS-18 months

(p = 0.0112)
PFS-24 months

(p = 0.0112)

[48]

Different
advanced cancers Pep@MNPs IF 155 (81.9%) ICIs

Yes;
PFS (p < 0.0001)
OS (p = 0.0235)

[49]

NSCLC Graphene oxide
(GO) Chip IF and qPCR 38 (69.4%) Radiation or

chemoradiation

Yes;
5% cutoff
(p = 0.017)

[50]

NSCLC CellSearch CellSearch 53 (9.4%) ICIs

Yes;
CTC count

PFS (p = 0.006)
OS (p < 0.001)
PD-L1+CTCs
OS (p = 0.002)

[33]

NSCLC CellSearch CellSearch 39 (33.3%) ICIs
Yes;

PFS (p = 0.040)
OS (p < 0.001)

[35]

HNSCC ClearCell FX system IF 11 (54.4%) Treatment
naïve

Yes;
PFS (p = 0.0485) [51]

HNSCC Ficoll–Hypaque
density gradient RT-qPCR

94 (25.5%); baseline
34 (23.5%);

after IC
54 (22.2%);

at the end of treatment

Chemotherapy
Yes;

PFS (p = 0.001)
OS (p < 0.001)

[10]

Various types of
cancer Pep@MNPs IF 35 (74%) PD-1 inhibitor

IBI308
Yes;

PFS (p = 0.002) [49]

AM Ficoll–Hypaque
density gradient

Flow cytometric
staining 25 (64%) Pembrolizumab

Yes;
PFS (p = 0.018)
12-month PFS

(p = 0.012)

[52]
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Table 2. Cont.

Type of Cancer CTC Isolation
Technique

CTC Detection
Method

Number of Samples
(Positivity) Therapy Clinical

Outcome Ref.

HCC CytoSorter™
BioScanner system

CytoSorter™
CTC PD-L1 Kit

47 (48.9%);
<2 PD-L1+CTC

47 (51.1%);
≥2 PD-L1+CTC

PD-1 inhibitor,
IMRT,

antiangiogenic
therapy

Yes;
OS (p = 0.001) [53]

TNBC Ficoll–Hypaque
density gradient IF 64 (41%) Chemotherapy Yes;

OS (p < 0.001) [54]

aUC CellSearch CellSearch 16 (62.5%) Palliative systemic
treatment

Yes;
≥5 CTC

OS (p = 0.007)
[38]

Table 3. Predictive value of PD-L1+CTCs in various types of cancers.

Type of Cancer CTC Isolation
Technique

CTC Detection
Method

Number of
Samples

(Positivity)
Therapy Response to Therapy Ref.

NSCLC MCA system MCA system

44 (82%); baseline
31 (58%); week 4
16 (56%); week 8

13 (62%); week 12
11 (55%); week 24

ICIs Yes; p < 0.05 [55]

NSCLC
CellSieve

Microfiltration
Assay

LifeTracDx PD-L1
test

30 (87%);
low PD-L1
30 (13%);

high PD-L1

ICIs

Yes;
PFS-24 months

(p = 0.0091)
OS-18 months

(p = 0.0410)

[48]

NSCLC Cyttel method IF 117 (53.0%) ICIs

No;
prolonged

mPFS-5.6 months
(p = 0.519)

[56]

NSCLC Parsortix system IF

89 (56%);
≥1 PD-L1+CTC

89 (26%);
≥3 PD-L1+CTC

ICIs

Yes;
Response

(decrease or stable
PD-L1+CTC)

Disease progression
(increase PD-L1+CTC)

(p = 0.001)

[57]

Different
advanced cancers Pep@MNPs IF 155 (81.9%) ICIs Yes; ORR (p = 0.018)

DCR (p < 0.0001) [49]

NSCLC Ficoll–Hypaque
density gradient IF

47 (86%); baseline
43 (89%); after

first cycle
23 (76%); after

third cycle
19 (82%); PMR

Pembrolizumab

Yes;
a decrease of PD-L1low
CTC, partial response

after the first cycle

[58]

