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Abstract: Mitochondria are the main site of intracellular synthesis of ATP, which provides energy for
various physiological activities of the cell. Cardiomyocytes have a high density of mitochondria and
mitochondrial damage is present in a variety of cardiovascular diseases. In this paper, we describe
mitochondrial damage in mitochondrial cardiomyopathy, congenital heart disease, coronary heart
disease, myocardial ischemia–reperfusion injury, heart failure, and drug-induced cardiotoxicity, in the
context of the key roles of mitochondria in cardiac development and homeostasis. Finally, we discuss
the main current therapeutic strategies aimed at alleviating mitochondrial impairment-related cardiac
dysfunction, including pharmacological strategies, gene therapy, mitochondrial replacement therapy,
and mitochondrial transplantation. It is hoped that this will provide new ideas for the treatment of
cardiovascular diseases.

Keywords: mitochondria; cardiomyocytes; cardiovascular diseases; mitochondrial dysfunction;
therapeutic strategies targeting mitochondria

1. Introduction

The heart is the first organ to form and function during mammalian embryonic devel-
opment, and its development is essential for the maturation of the cardiovascular system
and the formation of other organs. Mitochondria produce ATP to drive cardiomyocyte con-
traction, thereby providing energy for the heart to pump blood. In addition, mitochondria
are key regulators of the cardiomyocyte response to various stimuli such as hypoxia, oxida-
tive stress, and hyperglycemia, and are involved in a wide range of biological functions
(e.g., regulation of calcium and reactive oxygen species (ROS) signaling) [1–3]. Mitochon-
drial dysfunction has been associated with abnormal electron transport chain (ETC) activity,
reduced ATP production, abnormal transfer of metabolic substrates, overproduction of
ROS, increased mitochondrial DNA (mtDNA) damage, cristae disruption, and metabolic
defects [4]. Mitochondrial damage is prevalent in cardiovascular diseases (CVDs), and
timely correction of mitochondrial dysfunction and improvement of energy production
deficits early in the disease becomes critical in the treatment of CVDs.

2. Mitochondrial Function in Mammalian Cardiac Development

The morphological formation and developmental remodeling of the heart is a pre-
cise and coordinated process. The maturation of cardiomyocytes prepares mammals for
powerful, efficient, and sustained pumping throughout the mammalian life cycle, which
is essential to meet the functional and metabolic needs of a growing heart. In the process
of mammalian heart development and maturation, the maturation and metabolism of
mitochondria play a key role [5].
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2.1. Embryonic Stage

At the embryonic stage, anaerobic glycolysis is the preferred route of energy pro-
duction. Embryonic day 9.5 (E9.5) mouse hearts contain relatively few and immature
mitochondria, characterized by rare and disordered cristae, along with a low mitochondrial
membrane potential (MMP), high levels of ROS, and open mitochondrial permeability
transition pores (mPTP). In contrast, in E13.5 mouse hearts, mitochondria significantly
increase in mass and evolve into large round organelles rich in cristae [6,7]. In this process,
the shutdown of mPTP alters mitochondrial oxidative metabolism and redox signaling,
leading to reduced levels of ROS that drive the maturation of mitochondrial structure and
function, thereby inducing cardiomyocyte differentiation [8–10]. In addition, mitochondria
also promote embryonic heart development by increasing the content of mtDNA and
regulating Ca2+ signaling [11].

During cardiac development, several regulatory factors of mitochondrial biogen-
esis and dynamics play important roles. The transcriptional co-activator peroxisome
proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a master regulator
of mitochondrial biogenesis and cardiac energy metabolism. PGC-1α plays an important
role in heart development. PGC-1α−/− mice exhibited abnormal mitochondrial content,
increased markers of cardiac dysfunction, compromised ATP production, and diminished
cardiac inotropic responses [12–14]. Another regulator of mitochondrial biogenesis, Tfam,
was also shown to be pivotal to intact cardiac function. Targeted inactivation of Tfam in
embryonic cardiomyocytes was lethal, which was the direct result of elevated ROS prod-
ucts, DNA damage, and severely suppressed cardiomyocyte proliferation [15]. Mitofusin
2 (MFN2) is a mitochondrial dynamics-related protein that is primarily involved in the
mitochondrial fusion process. Ablation of Mfn2 in embryonic mouse hearts arrested cardiac
development [16]. Removal of Mfn2 in mouse embryonic stem cells (ESCs) impaired ESC
differentiation into cardiomyocytes [16]. MFN2 was found to be enriched at mitochondrial-
associated membranes (MAMs), which form the segments of the endoplasmic reticulum
(ER) that are tethered to mitochondria, regulating the morphology of ER and directly
linking the two through trans-organelle interactions to enhance mitochondrial Ca2+ uptake
efficiency [17,18]. Ablation or silencing of Mfn2 in mouse embryonic fibroblasts disrupted
the shape of the ER and its tethering to mitochondria, thereby reducing mitochondrial Ca2+

uptake and transport [18].
In addition to some of the above regulators of mitochondrial quality control, proteins

involved in mitochondrial protein turnover also play an important role in embryonic heart
development. For example, the mitochondrial matrix AAA+ Lon protease (LONP1), a
multifunctional enzyme involved in various aspects of mitochondrial protein turnover, was
shown to be indispensable for normal cardiac development. In LONP1-deficient mouse
cardiomyocytes, levels of proteins associated with the ETC were significantly reduced [19].
Its deletion resulted in embryonic lethality and was marked by mitochondrial swelling,
loss of cristae, as well as abnormal accumulation of protein aggregates. The Snf2-related
CREBBP activator protein (SCRAP) complex is an ATP-dependent chromatin remodeling
complex that regulates the incorporation of histone variant H2A.Z into chromatin. The
SCRAP complex was found to be essential to normal embryonic mitochondrial maturation.
Znhit1 is one of the core subunits of the SRCAP complex and has been demonstrated to play
an essential role in supporting the function of the SRCAP complex [20]. Disruption of the
SRCAP complex by deletion of Znhit1 in embryonic cardiomyocytes led to impaired heart
development at E13.5. The left ventricular myocardium was thinned and dilated, leading
to heart failure (HF) and prenatal or perinatal lethality. At the subcellular level, Znhit1
deletion impairs the integrity of the SRCAP complex, resulting in mitochondrial swelling
and crest damage. At the protein level, the expression of the mitochondrial respiratory
chain subunit components Ndufb8, SDHB, Uqcrc2, complex II, and ATP5A of Znhit1-KO
mouse hearts was significantly inhibited from E11.5 to E18.5, and ATP production in mutant
hearts was also significantly reduced. However, at the transcription level, no significant
reduction in mRNA for the above respiratory chain subunits was observed. These results
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suggested that the SCRAP complex plays a role in maintaining the mitochondrial protein
turnover necessary for normal cardiac development [21].

2.2. Postnatal Stage

After birth, mammalian cardiomyocytes undergo a number of maturation changes
associated with increased cardiac function and output, including hypertrophic growth [22],
cell cycle withdrawal [23], myosin isoform conversion [24], and mitochondrial matura-
tion [25,26]. Piquereau et al. revealed the link between the maturation of energy pathways
and cellular structure within cardiac myocytes during the development of the mouse heart
from birth to adulthood [27]. Mitochondria between myofibrils in 3-day-old mouse car-
diomyocytes were irregularly dispersed and misaligned, and there was a large cytoplasmic
space between myofibrils and myofilaments. The ultrastructure of cardiomyocytes from
7-day-old mice showed markedly reduced cytoplasmic spaces and increased mitochondrial
clusters arranged along longitudinal myofilaments. The cardiomyocytes of 21-day-old mice
were full of myofibrils, and mitochondria were arranged vertically, which was similar to
the appearance of adult cells. Cardiomyocytes from 63-day-old mice exhibited a regular
overall ultrastructure, with myofilaments and mitochondria arranged in parallel along the
longitudinal axis [27]. This constellation allows mitochondria to approach myofibrils and
sarcomere networks, expand their contact surfaces, and promote Ca2+ transport to sustain
energy supply. Mitochondrial morphology and functional maturation during postnatal
development of the heart are regulated by the estrogen-related receptor (ERR) [28], Parkin-
mediated autophagy [29], PGC-1α [6], etc. Detailed adaptations of mitochondria in the
growing heart are reviewed in [5,30].

