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Abstract: The spread of machine learning models, coupled with by the growing adoption of electronic
health records (EHRs), has opened the door for developing clinical decision support systems. How-
ever, despite the great promise of machine learning for healthcare in low-middle-income countries
(LMICs), many data-specific limitations, such as the small size and irregular sampling, hinder the
progress in such applications. Recently, deep generative models have been proposed to generate
realistic-looking synthetic data, including EHRs, by learning the underlying data distribution without
compromising patient privacy. In this study, we first use a deep generative model to generate syn-
thetic data based on a small dataset (364 patients) from a LMIC setting. Next, we use synthetic data
to build models that predict the onset of hospital-acquired infections based on minimal information
collected at patient ICU admission. The performance of the diagnostic model trained on the synthetic
data outperformed models trained on the original and oversampled data using techniques such as
SMOTE. We also experiment with varying the size of the synthetic data and observe the impact on
the performance and interpretability of the models. Our results show the promise of using deep
generative models in enabling healthcare data owners to develop and validate models that serve
their needs and applications, despite limitations in dataset size.

Keywords: electronic health records; synthetic data; low-middle-income countries (LMICs); hospital-
acquired infections

1. Introduction

Clinical decision support systems (CDSS) are important tools to promote optimal
patient care, safety, and use of resources. In low and middle-income countries (LMICs),
where an estimated 8,000,000 deaths occur every year as a result of low-quality (but
accessible) care, such systems have the potential to make a huge impact [1]. Developing
CDSS applications using electronic health records (EHRs) and machine learning (ML)
techniques has gained increased interest from the research community [2]. Despite the
promising results of many of these applications, the performance of ML models is highly
dependent on the availability of training data [3,4]. ML models tend to be data hungry,
and can easily overfit and under-perform when trained on a small dataset [3,4].

Most CDSS have been developed in high-income countries making use of huge
datasets available from EHRs [5,6]. Consequently, they fail to support decision-making in
many diseases that are prevalent in low-resource settings, resulting in an unmet need for
ML research applications that are developed and validated for low-resource settings. Even
if CDSS address issues common to all resource settings, those developed from high-income
datasets are usually unsuitable for direct deployment in LMIC settings due to differences
in the prevalence of diseases and demographic distribution [7–9], and require adaptation
using data from these populations [10]. For example, hospital-acquired infections (HAI)
are well-established markers of healthcare quality as well as being significant causes of
mortality, and morbidity in patients throughout the world. They are a particular concern
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in LMICs and CDSS predicting those at risk of HAI would be of huge value in improving
patient outcomes. However, as HAI is closely linked to the local context, the development
of these is particularly reliant on high-quality local data.

EHRs are rarely available in LMICs [11] and their healthcare systems often suffer
from infrastructural and diagnostic capacity constraints [12], frequent changes in strategic
healthcare policies, and political instability [13], all of which could impact the quantity and
quality of routine healthcare data collected from such clinical settings. Manual collection of
high-quality large-scale data is unfeasible in terms of cost and personnel. The dependence
on data slows down the optimal development and utilization of CDSS, specifically in
resource-constrained clinical settings.

Many of the current medical statistics and data-driven models rely on methods such
as Synthetic Minority Oversampling TEchnique (SMOTE) which oversample the training
data, especially in imbalanced settings. Oversampling methods could introduce flawed
correlations and dependencies between samples and result in limited data variability [14],
all of which could severely underperform in testing environments. Recent works in deep
learning research have proposed generative models that learn the underlying data dis-
tribution and generate realistic-looking data while preserving the privacy of the original
samples. These deep generative models, including Generative Adversarial Networks
(GANs) and Variational AutoEncoders (VAEs) [15,16] have been originally proposed and
validated for the imaging domain where quantitative and qualitative evaluation by experts
could not differentiate the real images from those generated by the models. Despite being
very relevant and highly needed, using deep generative models for synthesizing EHRs for
low-resource clinical applications is often not discussed nor motivated in most proposed
works [17].