AM Ficoll–Hypaque
density gradient

Flow cytometric
staining 25 (64%) Pembrolizumab

Yes;
PD-L1+CTCs higher in

responders
(p = 0.005)

[52]

HCC
CytoSorter™
BioScanner

system

CytoSorter™
CTC PD-L1 Kit

47 (48.9%);
<2 PD-L1+CTC

47 (51.1%);
≥2 PD-L1+CTC

PD-1 inhibitor,
IMRT,

antiangiogenic
therapy

Yes;
<2 PD-L1+CTCs higher

ORR
(p = 0.007)

[53]

Guibert et al. prospectively analyzed blood samples from 96 advanced-stage NSCLC
patients obtained before nivolumab treatment and at the time of disease progression [59].
PD-L1 expression was more frequently observed in CTCs (83%) than in matched tissue
samples (41%), and there was no correlation between CTC and tissue PD-L1 expression.
Interestingly, a higher pre-treatment PD-L1 positive CTC number was observed in patients
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that did not respond to nivolumab [PFS < 6 months] [59]. In the same context, a previously
mentioned study by Nicolazzo et al. included 24 patients with advanced NSCLC treated
with nivolumab and assessed CTCs and CTC PD-L1 expression on blood samples obtained
at baseline, 3 months, and 6 months post-treatment [37]. Although at baseline and 3 months
post-treatment, detection of CTCs and PD-L1 positivity were associated with a dismal
prognosis, at 6 months CTCs were found in all patients included. However, patients with
PD-L1 negative CTCs continued to respond to immunotherapy, whereas patients with
PD-L1 positive CTCs experienced disease progression, implicating that PD-L1 positivity on
CTCs could be a predictive biomarker for early resistance to immunotherapy [37].

The examination of PD-L1 status through sequential biopsies could provide significant
prognostic and predictive information due to status changes over time. A longitudinal eval-
uation of PD-L1 expression of CTCs isolated from NSCLC patients treated with nivolumab
was reported by Ikeda et al. CTCs were enriched from 3 mL of peripheral blood using a
microcavity array system at baseline and weeks 4, 8, 12, and 24 or until progressive disease.
According to this study, PD-L1 expression on CTCs at week 8 has a superior predictive
value compared to that at the baseline [55]. In this context, Moran et al. showed that at
18 months, patients showing an increase in PD-L1 expression had better clinical outcomes
after ICI, with longer PFS (p = 0.0091) and OS (p = 0.0410) versus patients who did not
demonstrate an increase in PD-L1 expression or the no ICI-treated population [48]. A
longitudinal analysis was also performed in 47 advanced NSCLC patients receiving pem-
brolizumab. The results of this study revealed that changes in the PD-L1low subpopulation
at an early phase of treatment are importantly related to disease control or resistance to
pembrolizumab immunotherapy. Additionally, in patients with partial response, CTC
counts were immediately increased at week 3, whereas the PD-L1low CTC rates were
decreased [58].

PD-L1 expression presents heterogeneous expression in CTCs and tumor tissues from
advanced NSCLC patients. Zhou et al. show that CTCs release a higher detection rate
of PD-L1 expression than tumor tissues (53.0% vs. 42.1%). Moreover, NSCLC patients
with PD-L1− on tissues but PD-L1+ on CTCs could still benefit from ICI therapy, while
co-identification of PD-L1+CTCs or PD-L1+ tissues may help to identify patients who
would benefit from immunotherapy [56].

Enough data support the fact that upon disease progression, NSCLC patients demon-
strate an increase in PD-L1+CTCs, while no change or a decrease in PD-L1+CTCs is observed
in responding patients [57]. Additionally, the increase of PD-L1+CTCs might indicate re-
sistance toward PD-1/PD-L1 inhibitors. Similar results were shown by Sinoquet et al.,
where OS was significantly worse in NSCLC patients with PD-L1-CTCs and particularly in
patients with PD-L1+CTCs compared with patients without CTCs. Moreover, the presence
of PD-L1+CTC correlated with the absence of gene alterations in tumor tissue and with
poor prognosis-related biological variables (anemia, hyponatremia, and increased lactate
dehydrogenase) [33].