2.3. Mitochondrial Function in the Adult Heart

The adult heart is one of the most active metabolic organs in the body, producing
roughly 30 kg of ATP per day. The approximately 6000 mitochondria in adult mammalian
cardiomyocytes account for 30–40% of the entire cell volume. Cardiac mitochondria are
involved in a wide range of biological functions, including the regulation of Ca2+ and ROS
signaling [2,3,31–34].

The mitochondrion is a double membrane organelle. The outer mitochondrial mem-
brane (OMM) is involved in the synthesis of phospholipids and precedes the initial break-
down of substances that will undergo complete oxidation in the mitochondrial matrix.
The inner mitochondrial membrane (IMM) folds into cristae towards the inner lumen
and contains more proteins than the OMM, and thus hosts more complex biochemical
reactions. The main components of the IMM are the enzymes involved in electron transport
and ATP synthesis, forming the ETC. Under normal physiological conditions, oxidative
phosphorylation (OXPHOS) produces more than 95% of cellular energy in the form of ATP.
Supporting the operation of OXPHOS are five enzyme complexes of the ETC, mitochondrial
complexes I–V [35]. The mPTP is known to be a non-selective pore located in the IMM.
As Ca2+ is taken in and released by the mitochondria, the mPTP switches back and forth
between open and closed states [36]. ROS or Ca2+ overload triggers mPTP opening, causing
mitochondria to swell and cells to die [33].

The mitochondrial matrix is the inner space in the mitochondria that is encapsulated
by the IMM and contains numerous proteins such as enzymes involved in biochemical reac-
tions such as the tricarboxylic acid cycle, fatty acid oxidation, and amino acid degradation.
The mitochondrial matrix also contains the mitochondrion’s own DNA (mtDNA), RNA,
and ribosomes. Human mtDNA is a 16,569 base pair-long closed-loop DNA molecule.
The mtDNA contains 37 genes that encode 13 polypeptides, 22 tRNAs, and 2 rRNAs of
the ETC to regulate OXPHOS and protein assembly [37]. The 22 species of mitochondrial
tRNA (mt-tRNA) are required for the translation of essential subunits of the ETC. Its mu-
tations, post-transcriptional modifications, and the metabolism of related enzymes are
important for normal mitochondrial protein translation and homeostasis [38]. Mutations in
tRNA-processing enzymes, human mitochondrial RNase P and Z, which are responsible
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for removing the 5′-extensions and 3′-tails of tRNAs, have been implicated in infantile
hypertrophic cardiomyopathy (HCM) and HSD10 disease, characterized by progressive
neurodegeneration and cardiomyopathy, respectively. For example, short-chain dehydroge-
nase/reductase 5C1 (SDR5C1/HSD17B10), a structural component of RNase P, was found
to carry missense mutations that cause HSD10 disease. In vitro biochemical analysis of
SDR5C1 mutants demonstrated reduced endonucleolytic activity and altered interaction
with TRMT10C, the methyltransferase subunit of the RNase P complex [39]. Mutations in
another RNase P subunit, PRORP, also caused mt-tRNA processing deficits, and pleiotropic
abnormalities, including but not restricted to, fetal tachycardia [40]. However, the direct
mechanistic link between these mutations and the pathogenesis of related cardiac anomalies
is as yet unclear.

Mitochondrial quality control (MQC) is an endogenous protective mechanism that
is essential for the maintenance of mitochondrial homeostasis and integrity, which are
primarily the concerted actions of mitochondrial biosynthesis, mitochondrial dynamics,
and mitochondrial autophagy [41]. Impairments of MQC mechanisms can cause mito-
chondrial dysfunction and may lead to CVDs [42–44]. Mitochondrial biosynthesis is a
dynamic process by which new mitochondria are formed in cells to maintain and restore
the mitochondrial structure, number, and function in the face of increased energy demand.
Impaired mitochondrial biosynthesis is closely associated with CVDs [45]. Mitochondrial
dynamics refers to cycles of fusion and fission that are critical to maintaining mitochondrial
function during stress. Dynamin-related protein 1 (DRP1) is a major pro-fission protein
whose activity is tightly regulated, and which removes damaged mitochondria through
mitophagy, ensuring tight control of the complex processes of cardiac cell and organ dynam-
ics [46,47]. Mitochondrial fusion in adult cardiomyocytes is necessary for the maintenance
of normal mitochondrial morphology and is essential for normal cardiac respiratory and
contractile function [48]. Mitofusin 1 (MFN1) and MFN2 are GTPases that act on the
OMM to promote fusion. Genetic depletion of MFN1/2 in the heart leads to mitochondrial
fragmentation and fatal dilated cardiomyopathy (DCM) [49]. Loss of function mutation
of Mfn2 (M376A), however, while causing mitochondrial shortening, depolarization, and
perinuclear aggregation, known as “mitochondrial clumping”, did not lead to embryonic
mouse lethality, which may be due to functional redundancy between the mitofusins [50].
Mouse embryos lacking Drp1 display mitochondrial aggregation in cardiac fibroblasts,
which die after E12.5 [51]. However, overexpression of Drp1 alone induced mitochon-
drial fragmentation and cardiomyocytes overexpressing Mfn2 alone resulted in enlarged
mitochondria, but they still exhibited normal mitochondrial respiration without cardiac
pathology or lethality [29,52]. In addition, Song and colleagues found that a heart-specific
triple deletion of Mfn1/Mfn2/Drp1 led to unique pathological cardiac hypertrophy in mice,
accompanied by defects in mitochondrial autophagy, protein imbalance, and decreased
mitochondrial biosynthesis [52]. The most apparent abnormality in these triple deficient
cardiomyocytes was the perinuclear accumulation of mitochondria [52]. These lines of evi-
dence suggested that kinetic imbalance caused by overexpression of mitochondrial fission
and fusion-related genes appears to have no effect on the heart, but imbalance caused by
gene deletion of fission or fusion proteins alone is embryonically lethal. Mitochondrial
adynamism, however, while not as lethal as an imbalance caused by deficiency of fusion or
fission alone, also caused HF and death in adult animals in the long run [52].

Mitochondrial autophagy is the engulfment of damaged or dysfunctional mitochon-
dria by autophagosomes, mainly including the PINK1–Parkin pathway and receptor-
dependent mitophagy mediated by Bnip3, Nix, or Fundc1 [53]. Most CVDs are associated
with either activation or inhibition of autophagy, including HF, ischemic heart disease,
cardiac hypertrophy, cardiomyopathy, and ischemia–reperfusion (IR) injury [54–57].

2.4. Mitochondrial Adaptations with Age

During cardiac aging, systolic dysfunction, left ventricular hypertrophy, and increased
cardiac fibrosis, accompanied by mitochondrial accumulation of protein aggregates, con-
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tribute to cardiac dysfunction [58–61]. The size of mitochondria increases in senescent
cardiomyocytes, the internal ultrastructure is disordered, the matrix appears translucent,
the number of crests decreases significantly, and they begin to lose their strict parallel
position. During normal aging, mitophagy levels in mammalian tissues are significantly
reduced [62]. This might account for the known accumulation of damaged mitochondria
and provides a mechanism for the observed defects in mitochondrial function and increased
oxidative stress in senescent tissues and organs [63,64]. In addition, mtDNA is surrounded
by oxygen radicals, and its mutation rate is ten times higher than that of nDNA. With age,
mtDNA mutations accumulate progressively, copy number decreases significantly, and
the abundance of the mitochondrion’s own RNA (mtRNA) and the rate of mitochondrial
protein synthesis decrease [65,66]. In addition, impaired mtDNA replication and excision
can lead to double-strand breaks, due to the unique replication mechanism as well as the
lack of DNA damage repair system in mtDNA, thus causing massive base deletions [67].
In a single-cell sequencing study in the elderly, more than 90% of mtDNA mutations were
found to be localized in protein-coding genes and tRNA gene regions, and the vast majority
(>75%) of protein-coding gene mutations were nonsynonymous mutations. While direct
evidence of aging-induced alterations in mtDNA-encoded subunits is scarce, we postulate
that the mutations and copy number alterations that occur during aging will lead to aber-
rancies in ETC subunit expression [68]. The accumulation of massive mtDNA deletions
leads to an increase in ROS and free radicals, while the function of associated free radical
scavenging enzymes is reduced, and thus the balance between pro-oxidative stimulation
and antioxidant defense is lost [69,70]. Increases in ROS production, in turn, exacerbate
OXPHOS impairment, leading to a loss of metabolic fitness and, ultimately, myocardial
abnormalities during aging [61,71]. At the same time, protein aggregates and lipofuscin
appear in cardiomyocytes. Protein oxidation and ubiquitination increase, while autophagic
activity decreases, leading to the accumulation of harmful cellular waste, thereby produc-
ing a positive feedback loop, gradually aggravating oxidative stress and mitochondrial
dysfunction [60,72–76]. Many of these alterations in aging cardiomyocytes are also present
in CVDs, suggesting common molecular bases between cardiac aging and CVDs [77].