To this end, this paper proposes synthetic data as a solution for developing models
based on small datasets collected from LMIC countries. To do so, we train a GAN-based
model to learn the underlying data distribution and generate synthetic samples that could
be utilized for training purposes. Specifically, we utilize a small already published dataset
(364 patients) collected from an Intensive Care Unit in Vietnam [18], with variables collected
at admission and a binary outcome indicating if the patient received a hospital-acquired
infection. With the increased burden of antimicrobial resistance, especially in LMICs, it is
vital to develop risk scores to predict the probability of developing such infections. This
could allow the clinical staff to take anti-septic measures, reduce unnecessary antibiotics
prescriptions, and introduce timely interventions to prevent prolonged lengths of stays.
The proposed method provides a plausible solution that could be used for developing
diagnostic models despite data scarcity in LMICs. Our contributions could be summarized
as follows.

1. Deep generative models for LMICS. For the first time, we demonstrate the feasibility
of using generative models for synthesizing data that is used to develop ML models
from small datasets from LMIC healthcare settings.

2. Comprehensive data utility evaluation. We evaluate the utility of the synthetic data
in comparison to other commonly used approaches and demonstrate a superior
performance using models trained on synthetic data. We also showcase the impact of
synthetic tabular data size on the performance of the predictive model in a series of
experiments where the synthetic data training size is varied.

3. Interpretability analysis: We conduct a post-hoc SHapley Additive exPlanations
(SHAP) interpretability analysis to investigate the impact of using various training
sets on the feature importance in the test set predictions, which is a new approach for
evaluating deep generative models for EHRs.

The structure of the paper is as follows. In the methods, we first describe the dataset
used in the study followed by an explanation of the model used to generate the synthetic
data. The other subsections in the Section 2 discuss the predictive modelling task and the
baseline methods used for comparing the performance of the proposed model followed by
an overview of the interpretability analysis. In the Section 3 we present the performance of
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the models and the feature importance analysis findings. In the Section 4, we interpret the
findings, discuss the limitations and strengths of the work and outline the future outlook
for related research directions.

2. Materials and Methods
2.1. Dataset Description

The data used in this work is collected from Ho Chi Minh City Hospital for Tropical
Diseases, Vietnam, and released for open access [18]. The patients included in this study
totalled 364 individuals who were all admitted to the ICU and stayed at least 2 days. The in-
cluded variables are those readily available at the admission of ICU, which we categorize
into co-morbidities, demographics, and admitting diagnosis. The admission diagnosis
included one of five categories: (1) Tetanus, (2) Sepsis, (3) Local Infections, (4) Dengue, and
(5) Internal Medicine disease. According to the original study documentation, the local
infections included cases of pneumonia, cellulitis, urinary tract infection, and spontaneous
bacterial peritonitis while the internal medicine diseases included kidney failure, myocardi-
tis, myocardial infarction, malignant hypertension, diabetic ketoacidosis, and epilepsy [18].
The outcome of interest is a binary label indicating if the patient acquired an infection
during their ICU stay. The included acquired infections in the dataset were pneumonia,
bloodstream infection, and urinary tract infection, all of which were defined according to
the Centers for Disease Control and Prevention Criteria 2014 [19].

2.2. Synthetic Data Generation

To evaluate the feasibility of using synthetic data as a training set, we apply a random
stratified train-test split for our data to obtain separate training and test sets. We use a
70–30 split, which is a common choice for various machine learning studies [20], where
the training data is used to train the generative model and the held-out test set is used to
evaluate the performance of the downstream predictive model. While there are various
generative models such as VAEs, we focus on GANs as they generate higher fidelity data
and demonstrate higher performance in downstream predictive tasks [21]. Furthermore,
VAEs are better suited for imaging [22] or time-series tasks [23] and less commonly used
for generating tabular particularly discrete data such as our dataset. For this purpose,
the training set is used to train the GAN model for tabular data, namely medGAN [24].
medGAN is considered one of the early works that adapted GANs for tabular EHR data,
where the authors proposed an autoencoder to address the original GAN architecture’s
incompatibility with dealing binary and discrete features. Upon training the GAN model
the size of synthetic data is determined at inference time.