PD-L1 expression has also been studied in groups of patients receiving other types
of treatment besides immunotherapy. Wang et al. studied gene expression of PD-L1 in
CTCs isolated before, during, and after radiation or chemoradiation using a microfluidic
chip. PD-L1 mRNA was highly expressed in patients who had disease progression within
9 months compared to those who had stable disease for 9 months or more, indicating that
radiation therapy induces PD-L1 expression in CTCs [50].

The dynamic probability of PD-L1 as a surrogate marker has also been analyzed in
multiple basket studies. Tan et al., in a study involving one hundred fifty-five patients
with different advanced cancers, showed that the reduction in CTC counts and ratios of
PD-L1-positive CTCs and PD-L1-high CTCs reflect a beneficial response to PD-1/PD-L1
inhibitors. In this study, patients with PD-L1-high CTCs had significantly longer PFS (4.9
vs. 2.2 months, p < 0.0001) and OS (16.1 vs. 9.0 months, p = 0.0235) than those without
PD-L1-high CTCs [49]. Recently, a meta-analysis was reported, including results from
30 eligible studies (32 cohorts, 1419 cancer patients) about the prognostic significance of
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PD-L1 expression on CTCs in various cancers. The overall results from this meta-analysis
showed that pre-treatment PD-L1+CTCs might predict better survival for patients receiving
ICI treatment but worse survival for patients receiving other therapies. In addition, post-
treatment PD-L1+CTCs were correlated with worse survival in cancers [60].

3.2.2. HNSCC

In head and neck squamous cell carcinoma (HNSCC), the administration of im-
munotherapies has led to a response rate equivalent to 15–20%. However, ICIs have
been approved for recurrent and metastatic (R/M) HNSCC patients as a first- and second-
line therapy [61,62]. Recent data have revealed that CTC analysis is very promising in
HNSCC [63–65]. However, studies on the clinical utility of PD-L1-positive CTCs are limited.
In a prospective study including 23 HNC patients (Stages I–IV), PD-L1 status in CTCs
was examined and correlated to patients’ survival. CTC enrichment was performed using
the ClearCell FX system, which separates cells based on size (>14 µm) and deformability
parameters. CTC immunophenotyping revealed that more than half of the patients (54.4%)
appear to express PD-L1. Moreover, patients with CTC-positive counts had shorter PFS
than patients with the absence of CTCs (hazard ratio [HR]: 4.946; 95% confidence inter-
val [CI]: 1.571–15.57; p = 0.0063), and the PD-L1 positivity in the CTCs was found to be
significant ([HR]: 5.159; 95% [CI]: 1.011–26.33; p = 0.0485) [51].

A highly sensitive, specific, and robust RT-qPCR assay for PD-L1 mRNA expression in
EpCAM(+) CTCs has been developed by Strati et al. for the detection of PD-L1 overexpres-
sion in CTC. This prospective study enrolled 113 locally advanced HNSCC patients treated
with curative intent at baseline, after two cycles of induction chemotherapy (week 6), and
at the end of concurrent chemoradiotherapy (week 15). The findings of this study showed
that patients with CTCs overexpressing PD-L1 at the end of treatment had worse outcomes
(PFS; p = 0.001, OS; p < 0.001), while its absence was strongly associated with complete
response (95% CI = 2.76–92.72, p = 0.002) [10].