In addition, a gradual decline in mitochondrial activity leads to heterogeneity and
dysregulation of key metabolites that also extensively affect the aging process [78,79].
Recently, Wu et al. found that the mitochondrial unfolded protein response (mitoUPR)
transcription factor ATFS-1 promotes the lifespan of mitochondrial mutants by activating
stress response pathways in C. elegans [80]. In prematurely aged mice, the NADH-AMPK-
p53-dependent pathway drives mitochondrial dysfunction-associated senescence (MiDAS)
and causes a pronounced secretory signature and mitotic arrest that can be rescued with
pyruvate [81]. In addition, a peptide encoded by a short open reading frame in mtDNA,
mitochondrial-derived peptide (MDP), plays a key role as a cytoprotective factor in the
cellular stress response [82]. Age-related diseases are associated with reduced plasma levels
of MDP, such as coronary artery disease [83], Alzheimer’s disease [84], and type 2 diabetes
(T2D) [85]. Therefore, a better understanding of mitochondrial dysfunction and aging and
age-related diseases might provide a basis for reducing morbidity in later life in the future.

3. Mitochondrial Dysfunction in Cardiovascular Diseases

A growing number of studies have shown that mitochondrial dysfunction is closely
associated with CVDs. Below we summarize the specific mitochondrial abnormalities
in a variety of CVDs, including mitochondrial cardiomyopathy, congenital heart disease,
coronary heart disease, myocardial IR injury, and drug-induced cardiotoxicity.

3.1. Mitochondrial Cardiomyopathy

Mitochondrial cardiomyopathy (MCM) is a genetic disease caused by mutations in
mtDNA, which leads to disturbances in mitochondrial protein homeostasis and defects in
ETC enzymes, thereby interfering with mitochondrial energy production to directly affect
cardiac function [86,87].
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MCM is frequently caused by mutations in mt-tRNAs [88]. Failure of mt-tRNA
metabolism usually results in a decrease in the activity of the ETC complexes. Recently,
some mt-tRNA mutations associated with myocardial infarction have been summarized
and described. For example, the m.8306T>C mutation in the tRNALys gene disrupts the
thymine-adenine (T-A) bond in the D-arm of tRNA, the m.3243A>G mutation that causes
inefficient aminoacylation of tRNALeu (UUR), and the m.4317A>G mutation that causes
inefficient hetero-nucleation of tRNAIle [88].

Mutations have also been identified in many other genes, including GTP binding
protein 3 gene (GTPBP3) [38], ubiquinone oxidoreductase subunit A7 gene (NDUFA7) [89],
ubiquinone oxidoreductase subunit B11 gene (NDUFB11) [90], mitochondrial small riboso-
mal protein 14 gene (MRPS14) [91], elaC ribonuclease Z 2 gene (ELAC2) [92], tafazzin gene
(TAZ) [93], and DnaJ heat shock protein family member C19 gene (DNAJC19) [94].

3.1.1. Hypertrophic Cardiomyopathy

Mutations in genes associated with the ETC complex result in impaired ATP pro-
duction and inadequate energy supply to myocardial tissue. As a result, degenerative
changes and compensatory hypertrophic hyperplasia occur in the myocardium, leading
to HCM [95]. In the transverse aortic constriction (TAC)-induced HCM mouse model,
the expression of genes involved in pathways such as calcium signaling, oxidative stress,
and energy metabolism is altered. Gene Ontology analysis revealed that the expression of
mitochondrial ribosomes and phosphorylated genes was closely related to the degree of
cellular hypertrophy, and that transcription and translation of nuclear genes involved in
OXPHOS were rapidly induced in this process [96]. Mitochondrial aberrancies in HCM
often involve genetic and functional defects of ETC complex I, particularly in the Ndufa7
gene. The expression of Ndufa7 was significantly decreased in mice subjected to TAC, a
model of pressure overload-induced hypertrophy [89]. Ndufa7 depletion led to marked
impairment of ventricular function in developing zebrafish embryos, with concomitant
upregulation of hypertrophy markers Nppa and Nppb [89]. Other complex I and IV defects
arise indirectly as a result of disturbed mtDNA replication and protein translation. Gene
mutation in thymidine kinase 2 (TK2), a gene required for proper mtDNA replication,
was identified as the underlying cause in a pediatric HCM patient [97]. ETC complex
activities of mitochondria isolated from this patient showed a profound reduction in the
activities of complex I and IV, with decreased ratio to citrate synthase. Likewise, in another
pediatric HCM patient harboring a mutation in the alanyl-tRNA synthetase 2 (AARS2)
gene, severe reductions in both the activities and amounts of complexes I and IV, were
observed. MRPS14 mutations were found to disrupt mitochondrial function by perturbing
translational elongation or mitochondrial mRNA recruitment. Interestingly, biochemical
analyses revealed that this mutation specifically induced complex IV deficiency that was
not ameliorated by other supportive treatments [91].

Mt-tRNAs also play a critical role in the pathogenesis of early onset HCM. ELAC2
encodes the long isoform of the human tRNA processing nuclease RNase Z, which is respon-
sible for the removal of the 3’ tail during tRNA biogenesis and is therefore involved in tRNA
maturation [98,99]. Mutations in ELAC2 have been linked to HCM. ELAC2 mutations were
identified in five cases of infantile HCM. The abundance of unprocessed tRNA precursors
was substantially enhanced in mutant fibroblasts derived from these individuals, which
was rescued by the exogenous supply of wild-type ELAC2. At the molecular level, impaired
protein synthesis of mitochondrial proteins, including complex I deficiency, was identified
as a potential mechanistic basis of such disease [100]. In another cohort of 13 infants, Saoura
and co-workers identified 16 novel ELAC2 variants linked to ETC deficiency, HCM, and
lactic acidosis [92]. Accumulation of unprocessed tRNA was evident in patient-derived pri-
mary fibroblasts, but further mechanistic evaluation of its functional consequences, or how
it related to cardiomyopathy, was not provided. An improved understanding was achieved
in the Drosophila model system, where cardiomyocytes displayed increased multinucleation
and ploidy in ELAC2-mutant hearts, which might explain the increased cell size present in
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HCM [101]. Additionally, mutant hearts also demonstrated increased extracellular matrix
(ECM) deposition, which may also contribute to HCM [92]. However, studies in human
samples have not yet inspected nucleation and ploidy of cardiomyocytes, or deposition
of ECM, aspects that would be worthwhile to look into in future efforts. GTPBP3 is a
conserved mt-tRNA modifying enzyme that catalyzes 5-taurinomethyluridine (τm5U)
biosynthesis at the 34th wobble position of mt-tRNAs. Genetic mutations in GTPBP3 alter
the folding and structural stability of mt-tRNAs, rendering tRNAs ineffective in recognizing
codons during protein translation, generating protein homeostatic stress, and changing the
activity of the ETC complexes. In Gtpbp knockout zebrafish, the embryonic heart developed
abnormally, with progressive hypertrophy of cardiomyocytes and disruption of cardiac
myogenic fibers, eventually manifesting as HCM [102]. Respiratory complex I, II, and IV
all exhibited significant declines in their protein levels, whereas activities were reduced
for complexes I–IV. Thus, mt-tRNA dysregulation is associated with cardiac disease, and
precise control of mt-tRNA is an essential regulatory mechanism for coordinating mRNA
translation and protein expression in cardiac homeostasis [103].

3.1.2. Dilated Cardiomyopathy

Defects in the mitochondrial ETC and metabolite circulation (tricarboxylic acid cycle
and lipid oxidation) in cardiomyocytes may also lead to ventricular systolic dysfunction,
resulting in DCM [104].