2.3. Predictive Modelling Task and Baselines

The generated synthetic data is used to train a simple machine learning model to pre-
dict hospital-acquired infections during the ICU stay of the patient. Three different types of
machine learning models were evaluated, which were Random Forest [25], Support Vector
Machines (SVM) [26], and K-Nearest Neighbour (KNN) [27], respectively. The choice of the
three models is motivated by their relative simplicity, with often comparable performance
to many advanced models, making them a good candidate for deployment in hospitals
in LMICs. We compare the performance of the models trained on the synthetic data to
those trained on the (1) original small training set and (2) oversampled training data using
SMOTE. To better understand the impact of the synthetic data size on the predictive model
performance, we train the GAN model to synthesize data of various sizes at inference.
The synthesized data is then used to train the predictive model, where the performance
is compared to that of models trained with original and oversampled data. Each of the
machine learning models was trained using 3-Fold Stratified K-Fold validation, to choose
the best hyperparameters using GridSearch to make the predictions on the held-out test
set. The used hyperparameter ranges are included in the Supplementary Material Table S1.
The final performance is reported on the held-out test set in terms of Area Under the
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Receiver Operating Characteristic Curve (AUROC) [28], Area Under the Precision-Recall
Curve (AUPRC) [29], and balanced accuracy with confidence intervals computed using
bootstrapping with 1000 iterations. While there are a variety of metrics that can be reported
for predictive models (e.g., precision, recall, specificity) [30,31], our choice of AUROC and
AUPRC was driven by their ability to summarise the trade-off between commonly reported
metrics at various thresholds. For instance, the AUROC metric quantifies the trade-off
between specificity and sensitivity at various thresholds [32], while AUPRC summarizes
the trade-off between precision and recall at various thresholds [29]. We also choose to
report balanced accuracy along with AUROC and AUPRC as they are more robust and
indicative of the performance in the presence of imbalanced labels such as our dataset and
outcome of interest when compared to normal metrics such as accuracy. Reporting metrics
such as AUROC and AUPRC is a common practice in machine learning models [33,34],
which can make it easier to interpret the findings and reduce the over-optimistic results of
a single metric on its own.

The predictive modelling and data preparation was performed using Python (ver-
sion 3.7) and the predictive models were trained using the scikit-learn package imple-
mentation. An overview of the predictive modelling and evaluation of our approach is
presented in Figure 1.

Original Real Data (a)

(b)

Held-out Real  Test Set

Real Training Data Synthetic Data

Generative Model

Predictive
Model 

Training 

Origional 
(Real Training Data)

SMOTE
(Oversamplled
Training Data)

Synthetic Data

Predictive
Model 

Training 

Predictive
Model 

Training 

Figure 1. Overview of the proposed model trained on the synthetic data. (a) The dataset is split
into training and a held-out test set. The training set is used to train the deep generative model
that generates synthetic data. (b) A predictive model is trained in three different setups, (1) original,
(2) SMOTE, and (3) synthetic data, which are evaluated on the held-out test set and compared in
terms of the performance metrics.