3.2.3. Prostate Cancer

Immunotherapy represents a promising therapeutic option for the cure of prostate
cancer patients [66]. In a phase II study, Boudadi et al. enrolled 16 patients with metastatic
prostate cancer and AR-V7 expressing CTCs, that were prospectively treated with a combi-
nation of nivolumab and ipilimumab. Using targeted next-generation sequencing (NGS)
in both pre-treatment tumor samples and CTCs, the authors found that high CTC phe-
notypic heterogeneity using the Shannon index was associated with improved response
to combination immunotherapy. In addition, patients with defects in DNA repair genes
(assessed by NGS in tumor biopsies or cell-free DNA in the case of no tissue availability)
had higher CTC heterogeneity [67]. Zhang et al. performed CTC analysis for immune
checkpoint ligands expression in men with mPC. Three cohorts of patients were enrolled,
receiving different combinations of new-generation hormone therapy. High heterogeneity
of immune checkpoint expression on CTCs was revealed across different disease states [40].

3.2.4. Breast Cancer

Mazel and co-authors were the first to report the expression of PD-L1 on CTCs of
patients with ER(+) HER2(−) breast cancer (BC) [9]. Interestingly, this study showed
remarkable heterogeneity regarding PD-L1 expression in CTCs among the PD-L1 positive
patients (11 out of 16, 68.8%). Schott et al. detected PD-L1 and PD-L2 expression on CTCs
derived from blood samples of 128 patients with breast, prostate, lung, and colorectal cancer.
In this study, patients with MBC had significantly more PD-L1 positive CTCs compared to
patients with non-metastatic disease [68]. In addition, in one patient with MBC treated with
combination immunotherapy (nivolumab/ipilimumab), the proportion of PD-L1 positive
CTCs declined after the first and second dose of immunotherapy, whereas it increased
following drug interruption, despite the persistently low level of CTCs.
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Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer that
molecular targeted therapies are lacking. Immunotherapy has been included as standard
care for stage II-III TNBC [69]. Vardas et al. studied a panel of ICIs, including PD-L1,
in sixty-four BC patients with TNBC and thirty-one with luminal A or B of early and
metastatic disease. Among BC subtypes, the phenotype of PD-L1+CD45−CK+ was higher
in TNBC compared to luminal patients. Furthermore, among TNBC patients, there was an
association of the phenotype PD-L1+CD45−CK+ with a shorter OS (7.6 vs. 53.8 months;
log-rank p < 0.001, HR = 8.7) [54]

3.2.5. Melanoma

The high immunogenicity of melanoma cancer makes immunotherapy one of the most
effective treatment strategies [70]. Molecular characterization of circulating melanoma
cells provides monitoring of the early response to immunotherapy [71]. Khattak MA
et al. performed a longitudinal analysis of PD-L1 expression on CTCs in patients with
metastatic melanoma receiving pembrolizumab prior to treatment and 6–12 weeks after
initiation of therapy. PD-L1 positivity was prevalent in a high percentage of CTCs (64%)
derived from melanoma patients. Moreover, patients with one or more PD-L1+CTCs had a
higher response rate to pembrolizumab, as well as longer PFS compared with patients with
PD-L1-CTCs (26.6 months vs. 5.5 months; p = 0.018) [52].

3.2.6. Other Types of Cancers (Genitourinary Cancer, Bladder Cancer,
Hepatocellular Cancer)

Chalfin et al. evaluated the T-cell counts and CTC morphologic features of metastatic
genitourinary cancer patients receiving combination immunotherapy at baseline and on
therapy at cycle 2 and cycle 3. Five distinct morphologic subtypes were identified by calcu-
lating the Shannon Index, and increasing CTC heterogeneity during therapy administration
was associated with worse OS. Moreover, patients with CTCs > 4, specific CTC morphologic
subtypes, PD-L1+, and low CD4 and CD8 T-cell counts had shorter survival [72].

Immunological response to bladder cancer is well conserved, and PD-L1 expression
is differentiated between high-grade and low-grade cancers [73]. Morelli et al. show
that 90% of non-muscle-invasive bladder cancer (NMIBC) patients have detectable CTCs,
with a median CTC count of about four. A significant correlation between high PD-L1
and reduced recurrence-free survival (RFS) makes NMIBC patients’ ideal candidates for
systemic approaches with ICIs [74].