A number of mutations in mtDNA have been identified in DCM. In an mt-tRNA
mutation screen of 318 DCM cases, seven potentially pathogenic mutations were identified:
MT-TL1 3302A>G, MT-TI 4295A>G, MT-TM 4435A>G, MT-TA 5655T>C, MT-TH 12201T>C,
MT-TE14692A>G, and MT-TT 15927G>A [105]. Compared to control patients, patients
carrying these mutations had significantly lower mtDNA copy numbers, reduced ATP
production, and increased ROS production, which directly correlated with changes in
energy reserves, oxidative stress, and MMP. Of these, MT-TL1 3302A>G caused severe
defects in ETC complex I and reduced complex IV activity. The 4295A>G and 4435A>G
mutations affected the highly conserved adenosine at position 5 in the MT-TI and MT-TM
anticodon stems, respectively, impairing the aminoacylation capacity of tRNAs. However,
the exact mechanism by which these mutations lead to DCM is largely unknown. One
explanation is that structural and functional abnormalities caused by mt-tRNA mutations
impair mitochondrial protein synthesis and respiration, leading to oxidative stress and
decoupling of oxidative pathways from ATP synthesis, resulting in DCM.

There is also growing evidence of private mtDNA mutations in the pathogenesis
of DCM. In a large cohort study of 601 patients with DCM, 19 heterogeneous mtDNA
mutations (i.e., 9 tRNA, 5 rRNA, and 5 missense mutations, cf. Table 1 in [106]) were
identified from 85 patients with abnormally increased number and size of myocardial
mitochondria as well as displaying aberrant ultrastructure. Using a trans-mitochondrial
cybrid system, Govindaraj and co-workers evaluated the functional consequences of two
private mutations, m.8812A>G and m.10320G>A, and revealed significant decreases in
MMP, elevated ROS, suppressed oxygen consumption, as well as cell death [107]. Due
to the large proportion of idiopathic DCM cases, it is conceivable that the application
of genome-wide sequencing techniques, such as whole exome sequencing (WES), will
uncover increasingly more private mutations as a powerful tool in identifying rare and
private mutations, that are currently undetectable via panel testing [108]. The challenge
remains, however, in discriminating the disease-causing mutations from the vast number
of background polymorphisms.

Dysregulation of mitochondria function-related proteins encoded by nuclear genes
also plays a prominent role in DCM. Transcriptome analysis of left ventricular tissue in a
cardiomyocyte-specific mammalian sterile 20-like kinase 1 (Mst1)-overexpressing mouse
model of DCM revealed significant downregulation of the 13 mtDNA-encoded mRNAs.
Meanwhile, transcriptional activators encoded by Tfam, Tfab1, Tfab2, and Polrmt also
showed consistent downregulation. Likewise, nDNA-encoded genes involved in mt-rRNA
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processing were also downregulated in DCM mice. In the same vein, the majority of nDNA-
encoded mitochondrial aminoacyl-tRNA-synthetases, which govern tRNA function, were
decreased in DCM. In addition to the regulation of mtDNA, the expression of genes that
regulate mitochondrial protein import machinery was similarly suppressed. These findings
indicate that perturbations in nuclear genes that control mitochondrial homeostasis are
potential triggers of the DCM phenotype [109]. More definite evidence comes from a
pediatric patient with DCM with ataxia syndrome (DCMA) who harbored a homozygous
pathogenic mitochondrial DNAJC19 variant. DNAJC19 encodes mitochondrial import inner
membrane translocase subunit TIM14, and its expression was significantly reduced in
cardiomyocytes. Mitochondrial abnormalities included the increased presence of scattered
electron-dense inclusions, the molecular identities of which remain unknown [94]. A typical
example of a DCM phenotype associated with a nuclear gene defect is Barth syndrome
(BTHS), an X-linked recessive disorder caused by mutations in the gene encoding the
mitochondrial transacylase (i.e., TAZ), which leads to cardiolipin remodeling and thus
mitochondrial dysfunction [93].

3.2. Congenital Heart Disease

Congenital heart disease (CHD) is an abnormality in the morphology, structure, and func-
tion of the heart due to abnormal cardiovascular development during the embryonic period.

In search of CHD-related mtDNA mutations, Abaci and colleagues performed next-
generation sequencing on myocardial samples from 22 CHD patients, and identified 13 pre-
viously unknown mutations in ATP6, CYTB, ND5, ND4, and ND2 genes [110].

Other CHD patients, while not directly harboring mutations within the mitochondrial
genome, still suffer from the deleterious consequences of mitochondrial defects, which oc-
cur secondary to hemodynamic distortions. Several clinical studies have found widespread
mitochondrial dysfunction through the study of tissue samples from patients undergoing
congenital heart surgery [111,112]. Patients with CHD commonly suffer from the chronic
consequences of a pressure-overloaded right ventricle (RV). HF eventually occurs when
the RV is no longer able to compensate. In a study of 31 myocardial specimens (25 with
RV hypertrophy and 6 with RV failure) without mitochondrial mutations, progressive
mtDNA depletion was found as one of the initiating steps towards mitochondrial dysfunc-
tion, which marked the transition to HF [113]. Specifically, this depletion was attributed
to defective mtDNA replication and was likely regulated in an RV pressure-dependent
manner [113]. The left heart hypoplasia syndrome (HLHS) is a serious CHD with polygenic
and genetic heterogeneity. Mitochondria in the left ventricular myocardium exhibited ab-
normal shape and size, along with reduced numbers of cristae, indicative of mitochondrial
maturation defect [114]. However, whether mtDNA mutations are drivers of CHD is con-
troversial. A recent study suggested that neither mtDNA mutations nor their copy number
variations contribute significantly to the pathogenesis of CHD [115]. Cyanotic CHD, also
called critical heart disease, is a severe type of CHD in which malformation reduces the
amount of oxygen supplied to the body. In a comparative analysis of cyanotic and acyanotic
CHD patients, myocardial biopsies from cyanotic CHD patients demonstrated reduced
mitochondrial densities and ATP production, suggesting that the degree of mitochondrial
dysfunction is associated with disease severity [111]. Even as a consequent pathology,
mitochondrial impairment can serve as a potential therapeutic target in the treatment of
congenital heart defects.

3.3. Coronary Artery Disease

The pathological basis of coronary artery disease (CAD) is coronary intimal damage,
lipid deposition following impaired endothelial cell barrier function, and smooth muscle
proliferation, along with the secretion of cytokines that promote a chronic inflammatory
response, culminating in the formation of atheromatous plaques.

Mt-tRNA mutations had been previously identified in CAD [116,117]. In maternally
inherited CAD patients, a tRNAThr mutation (15927G>A) was identified that changed the
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conformation of the tRNA. This resulted in an 80% decrease in steady-state tRNAThr abun-
dance, mitochondrial protein synthesis defect, mitochondrial respiration deficiency, and
elevated ROS. Similarly, sequencing analysis of the mitochondrial genome of another pa-
tient diagnosed with inherited CAD identified 45 mutations, including 19 silent mutations,
14 D-loop variants, 8 missense mutations that affect protein-coding genes, 2 12S rRNA
variants, a 16s rRNA variant, and a homozygous 15910C>T mutation in the mt-tRNAThr

gene. Mutant cybrid lines harboring the 15910C>T mutation showed significantly reduced
tRNAThr and mitochondrial protein levels, impaired complex I and III activity, decreased
ATP production, and increased ROS production [117].

Additional indirect pathogenic mechanisms of CAD that involve mitochondria have
also been reported. For example, mitochondria have emerged as a player in CAD through
their potential interconnections with profilin. Mutations in profilin, an actin-binding
protein, result in the distorted cytoskeleton and mitochondrial morphology and impaired
mitochondrial mobility, thus impairing its fusion and fission functions [118,119]. Profilin
phosphorylates p53, which then translocates to the mitochondria to activate other apoptotic
pathways. At the same time, the profilin-SIRT3 interaction impairs the ETC and MMP,
leading to increased ROS levels [119].

Furthermore, hypertension is a major risk factor for CAD [120]. The pathogenesis
of obese hypertensive populations is associated with altered mitochondrial dynamics,
ETC, and ROS production. Mitochondrial genetic variants were found in a rat model of
hypertension in genes encoding ETC proteins, mt-tRNA, and genes related to tricarboxylic
acid (TCA) metabolism, resulting in dysfunctional mitochondrial energy production [121].
The IMM fusion protein OPA1 was significantly downregulated in a hypertensive mouse
model, leading to increased mitochondrial fission and oxidative stress, increased vascular
cell apoptosis, and reduced vascular smooth muscle cell proliferation, which predisposes
to CAD [122].