2.4. Interpretability Analysis

In addition to reporting the performance of the models, we also evaluate the impact
of using the various training sets on the model by conducting feature importance and
interpretability analysis using post-hoc SHapley Additive exPlanations (SHAP) [35]. We
use SHAP as the method to conduct the interpretability analysis due to its relative simplicity
in interpreting the values, computational efficiency, and compatibility with a wide range
of models. SHAP values are derived from a game theoretic basis, where the goal is to
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explain the ML model’s predictions for each instance by calculating the contribution of
each of the features to the prediction. While SHAP values are computed for each of the
instances separately, they are often reported in their aggregated format for all the features
across all the samples. In this analysis, we report the mean absolute SHAP value for all
the features, which indicates the relative importance of the feature in terms of the impact
on the prediction across the test set. Specifically, we run the SHAP analysis for the models
trained using (1) original (2) SMOTE, (3) synthetic data, using random forest classifier, and
compare the relative importance of features. We conduct the analysis using SHAP open-
source package, particularly the SHAP tree explainer [36], which works for tree ensemble
models such as random forest used for the predictive analysis in this work.

3. Results
3.1. Predictive Modelling Task

The original data used to develop our predictive modelling is composed of 364 unique
patients with a positive outcome prevalence of 23.6%. The population was 66.48% females
with 39.01% of patients between 45 and 60 years old. We describe the statistical distribution
of our dataset in terms of outcomes and included features in Table 1. In Table 2, we present
the results of the models trained on the original training data (70% of the original data),
the oversampled data, and synthetic data of various sizes, respectively.

Table 1. List of included patient features in terms of count and percentage prevalence in the population.

Co-Morbidities (n, %)

Diabetes 35 (9.62%)
Steroids 15 (4.12%)
Chronic Liver 55 (15.11%)
Chronic Kidney 3 (0.82%)

Demographics (n, %)

Female 242 (66.48%)
Age

16–45 133 (36.54%)
45–60 142 (39.01%)
60+ 89 (24.45%)

Admission Diagnosis (n, %)

Tetanus 17 (4.67%)
Sepsis 45 (12.36%)
Local Infections 75 (20.60%)
Dengue 204 (56.04%)
Internal Medicine 139 (6.32%)

Outcomes (n, %)

Hospital Acquired Infections 86 (23.6%)

In general, the models trained on synthetic samples of a size greater than 500 consis-
tently outperformed the model trained using the original data as well as the model trained
on the oversampled data by SMOTE across the three classifier types. For the random
forest model, the original model achieved a performance of 0.528 in AUROC, compared
to 0.577 for the SMOTE baseline. On the other hand, the models trained on synthetic data
outperformed the other baselines, with a performance of 0.610, 0.344, and 0.596 for AUROC,
AUPRC and balanced accuracy, respectively. The models trained on the original data and
SMOTE were first outperformed by the model trained with 1000 synthetic samples in terms
of AUROC and AUPRC, where it also achieved the highest balanced accuracy of 0.592. We
notice that performance gains after increasing the synthetic data size from 1000 to 10,000 are
minimal, where the balanced accuracy did not change, with minor changes observed in
AUROC and AUPRC scores. While there was a slight drop in the model trained on 10,000 in
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terms of AUROC and AUPRC, it maintained the same balanced accuracy and a higher
performance than SMOTE and original models. The performance gains using synthetic
data for the random forest model were 0.082 in AUROC, 0.088 in AURPC, and 0.107 in
Balanced Accuracy. The results are also visualized in Figure 2.

We also report the performance using SVMs and KNN models, where the models
trained on the synthetic data outperformed SMOTE and the original models. For SVM
models, we note that SMOTE achieved similar performance to the model trained on
1000 synthetic samples in terms of AUROC, but it was outperformed in terms of AUPRC and
balanced accuracy, respectively. The models trained on synthetic data first outperformed
the original model using 200 synthetic samples where the performance increased from
0.560 to 0.565 for the original model compared to the model trained using the synthetic data.

On the other hand, when using a KNN classifier, the performance of the models
trained on SMOTE and the original data did not change across the three reported metrics,
with an AUROC of 0.526, AUPRC of 0.255, and balanced accuracy of 0.500, respectively.
We observe consistent performance gains for the model trained on 10,000 synthetic sam-
ples with a performance of 0.564 for AUROC, 0.272 for AURPC, and 0.569 for balanced
accuracy respectively.