In hepatocellular cancer (HCC), Su et al. investigated the predictive value of PD-L1
expression on CTCs in patients receiving PD-1 inhibitors combined with radiotherapy
and antiangiogenic therapy. The count of PD-L1+CTCs was found to be an independent
predictive biomarker of OS, and the objective response was more likely to be achieved in
patients with a dynamic decrease in PD-L1+CTC counts at 1 month after treatment [53].

4. Immunotherapeutics on CTCs

CTCs acquire key properties required for metastatic spread and constitute an inter-
mediate stage of metastasis [75]. They exist in the bloodstream as single cells or clusters
of cells that are oligoclonal precursors of breast cancer metastasis [76]. The discovery of
their molecular traits could facilitate the identification of targeted therapies [77]. Viable
CTCs could be subjected to a dormant state through the immune-escape mechanism of
CD47 upregulation [78,79]. Simultaneously blocking CD274 (programmed death ligand 1,
PD-L1, or B7-H1) and CD47 checkpoints on CTCs by corresponding antibodies enhances
the inhibition of tumor growth [80].

NK cells are of major importance in host immunity against cancer. Several different
approaches to NK-based immunotherapy have been reported [81]. Allogeneic NK cells
immunotherapy for recurrent breast cancer [82] and NSCLC [83] decrease CTC levels,
which reflects the efficacy of treatment. A decrease in the number of CTCs is also an
indication of oncolytic viral immunotherapy (Olvi-Vec). In an open-label phase 1b trial
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intraperitoneal, Olvi-Vec was given as monotherapy in two consecutive daily doses in
12 patients with platinum-resistant or refractory ovarian cancer. Immune activation was
demonstrated from virus-enhanced tumor infiltration of CD8+ T-cells and activation of
tumor-specific T-cells in peripheral blood, while at the same time, CTCs were diminished in
6/8 (75%) of baseline-positive patients [84]. A single-center prospective study demonstrated
the short-term safety and efficacy of irreversible electroporation (IRE) combined with
allogenic NK cell immunotherapy for unresectable primary liver cancer (PLCs). The
combination therapy of IRE and NK cell immunotherapy significantly reduced CTCs and
increased immune function and Karnofsky’s performance status. Moreover, PFS and OS
were significantly improved in the IRE–NK group, demonstrating the synergistic effect of
these two therapies [85]. Recent studies have also shown that exosomes derived from NK
cells also exhibit antitumor properties. Kang YT et al. developed a streamlined microfluidic
approach to on-chip biogenesis and harvest of natural killer cell-derived exosomes through
comprehensive studies using NK cell lines and clinical samples from lung cancer patients.
Circulating NK cell-derived exosomes have a cytotoxic effect against in-house patient-
derived expanded CTC lines [86].

TAMs are the most frequent immune cells within the tumor microenvironment [87].
Sialic acid-modified EPI-loaded liposomes (EPI-SL) inhibit breast cancer metastasis by
targeting TAMs and CTCs. A basic constituent of EPI-SL is the ligand of SA-CH, composed
of sialic acid (SA) and cholesterol (CH). This is critical since SA-CH can directly bind
to selectin, which is highly expressed on the surface of CTCs and effectively target and
captures CTCs [88]. A HER2/neu vaccine-based immunotherapy for breast cancer has
been reported in a pilot study by Stojadinovic A. et al. HER2/neu represents an attrac-
tive molecular target as an anticancer vaccine in breast cancer since it is overexpressed in
up to 30% of breast cancers. E75+GM−CSF vaccination was applied in 16 patients with
HER2/neu-expressing primary breast cancer, while thirteen of the 16 patients (81.3%) had
at least one HER2/neu+CTC (mean: 2.1 ± 0.1 CTC/20 mL) in the peripheral blood. After
vaccination, a reduction in CTC/20 mL (pre-vaccination 3.9 ± 1.5 vs. postvaccination
0.7 ± 0.4, p = 0.077) and HER2/neu+CTC/20 mL (pre-vaccination 2.8 ± 1.0 vs. postvacci-
nation 0.5 ± 0.2, p = 0.048) was demonstrated [89].