3.4. Myocardial Ischemia–Reperfusion Injury

During myocardial IR, free radical production is increased due to mitochondrial
OXPHOS disorders, xanthine oxidase catalysis, and neutrophil respiratory explosion. At
the same time, excessive production of ROS in mitochondria destroys the mitochondrial
membrane structure, resulting in the release of cytochrome c in large quantities, thereby
initiating apoptosis through the mitochondrial pathway [123].

In an ischemic or hypoxic heart, the expression of many mitochondria-related enzymes
and genes is increased, which causes mitochondrial dysfunction in cardiac muscle cells
leading to myocardial damage [124–126]. In response to ischemic stress, proprotein con-
vertase subtilisin/kexin type 9 (PCSK9) expression is strongly upregulated in the border
region of infarcted mouse hearts, and autophagy ensues [124]. Ischemia-induced ROS
triggers the feed-forward cycle of PCSK9 upregulation, which in turn aggravates ROS
accumulation. ROS inhibitors diphenyleneiodonium (DPI) and apocynin significantly
inhibited PCSK9 expression, while PCSK9 inhibition (Pep2-8/EGF-A or siRNA silencing)
reduced ROS production, suggesting bidirectional crosstalk between ROS and PCSK9. In
addition, PCSK9 and the microtubule-associated protein 1A/1B-light chain 3 (MAP1LC3,
LC3B) were also found to be highly expressed in the border region in heart sections of
patients who died of acute myocardial infarction, indicating the conservation of these
mechanisms. Further studies found that activation of the ROS-ATM-LKB1-AMPK axis was
a possible mechanism of PCSK9-induced autophagy. Mice pretreated with Pep2-8/EGF-A
demonstrated a 20–30% reduction in the infarct area, improvement (approximately 25%)
in systolic function, significant reduction in autophagic activity, and much thinner left
ventricular wall in the area around the infarct zone than in wild-type mice undergoing left
coronary artery (LCA) ligation [124]. PCSK9 knockdown in adult rats alleviated myocardial
injury induced by occlusion of the left anterior descending (LAD) branch. This protective
effect was attributed to the repression of the Bnip3 autophagy pathway and inhibition of
the inflammatory response [126].
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However, under other circumstances, mitophagy is required to clear cells of defec-
tive mitochondria during IR damage. In mouse models, cardiac IR insult induced the
expression of CK2α, the latter phosphorylated and thus inactivated the FUN14 domain
containing 1 (FUNDC1), thus suppressing mitophagy in effect. Defective autophagy led to
severe mitochondrial dysfunction, marked by the collapse of the mitochondrial genome,
inhibition of ETC complexes, stalled mitochondrial biogenesis, cardiolipin oxidation, ROS
overproduction, mPTP opening, and ultimately facilitating cardiomyocyte apoptosis [125].
Time-course transcriptome profiling in a mouse model of IR revealed elevated S100a8/a9
as an early marker of IR, while removal of this protein conferred protection from IR dam-
age [127]. S100a8/a9 inhibited the expression of the mitochondrial NDUF genes by nuclear
respiratory factor 1 signaling, thereby inhibiting mitochondrial complex I activity, causing
mitochondrial respiratory dysfunction in cardiomyocytes [127].

3.5. Heart Failure

Heart failure is a group of clinical syndromes in which ventricular filling or ejection
dysfunction is impaired due to structural or functional abnormalities of the heart and is
the end stage in the development of many CVDs. Mitochondrial dysfunction is closely
associated with the development of HF [128].

Damaged mitochondria are strong activators of inflammation. The NLRP3 inflamma-
some is a well-characterized pathogenic factor of HF [129]. NLRP3 senses mitochondrial
dysfunction, particularly mitochondrial ROS generation. In a specific type of HF, namely
HF with preserved ejection fraction (HFpEF), increased assembly of NLPR3 was observed
on hyperacetylated mitochondria. Increasing β-hydroxybutyrate level attenuated both
inflammasome formation and mitochondrial acetylation and rescued HFpEF phenotypes
in mice [130]. Therefore, in these circumstances, mitochondrial dysfunction drives HF
pathogenesis through inflammation.

Further upstream, abnormalities in mitochondria-associated proteins or enzymes have
been reported as underlying causes of mitochondrial dysfunction that lead to HF [131]. A-
kinase anchoring protein 1 (AKAP1) is localized to the OMM and is involved in regulating
mitochondrial function by interacting with the NADH-ubiquinone oxidoreductase 75 kDa
subunit (NDUFS1). In a diabetic mouse model of HF, loss-of-function and gain-of-function
experiments revealed that Akap1 deficiency inhibits ETC complex I activity by blocking the
translocation of NDUFS1 from the cytoplasm to the mitochondria, leading to mitochondrial
dysfunction and cardiomyocyte apoptosis [132]. The expression of protein kinase DYRK1B
was significantly upregulated in both failed human myocardium and hypertrophic mouse
hearts. DYRK1B binds directly to STAT3 to increase phosphorylation and intranuclear
aggregation, thereby inhibiting the expression of PGC-1α, a key regulator of mitochondrial
energy production, ultimately leading to impaired mitochondrial energy production and
HF in cardiomyocytes [133].

3.6. Drug-Induced Cardiac Toxicity

Drug-induced cardiotoxicity (DIC) is a complex variety of pathophysiological damage
to the cardiovascular system caused by drugs, which manifests clinically as systolic or
diastolic dysfunction and cardiac arrhythmias. Mitochondrial damage is a common form
of cardiotoxicity. Many drugs cause mitochondrial dysfunction through inhibition of ETC
complex activity, ROS production, lipid peroxidation, and glutathione and ATP depletion,
such as non-steroidal anti-inflammatory drugs (NSAIDs), beta-blocker drugs, selective
cyclooxygenase-2 inhibitors, arsenic trioxide (ATO), anthracyclines, etc. [134–136].

Cardiotoxicity caused by antineoplastic drugs is well studied, and its manifestations
are complex and varied, commonly including arrhythmias, myocardial ischemia, coronary
artery disease, hypertension, and myocardial dysfunction. The main chemical categories of
antineoplastic drugs that commonly cause cardiotoxicity are anthracyclines (e.g., doxoru-
bicin, erythromycin, etc.), alkylating agents (e.g., cyclophosphamide, etc.), antimetabolites
(e.g., fluorouracil), drugs that interfere with microtubule protein synthesis (e.g., paclitaxel),
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and targeted drugs (e.g., trastuzumab). Among them, treatment with anthracyclines is
prone to both acute and chronic cardiotoxicity, which can lead to impaired left ventricular
function and HF. CVDs are the leading cause of morbidity and mortality in cancer survivors
treated with anthracyclines, largely limiting the clinical use of these drugs. In clinical can-
cer patients, anthracycline-induced cardiotoxicity is characterized by myocardial damage
caused by pathophysiological changes such as protein hydrolysis, necrosis, apoptosis, and
fibrosis [137–139]. A series of toxicity studies of doxorubicin (DOX) at both organ and
cellular levels in rats and mice also confirmed mitochondrial morphological and structural
abnormalities, such as mitochondrial swelling, membrane collapse, crest loss, and matrix
cavitation [140]. ATO, a drug used to treat leukemia, increased intracellular calcium levels,
caused alterations in the activities of transcription factor Nrf2, xanthine oxidase, aconitase,
and cysteine 3, and cells exhibited increased oxidative stress, reduced innate antioxidant
status, mitochondrial dysfunction, and apoptosis [141].

Non-steroidal anti-inflammatory drugs (NSAIDs, celecoxib, valdecoxib, rofecoxib,
etc.), used to treat pain and inflammation are another class of drugs that may increase the
risk of heart attack or stroke. NSAID-induced cardiac cytotoxicity is caused by the induc-
tion of apoptotic signaling via a ROS-mediated shift in mitochondrial permeability [142].
Celecoxib, a selective cyclooxygenase-2 inhibitor, causes a decrease in complex IV activity
accompanied by MMP collapse, ROS formation, mitochondrial swelling, ATP depletion,
and lipid peroxidation [143].