Table 2. Results of the predictive model using the various baselines for training data. The results are
reported in terms of AUROC, AUPRC, and balanced accuracy at a threshold of 0.5. Bolded numbers
indicate the highest performance in each respective metric and estimator type.

Estimator Model AUROC AURPC Balanced Accuracy

Random Forest

Original 0.528 (0.386, 0.649) 0.246 (0.157, 0.377) 0.462 (0.389, 0.542)
SMOTE 0.577 (0.428, 0.713) 0.281 (0.169, 0.451) 0.538 (0.419,0.651)
Synthetic 200 0.511 (0.370,0.658) 0.261 (0.153, 0.431) 0.548 (0.448,0.648)
Synthetic 500 0.533 (0.397,0.677) 0.266 (0.162, 0.440) 0.555 (0.459,0.657)
Synthetic 1000 0.592 (0.455,0.723) 0.286 (0.185, 0.462) 0.548 (0.450, 0.661)
Synthetic 2000 0.602 (0.459, 0.743) 0.295 (0.182, 0.469) 0.569 (0.471, 0.675)
Synthetic 2500 0.610 (0.460, 0.751) 0.334 (0.185, 0.542) 0.569 (0.470, 0.669)
Synthetic 10,000 0.605 (0.479, 0.742) 0.298 (0.191, 0.481) 0.569 (0.477, 0.674)

Support Vector Machines

Original 0.560 (0.418, 0.699) 0.267 (0.165, 0.434) 0.500 (0.500, 0.500)
SMOTE 0.568 (0.428, 0.707) 0.270 (0.170 , 0.419) 0.500 (0.500, 0.500)
Synthetic 200 0.565 (0.427, 0.703) 0.285 (0.181, 0.454) 0.548 (0.452, 0.662)
Synthetic 500 0.566 (0.427, 0.707) 0.287 (0.176, 0.459) 0.562 (0.470, 0.672)
Synthetic 1000 0.568 (0.436, 0.712) 0.288 (0.185, 0.470) 0.548 (0.450, 0.659)
Synthetic 2000 0.565 (0.431, 0.707) 0.286 (0.177, 0.457) 0.562 (0.470, 0.660)
Synthetic 2500 0.564 (0.427, 0.690) 0.286 (0.178, 0.449) 0.562 (0.465, 0.671)
Synthetic 10,000 0.565 (0.409, 0.708) 0.292 (0.178, 0.460) 0.569 (0.476, 0.674)

K-Nearest Neighbor

Original 0.526 (0.390, 0.666) 0.255 (0.154, 0.401) 0.500 (0.500, 0.500)
SMOTE 0.526 (0.391, 0.657) 0.255 (0.157, 0.405) 0.500 (0.500, 0.500)
Synthetic 200 0.528 (0.391, 0.675) 0.280 (0.167, 0.448) 0.548 (0.451, 0.650)
Synthetic 500 0.520 (0.368, 0.669) 0.281 (0.168, 0.444) 0.555 (0.455, 0.662)
Synthetic 1000 0.525 (0.386, 0.669) 0.281 (0.164, 0.445) 0.555 (0.465, 0.660)
Synthetic 2000 0.542 (0.405, 0.687) 0.290 (0.178, 0.457) 0.555 (0.464, 0.669)
Synthetic 2500 0.536 (0.394, 0.676) 0.281 (0.173, 0.437) 0.569 (0.469, 0.666)
Synthetic 10,000 0.546 (0.404, 0.689) 0.272 (0.171, 0.441) 0.569 (0.476, 0.675)
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Figure 2. The performance of the predictive model trained using synthetic data of various sizes,
SMOTE, and the original training set.