In-vitro experiments have shown that immune activation of the monocyte-derived
dendritic cells (Mo-DCs) using patients’ own CTCs is feasible. Kolostova K. et al. per-
formed a co-culture of mature Mo-DCs (mMo-DCs) and autologous non-target blood cells
(NTBCs). The activation effect of mature Mo-DCs on T-cell activation was monitored using
multimarker gene expression profiling. Moreover, mMo-DCs might play a significant
role in the PD-L1/PD1 regulatory axis since an elevated gene expression of PD-L1 was
observed [90].

5. Future Perspectives and Conclusions

Liquid biopsy represents a novel, non-invasive approach for detecting and monitoring
cancer through the analysis of its biological components, such as CTCs. The main challenge
of the liquid biopsy era is the primary detection of minimal residual disease (MRD), where
cancer cells, disseminated from the primary tumor, are non-detectable with conventional
clinical or radiological tests, increasing the probability of new tumors formation of high
metastatic potential. Sensitive and specific isolation and detection of CTCs is very impor-
tant, especially in the case where surgical removal of the tumor is difficult. In this case,
the information from the tumor cannot be available, and thus, oncologists do not have the
proper guidance for the correct administration of targeted therapy to the patients.

Immunotherapy activates the body’s immune system to destroy cancer cells by enhanc-
ing the recognition ability of immune cells to the surface antigens of tumor cells, achieving
their elimination. PD-L1 is a critical immune checkpoint protein that binds to PD-1 in T
cells. ICIs are blocking the PD-1/PDL-1 interaction enabling immune system attack and
sequentially destroying the cancer cells. That being said, it highlights the necessity of
technologies that can accurately determine and assess the status of PD-L1 biomarkers and



Biomedicines 2023, 11, 1768 11 of 15

guide clinical oncologists as to whether cancer patients are suitable for immunotherapy.
However, larger clinical studies are needed to be performed for the evaluation of the PDL1
status of CTCs and the integration of the PD-L1-CTC test into daily clinical practice.
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Abbreviations

Full Name Abbreviation Full Name Abbreviation
Programmed death-ligand 1 PD-L1 Programmed cell death protein PD1
Circulating Tumor Cells CTCs Food and Drugs Administration FDA
Circulating Tumor DNA ctDNA Metastatic breast cancer MBC
Natural Killer NK Immune checkpoint inhibitors ICIs
Dendritic cells DC Tumor-associated neutrophils cTAN
Small Cell Lung Cancer SCLC Inflammatory breast cancer IBC
Progression Free Survival PFS Cancer-associated macrophage-like cells CAMLs
CTC count variation ∆CTC Overall survival OS
Pleural EpCAM-positive cells PECs Metastatic prostate cancer mPC
Malignant pleural effusion MPE Metastatic colorectal cancer MCC
Urothelial Cancer UC Non-small cell lung cancer NSCLC
Merkel Cell Carcinoma MCC European Organization for Research and Treatment of Cancer EORTC
Recurrence-Free Survival RFS Metastatic renal cell carcinoma mRCC
Hepatocellular cancer HCC Head and neck squamous cell carcinoma HNSCC
Irreversible electroporation IRE Next-generation sequencing NGS
Sialic acid SA Triple negative breast cancer TNBC
Cholesterol CH Non-muscle-invasive bladder cancer NMIBC
Mature Mo-DCs mMo-DCs Sialic Acid-Modified EPI-Loaded Liposomes EPI-SL
Non-target blood cells NTBCs Monocyte-derived dendritic cells Mo-DCs
Oncolytic viral immunotherapy Olvi-Vec Minimal residual disease MRD
Immune-related adverse events irAEs
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