Long-term use of antipsychotics (AP) is a common cause of myocardial injury and
even sudden cardiac death, and AP treatment has been reported in the clinical and preclini-
cal literature, and AP treatment is associated with increased cardiometabolic abnormalities,
ventricular arrhythmias, and sudden cardiac death in patients [144]. Mitochondrial impair-
ment is associated with the pathophysiology of a variety of psychiatric disorders, and the
use of AP further leads to mitochondrial dysfunction and decreased ATP production [145].
In a study measuring the effects of mitochondria on three typical Aps and seven atypical
Aps on mitochondrial bioenergetic in pig brains, all tested Aps (i.e., zotepine, aripiprazole,
quetiapine, risperidone, and clozapine) significantly inhibited mitochondrial complex ac-
tivity except olanzapine [146]. A preclinical animal study illustrated the effects of AP on
the cardiovascular system. The authors explored the mechanism by which AP increased
CVD risk in risperidone-treated mouse hearts and found that risperidone altered the char-
acteristics of the mouse heart proteome. Among them, mitochondrial respiratory complex I
and proteins involved in mitochondrial function and OXPHOS pathways were expressed
differently, and the oxygen consumption of the mitochondria in the heart, as well as the
consumption of systemic energy, were also altered [147]. However, cardiotoxicity studies of
AP drugs have mainly focused on their proarrhythmic risks, while the detailed mechanisms
of their mitochondrial liabilities remain to be further explored [148].

Several cardiovascular drugs also exhibit mitochondrial toxicity [149]. For example,
vasodilators (such as organic nitrates, molsidomine, etc.), can stimulate the production of
ROS, thereby causing mitochondrial oxidative damage. Side effects such as nitrate tolerance
and endothelial dysfunction occur during long-term treatment with vasodilators [150]. The
release of nitrogen monoxide (NO) from vasodilators by catabolism in the circulation tends
to induce ROS production in the presence of oxygen, causing mitochondrial oxidative
damage and dysfunction of the ETC complex. The development of tolerance to long-term
angiotensin treatment and endothelial dysfunction is also associated with increased ROS
production, which reduces the bioavailability of the drug [149,151]. Antiarrhythmic drugs
can also cause mitochondrial dysfunction. Quinidine reduced mitochondrial respiratory
function in rat kidney cells evidenced by a decrease in respiratory control index (RCI) and
ADP/O ratio [152]. In addition, quinidine was able to reduce electron transfer activity and
inhibit mitochondrial protein synthesis in the mitochondria of the rat heart [153]. Lido-
caine was able to induce structural changes in human neutrophils, reduce ATP and MMP,
and induce apoptosis [154]. Amiodarone caused hepatotoxicity during administration in
rats, which further induced cardiolipin peroxidation by increasing mitochondrial H2O2
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synthesis. At the same time, it also inhibited the activity of complex I, leading to a decrease
in hepatic ATP content [155]. In cultured rat vascular smooth muscle cells, verapamil re-
duced the perinuclear density of mitochondria, resulting in upregulation of autophagy and
antiproliferative effects [156]. These drugs have also demonstrated certain cardiotoxicity
in clinical practice, including, but not restricted to, hypotension, prolongation of the QT
interval on electrocardiography (ECG), and abnormalities of the cardiac conduction sys-
tem [157,158]. It is speculated that these adverse reactions may be related to mitochondrial
dysfunction, but direct evidence of this will be needed in the future.

In summary, there is a strong link between many CVDs and mitochondrial dysfunc-
tion. We have summarized the mitochondrial dysfunction in CVDs and the associated
mechanisms in Table 1. However, the current compilation of the relevant literature sug-
gests that the mechanisms underlying the occurrence of mitochondrial dysfunction are
relatively complex and that there is an interactive, causal relationship that requires further
exploration and research. With further investigation, the relationship between CVDs and
mitochondrial dysfunction will gradually become more apparent, providing an important
reference for the future clinical management of CVDs.

Table 1. Mitochondrial dysfunction and related mechanisms in cardiovascular disease.

Dysfunctional Mitochondrial
Component Molecules CVD Ref.

ATP DYRK1B, PGC-1α HF [133]
Autophagy, Anti-proliferative Verapamil DIC [156]
Complex I Ndufa7 HCM [89]
Complex I NDUFB11 HCM [90]
Complex I S100a8/a9 IR injury [127]
Complex I AKAP1 HF [132]
Complex IV MRPS14 HCM [91]
Complex IV Cyclooxygenase-2 DIC [143]
Complex I and IV TK2 HCM [97]
Complex IV, OXPHOS Risperidone DIC [147]
ETC ELAC2 HCM [92]
ETC SRCAP complex CHD [21]

ETC Zotepine, Aripiprazole, Quetiapine,
Risperidone, Clozapine DIC [146]

ETC, ROS Profilin, Profilin-SIRT3 CAD [119]
ETC, Mitochondrial protein synthesis Quinidine DIC [153]
MtDNA ATP6, CYTB, ND5, ND4, and ND2 CHD [110]
MtDNA Replication defects CHD [113]
MtDNA PCSK9 IR injury [159]
Mt-tRNA M.8306T>C MCM [88]
Mt-tRNA M.3243A>G MCM [88]
Mt-tRNA M.4317A>G MCM [88]
Mt-tRNA GTPBP3 HCM [102]

Mt-tRNA 3302A>G, 295A>G, 4435A>G, 5655T>C,
12201T>C, 14692A>G, 15927G>A DCM [105]

Mitochondrial morphology MFN1/2 DCM [49]
Mitochondrial morphology DOX DIC [140]
Organelle TAZ DCM [93]
Organelle DNAJC19 DCM [94]
Organelle ATO DIC [141]
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Table 1. Cont.

Dysfunctional Mitochondrial
Component Molecules CVD Ref.

Organelle Antiarrhythmic drugs DIC [152]
Organelle MtDNA, MtRNA DCM [109]
Organelle Mitochondrial density and ATP Cyanotic CHD [111]
Organelle Defects in mitochondrial maturation HLHS [114]
Organelle Mt-tRNA DCM [116,117]
OXPHOS Vasodilators DIC [150]
OXPHOS M.8812A>G, M.10320G>A DCM [107]
ETC, mPTP CK2α IR injury [125]
ROS NLRP3 HF [130]
ROS NSAIDs DIC [142]

4. Current Therapeutic Medications and Strategies

Current mitochondrially targeted therapeutic strategies focus on factors that con-
tribute to mitochondrial damage, such as the ETC and mitochondrial dynamics. These
factors are extensively involved in the progression of CVDs and therefore represent poten-
tial mitochondrial targets for CVDs treatment. Beginning in the late 1990s, an intensive
wave of preclinical and clinical research has investigated mitochondrial dysfunction as a
therapeutic target for CVDs [160]. However, to date, no molecules specifically targeting
mitochondria have been available for the clinical treatment of CVDs [161]. There is hope,
nonetheless, that breakthroughs in some of the newly developed techniques, such as mi-
tochondrial replacement therapy (MRT), may be applied in the treatment of CVDs [162].
Herein, we summarize major therapeutic strategies for targeting mitochondria in CVDs
(see also Table 2).

4.1. Mitochondrially Targeted Therapeutic Drugs

Mitochondrially targeted drugs for the treatment of CVDs largely focus on increasing
the activity of mitochondrial complexes, suppressing the production of mitochondrial
ROS, inhibiting mPTP opening, and balancing mitochondrial dynamics. While being
developed, drug candidates have fallen short of expectations, mainly undermined by
unsatisfactory target specificity and delivery. Therefore, a better understanding of the
molecular mechanisms underlying mitochondrial dysfunction in CVDs is needed in the
future to identify targets for intervention and improve drug specificity and reduce adverse
effects [163].

4.1.1. Drugs Targeting Mitochondrial Complexes

Drugs that act directly by modulating the activities of mitochondrial complex proteins
remain scarce. Elamipretide formerly known as SS-31, MTP-131, or Bendavia, is a Szeto–
Schiller peptide that selectively binds cardiolipin on the IMM, stabilizing the cardiolipin–
cytochrome c super-complex. Its binding prevents the conversion of cytochrome c from an
electron carrier to a peroxidase [164].