3.2. Interpretability Analysis

The post-hoc SHAP interpretability analysis for the random forest models revealed the
relative importance of the features in making predictions for each of the baseline models
trained with various training sets, as shown in Figure 3. We chose the random forest
models for this analysis as they achieved the highest score across the three evaluated
classifiers, and we provide the SHAP analysis results of the two other classifiers in the
Supplementary Material Figures S1 and S2, respectively. The most predictive features
in the random forest model trained on the original data were a patient age > 60 years,
female sex, and an admission diagnosis of Tetanus, which was in the top five for the
models trained on synthetic datasets with the highest predictive feature being patient
age > 60 years. The model trained using oversampled data using SMOTE, had a different
order where patient age > 60 years ranked as the fifth most predictive feature after four
features, indicating admission at diagnosis. The original model’s top five predictive features
were patient age > 60 years, female sex, admission diagnosis of tetanus, and admission
diagnosis of sepsis and chronic liver disease. On the other hand, the most predictive
features for the model trained using oversampled training data via SMOTE were: admission
diagnosis of Sepsis, admission diagnosis of local infections, admission diagnosis of Tetanus,
admission diagnosis of Dengue, and patient age > 60 years. We notice that the synthetic
model of 1000 patients had a different order of predictive features, where 4 out of 5 features
were related to either sex or age and 1 indicated an admission diagnosis of tetanus. Similarly,
the SHAP analysis of the highest performing model, trained on 10,000 synthetic samples,
shows the patient age > 60 years as the most predictive feature followed by the admission
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diagnosis of tetanus, patient age 45–60 years, age 16–45 years, and female sex. The top
predictive features for the models trained on synthetic samples were very similar with
minor differences in the mean absolute SHAP value, which is also reflected in the similar
performance in the predictive modelling tasks.
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Figure 3. Mean absolute SHAP values across the baseline models trained on different training sets
which included the original training set, SMOTE, and two models trained on synthetic datasets of
various sizes.

4. Discussion and Conclusions

Despite the increased research interest in using deep generative models, a gap exists
in identifying the opportunities and limitations such models have in ML applications for
low-source settings. To the best of our knowledge, this work is the first to investigate
the use of deep generative models for generating EHRs from LMICs, where the datasets
often come with small sizes and feature sets. Furthermore, our work validates the use
of this synthetic data for real-world CDSS applications of high importance in LMICS,
namely predicting HAI. Predicting HAI presents a challenge for clinicians since very
limited data is collected from such settings. Improving prevention and treatment around
HAI using CDSS is however a priority. Antibiotic resistance presents a global health
challenge with an estimated death toll in 2019 alone, larger in magnitude than that of major
diseases such as HIV and malaria [37]. LMICs tend to be one of the highest prescribers
of antibiotics [38,39], yet they remain with limited antibiotic stewardship programs [12].
With the increased burden of HAI and its link to antimicrobial resistance, especially in
LMICs, our work aims to fill a gap by developing simple CDSS to predict the probability
of developing such infections despite the data scarcity. The proposed approach allows
for improving diagnostic accuracy and performance without adding extra burden to the
clinical staff involved with collecting more data, which is often not feasible. Furthermore,
the interpretability component would allow for a better and more informed understanding
of the risk scores predicted for each patient, towards machine learning transparency. The
impact of a CDSS in providing early prediction to the clinical staff would allow the clinical
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staff to prioritize preventative strategies, optimise antimicrobial stewardship, as well as
track care quality improvement, paving the way for better patient outcomes, with reduced
operational costs related to hospital-acquired infections and patient deterioration.

While many papers have shown the feasibility of developing CDSS, very few discuss
the challenges associated with deployment and real-world validation, especially in LMICs.
Example challenges that are commonly discussed include integration in clinical workflows
and medical staff adaption and decision-making process [40], security [41], and interoper-
ability [42]. We believe that this work addresses an untapped area where data is scarce in
terms of feature counts as well as the number of patients, which presents challenges for
both the development and robust validation of CDSS. Another contribution of this work
is demonstrating the impact of the size of the generated data on the performance of the
predictive model, which we believe is an understudied area of research. We note that while
many works investigated using deep generative models and synthetic datasets [43,44],
to the best of our knowledge this is the first to investigate the impact of the synthetic dataset
size with regards to EHRs applications.