Numerous pre-clinical and clinical studies have evaluated the mitochondria-protective
function of elamipretide [165–167]. Elamipretide improved cardiac function and prevented
left ventricular remodeling in a rat model of myocardial infarction [165]. Elamipretide
preserved the expression of many mitochondrial function-related genes, suppressed ROS
production, and maintained the activities of complexes I and IV in the border zone [165].
The long-term effects of elamipretide were tested in a canine model of intracoronary
microembolization-induced chronic HF [166]. It improved left ventricular function in both
acute and chronic settings and restored all measures of mitochondrial function tested,
including MMP, mitochondrial state 3 respiration, maximum rate of ATP synthesis, and
ATP/ADP ratio to near normal levels [166]. Treatment of failing and non-failing ventricular
tissue in freshly transplanted children and adults with elamipretide acutely resulted in
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significant improvements in mitochondrial oxygen flux, complex I and IV activity, and
super-complex activity [168]. Due to its remarkable performance in preclinical models,
elamipretide was further advanced into clinical trials. Early incremental dose clinical trials
demonstrated that elamipretide caused favorable changes in left ventricular volumes in
relation to peak plasma concentrations, supporting a temporal association and dose-effect
relationship [169]. Currently, relevant phase 2/3 randomized clinical trials have been
completed, such as evaluating the effectiveness of elamipretide in BTHS. The results of
this trial showed that the use of elamipretide can lead to an increase in the patient’s left
ventricular volume and increased cardiac stroke volume, which can lead to improved
symptoms of BTHS [170].

In addition to the complex protective drugs mentioned above, mitochondrial complex
I inhibitors, counterintuitively, also exhibit protective effects in CVDs. Metformin is the
drug of choice for the clinical treatment of T2D, and it inhibits mitochondrial respiratory
chain complex I to activate AMPK [171–173]. However, it has now been shown to exert car-
dioprotective effects beyond glycemic control. Sardu et al. reported that metformin reduced
the risk of coronary heart disease by reducing coronary endothelial dysfunction [174]. In IR
injury in rats, metformin activated the RISK pathway, maintained mPTP in a closed state,
and reduced the size of myocardial infarction [175]. Despite these benefits, the dosage of
metformin requires awareness. Long-term exposure to metformin can cause its accumula-
tion in mitochondria, which can lead to mitochondrial dysfunction. Life-threatening lactic
acidosis occurs when its plasma concentration reaches 32 mmol/L [176]. Another ETC
complex I inhibitor, amobarbital (Amo), was shown to protect from myocardial injury by
blocking electron transfer and reducing superoxide production and Ca2+ overload [177,178].
Thus, complex I inhibitors protect the heart through dampening potential ROS production
resulting from electron flow, or by activating cardioprotective signaling pathways. How-
ever, due to the inhibition of the activity of mitochondrial complexes, these drugs may not
be applicable to the treatment of acute myocardial infarction.

4.1.2. Drugs Targeting Mitochondrial Redox State

Therapeutic approaches that use mitochondrial oxidative metabolism as a pharma-
cological therapeutic target have emerged as a very promising treatment for improving
myocardial injury. OXPHOS modulators are the most widely used class of mitochondrial-
targeted therapies, which include OP2113, Idebenone, Mito-TEMPOL, etc.

The active ingredient of OP2113, ATT, is a specific inhibitor of ROS production from
ETC complexes. It blocks mitochondrial ROS/H2O2 production without impairing electron
transfer [179]. This drug demonstrated cardioprotective properties in the acutely injured
myocardial setting. In mitochondria isolated from rat hearts, OP2113 reduced ROS and
H2O2 that were induced by high concentrations of succinate [180]. In in vitro IR-stimulated
human skeletal muscle myoblasts, OP2113 treatment induced an increase in steady-state
levels of ATP measured after reperfusion. In an in vivo rat model of IR injury, OP2113
treatment significantly reduced the size of myocardial infarcts. This drug, therefore, holds
promise for the treatment of IR injury, but further in vitro studies in human cardiomyocytes,
mammalian model studies, and clinical trial studies are needed [180].

Idebenone is a short-chain quinone lipophilic compound that acts as a potent antioxi-
dant to protect mitochondria from oxidative stress. Idebenone is effective in controlling
cardiac hypertrophy in patients with Friedreich’s ataxia (FRDA), a disease that has no
chance of spontaneous reversal. A clinical study using it to treat FRDA patients for six
months revealed a significant reduction in left ventricular weight in about half of the pa-
tients, with no serious side effects [181,182]. Idebenone is currently clinically approved, but
its mechanism of action remains controversial. It has been suggested that in the treatment
of myocardial IR injury, idebenone protects mitochondria by bypassing the dysfunctional
ETC complex I and directly stimulating the downstream electron transport system to in-
crease ATP synthesis, without apparent ROS scavenging properties [183]. However, it has
recently been shown that idebenone regulates ROS through the ROS-AMPK-mTOR axis
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to modulate ROS-dependent autophagy and inhibit iron concentration for cardioprotec-
tive effects [184]. While idebenone has demonstrated great potential in the treatment of
myocardial hypertrophy, myocardial infarction, myocardial infarction, and other related
CVDs, further research into its diverse mechanisms of action and more CVD-related clinical
studies are still needed.

Carvedilol is a β blocker with intrinsic antioxidant activity that has been described to
protect the heart’s mitochondria from oxidative damage [185]. In a 2018 prospective study
on the prevention of anthracycline cardiotoxicity with carvedilol, carvedilol was found to
reduce troponin levels and improve cardiac systolic function in treated patients with lower
rates of cardiovascular comorbidity and risk factors for cardiotoxicity [186]. Carvedilol has
been used in the treatment of a small number of children with ectopic tachycardia and QT-
prolonged arrhythmias, who displayed clinical relief and good tolerability [187]. Carvedilol
is well tolerated and has few adverse effects, but its use in clinical practice, especially in
children with CVDs, requires further studies on dosing and long-term prognosis.

Mito-TEMPOL is an antioxidant targeting mitochondria, formed by the combination
of the superoxide dismutase mimetic TEMPOL and triphenylphosphine (TPP), and is
now widely used as an antioxidant both in vitro and in vivo [188]. The lipophilic TPP
cation enables Mito-TEMPOL to rapidly cross biological membranes, including the OMM
and IMM. TEMPOL is a nitrogen–oxygen radical containing stable nitrogen oxide, which
functions to scavenge oxygen radicals [189]. In cellular models, Mito-TEMPOL can be
rapidly converted to Mito-TEMPOL-H, both forms of which inhibit lipid peroxidation.
In addition, the in vivo reduction of TEMPOL to hydroxylamine mediates a variety of
antioxidant effects. Hydroxylamine was more effective than Mito-TEMPOL in preventing
lipid peroxidation and reducing oxidative damage to mtDNA [190]. By scavenging ROS,
Mito-TEMPOL inhibited nicotine-induced opening of mPTP in the rat heart, suppressed car-
diac hypertrophy and cardiac fibrosis, and prevented nicotine-induced cardiac remodeling
and dysfunction. Its protective effect was compared against an established cardioprotec-
tant, dexrazoxane, in a syngeneic rat model where the breast tumor cell line SST-2 was
implanted into immune-competent spontaneously hypertensive rats (SHRs) treated with
DOX. Mito-TEMPOL reduced the number of lesions compared to DOX only but failed to
confer protection to the extent of that of dexrazoxane [191]. Aside from Mito-TEMPOL, TPP
has also been conjugated with other antioxidants such as ubiquinone, tocopherol, nitrones,
and plastoquinone for the treatment of targeted mitochondrial disease, and relevant studies
have been conducted in Parkinson’s disease, chronic hepatitis C, and dry eye syndrome
but not yet in CVDs [192]. Therefore, their effect on CVDs or DIC awaits further testing.

Propofol is an anesthetic that has antioxidant properties and was shown to improve
mitochondrial function. One study found that propofol can maintain mitochondrial
homeostasis by transcriptionally activating a mitochondrial protein LRPPRC, protect-
ing cardiomyocytes from hypoxia-induced damage [193]. Diazoxide, a drug designed
for hyperinsulinism was reported to negatively regulate cardiac hypertrophy by opening
mitochondrial ATP-sensitive potassium channels to reduce ROS production and Ca2+-
induced swelling, thereby avoiding mitochondrial oxidative damage [194]. It also showed
promise as a cardioprotectant during cardiac surgery possibly by preventing mitochondria
dysfunction [195].

4.1.3. Drugs Targeting Mitochondrial Permeability Transition Pore

Cardiovascular disorders such as IR injury are associated with mPTP opening. There is
ample evidence in experimental models that pharmacological inhibition of mPTP opening
reduces infarct size and inhibits cellular apoptosis [196].