In addition, several related works investigated the impact of using synthetic data in
downstream tasks [44,45], but this work is the first to investigate the interpretability of
models trained on synthetic data compared to other baselines such as SMOTE and the
original training data. Older age and underlying medical conditions such as diagnosis at
admission were identified as the most predictive features in both the original and models
trained on synthetic datasets, which is also consistent with medical knowledge [46,47].
The interpretability analysis showed consistency in the ranking of the five most predictive
features in the models trained on the synthetic samples, which is reflected in the similar
predictive performance of the models trained on synthetic samples. Despite the comparable
performance of the models trained on the original training samples and oversampled
training data using SMOTE, we notice significant changes in the order and predictive value
of features. For example, an admission diagnosis of local infections ranked as the ninth
important feature for the original model, while it ranked as the second most predictive
feature in the SMOTE model, compared to being the sixth and seventh most important
feature for both models trained on synthetic baselines. In general, the order and SHAP
values of the most predictive features of the models trained on the synthetic samples did
not change when compared to the original model, where an admission diagnosis of Tetanus,
female sex, and an age > 60 were the most contributors to the predictions, yet the model
was able to achieve a higher performance, indicating its ability to preserve the predictive
importance of features and data distribution.

This work also has several limitations. The results of the predictive models were
not very high, which is related to the choice of using a simpler model to simulate a close
setup to the target application setting in resource-constrained settings. Future works can
investigate using more advanced models such as neural networks, and study the trade-off
between computational complexity and impact on model performance. Another limitation
of this work is related to the choice of the GAN model, where medGAN was used as one
of the simpler and earlier works of GANs for EHRs. We believe that the results could
be improved by using conditional variants of GANs [45] where the generation can be
conditioned on a specific class or outcome, or other variants with more stable training
such as Wasserstein GANs and boundary-seeking GANs [48,49] instead of the vanilla
architecture where Jensen–Shannon Divergence (JSD) is used to learn the distribution of
the data.

It is important to note that this work and the validation conducted are retrospective.
Future works can investigate a prospective validation with a comparative analysis com-
paring the performance of models trained on the synthetic datasets concerning the model
trained on the small original data. Such analysis would provide better insights to regu-
latory bodies on the approved models trained on syntactic data considering their impact
on perspective deployment. Similarly, this work investigated the use of interpretability
analysis as a way to study the underlying data distribution, however, future works could
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investigate the development of parsimonious models where a smaller set of features is
used, which might result in significant reductions in the time associated with collecting
the data.

The promising results of using synthetic data for training purposes will open the door
for new research directions in building ML models for LMIC despite data scarcity, which
can pave the way for new research and clinical decision support systems that best fit LMIC
settings. Specifically, building tools that facilitate developing quick models with minimal
data has great potential in increasing our understanding of rare and emerging diseases
despite data scarcity, which in turn will help improve evidence-based practice [50] without
increasing the burden on the clinical staff. Such efforts of synthetic data sharing will allow
to bridge the gap in the CDSS for LMICs and evaluating the performance and feasibility,
as well as fine-tuning the models built in developed countries in simulated settings without
taking incurring deployment costs. Furthermore, in the absence of protection guidelines
and regulations such as HIPAA [51] and GDPR [52] that are specific to low-resource settings,
we believe that using deep generative models could encourage data owners in low-resource
settings to share synthetic data for international research without compromising the privacy
of patients coming from low-resource settings.
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//www.mdpi.com/article/10.3390/biomedicines11061749/s1, Figure S1: Mean absolute SHAP
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included the original training set, SMOTE, and two models trained on synthetic datasets of various
sizes; Table S1: The ranges considered for the hyperparameter search for the downstream predictive
modelling section.
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