Cyclosporine A (CsA) is a well-known inhibitor of mPTP opening, achieved through
its interaction with a critical regulator of mPTP, i.e., cyclophilin D (CypD). In a clinical
trial of 58 patients with acute ST-segment elevation myocardial infarction, CsA limited
infarct size during myocardial infarction and attenuated lethal myocardial injury during
reperfusion [197]. In a multicenter clinical trial of IR, intravenous CsA did not achieve
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better frontal clinical outcomes than the placebo group, which could be attributed to im-
proper timing of drug administration and coexisting conditions [197]. Therefore, accurately
identifying the potential caveats of CsA administration is essential for promoting better
clinical outcomes.

Because the high molecular weight of CsA (1202.61 g/mol) limited its bioavailability,
small-molecule cyclophilin inhibitors of CypD were sought after. C31, a small molecule
CypD inhibitor, ameliorated CaCl2-induced mitochondrial swelling and improved calcium
retention. It inhibited mPTP opening and cell death in both H9c2 cardiomyoblasts and
isolated mouse cardiomyocytes, demonstrating potential as a promising cytoprotective
agent for the treatment of IR injury, but methods to improve its myocardial distribution are
necessary to further exploit the clinical potential of this compound [198].

TRO40303 is a new cardioprotective drug that is specific to the mitochondrial translo-
cator protein 18 kDa (TSPO) and delays the opening of mPTP. Unlike CsA, it has no effect
on the calcium retention capacity of cardiomyocyte mitochondria [199]. TRO40303 reduced
oxidative stress in hypoxic–reoxygenated cardiomyocytes in vitro and reduced the size
of infarcts in preclinical animal models [200]. TRO40303 has already entered phase I clin-
ical trials, with no incidence of serious adverse reactions, and also exhibited adequate
pharmacokinetic properties, which warranted its entry into phase II [201].

Ranolazine is a clinically approved drug for arrhythmias and antiangina, which can
reduce apoptosis in response to IR damage by delaying the opening of mPTP and improving
the structural integrity of complex I [202].

4.1.4. Drugs Targeting Mitochondrial Dynamics

Impaired mitochondrial dynamics affect a wide range of cellular processes such
as mitochondrial biogenesis, ROS production, mitochondrial autophagy, and apoptosis,
leading to myocardial injury and accelerating the progression of CVDs. Pharmacological
interventions that modulate mitochondrial dynamics are therefore considered an effective
cardiovascular therapeutic strategy [203].

In CVDs, mitochondrial fission is often abnormally activated, affecting the homeostasis
of the heart [204]. For example, mitochondrial hyperfission in the cardiac reperfusion stage
of IR rats led to long-term myocardial dysfunction, while targeted inhibition of this process
restored the integrity and normal function of the myocardial tissue [205]. The Drp1 inhibitor
mitochondrial fission inhibitor 1 (Mdivi-1) improved pressure overload-induced HF by
acting as a metastable inhibitor of GTPase assembly to inhibit the GTPase function of Drp1
and reducing the transfer of Drp1 to the mitochondria [206]. The small molecule drug
dynasore can inhibit Drp1 and dynamins 1 and 2. Dynasore was shown to improve the
survival and viability of primary adult mouse cardiomyocytes under oxidative stress and
display a lusitropic effect in explanted mouse hearts [207].

Disorders of mitochondrial fusion proteins are closely related to myocardial hyper-
trophy, myocardial oxidative damage, hypertension, atherosclerosis, and other CVDs, and
therefore have garnered attention as a therapeutic target in CVDs [208]. BGP-15 is a hy-
droxylamine derivative capable of modulating the GTPase activity of OPA1, activating
mitochondrial fusion, and stabilizing the cristae membrane [209]. BGP-15 inhibited oxida-
tive stress-induced mitochondrial fracture in WRL-68, C2C12, and A549 cell lines in vitro
and in a PAH model in vivo [209]. During HF, βII protein kinase C (βIIPKC) translocates
to the OMM to bind to and phosphorylate MFN1. Phosphorylation of MFN1 by βIIPKC
located at S86 in the GTPase structural domain in MFN1 correlates with a decrease in MFN1
GTPase activity. The novel small peptide SAMβA inhibits the interaction of MFN1 with
βIIPKC (βII protein kinase C), thereby improving mitochondrial and cardiac function in
a rat model of HF [210]. In addition, trimetazidine, a clinical antianginal drug, improved
mitochondrial dynamics balance by increasing mitochondrial fusion-related proteins MFN1
and OPA2, and also reduced HF caused by stress overload through glucose uptake via the
AMPK pathway [211].
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Many other regulating molecules of mitochondrial physiology have been tested in non-
cardiovascular systems. Hence their utility in CVDs remains to be determined. Even when
inspecting the ones already tested in cardiac systems, there is insufficient evidence for their
efficacy in human disease. Improving drug specificity and pharmacokinetic profile may
yield better candidates for clinical trials. Furthermore, mitochondrial fission and fusion are
two balanced processes that are required to maintain a normal mitochondrial network in
cardiomyocytes. Therefore, therapeutic strategies targeting mitochondrial dynamics may
be limited to the temporary regulation of acute and non-chronic CVDs. This type of therapy
requires additional scrutiny to avoid excessive bias toward either side of the balance.

4.2. Mitochondrially Targeted Gene Therapy Strategies

In theory, mitochondria-targeted gene therapy can target specific abnormal mitochon-
drial genes for repair, thus achieving a true “targeted therapy”. Current mitochondrial-
targeted gene therapy strategies include gene editing, ectopic expression of mitochondrial
proteins, MRT, and mitochondrial transplantation. However, the application of these
strategies in mitochondrial gene therapy is still being explored and optimized.

4.2.1. Mitochondrial Genome Editing

Mitochondrial genome editing refers to the germline transmission of mutant mtDNA
haplotypes by intracytoplasmic microinjection of mitochondria-targeted nucleases to mod-
ify human syngeneic or oocytes at risk of mtDNA disease in order to exclude them. The
identification of mtDNA pathological variants has become routine due to the development
of new gene sequencing technologies. As mtDNA mutations need to accumulate to a
threshold before they can cause mitochondria-associated diseases, it is a good idea to repair
or excise mutated mtDNA by gene editing techniques to reduce the proportion of mutated
mtDNA in the overall mtDNA. Currently, mtDNA damage can be repaired using nuclease
technology [212,213] and CRISPR gene editing technology [214]. However, prevention
strategies for mtDNA-mediated mitochondrial disease may be less desirable due to the
heterogeneity of the mitochondrial genome.

4.2.2. Ectopic Expression of Mitochondrial Proteins

Ectopic expression of mitochondrial proteins is achieved by combining mtDNA se-
quences encoding mitochondrial proteins and mitochondrial targeting sequences and
integrating them into the genome via a vector to construct a recombinant plasmid.

Defective ATP synthesis has been rescued by transferring MTATP6, which encodes
ETC complex V, to the nucleus and successfully importing the protein into mitochon-
dria [215]. However, potential factors such as whether the ectopically expressed protein
affects mitochondrial metabolic processes or whether it can be imported into the mito-
chondria by correctly assembling with the mitochondrial targeting peptide should be fully
considered when using this technique. Lavie et al. targeted ectopic expression of REEP1
carrying pathological mutations to mitochondria in primary neuronal cultures [216]. The
mutated REEP1 protein isolates mitochondria to the perinuclear region of the neuron and
therefore impedes mitochondrial transport along the axon. Their study demonstrated
that ectopic expression of mitochondrial proteins can rescue the mitochondria of cells
in vitro, but further therapeutic applications will have to be tested in vivo [216]. However,
at present, the ectopic expression of mitochondrial protein has not been applied to mito-
chondrial dysfunction in CVDs, and future exploration and research in the cardiovascular
field are required.

4.2.3. Mitochondrial Replacement Therapy

The limitations of conventional gene therapy approaches made them fall short of
expectations in the treatment of pathogenic mtDNA-deficient diseases. MRT is an in vitro
fertilization technique used to prevent the transmission of mitochondrial diseases. MRT
is the most effective technique for preventing inherited mtDNA mutation disorders by
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blocking the transmission of mitochondrial genetic diseases to the offspring through mito-
chondrial replacement of oocytes containing mutant mitochondria [217]. There are three
main different protocols for MRT: spindle transplantation (ST), protoplast transplantation
(PNT), and polar body transfer (PBT). The resulting embryos all have genetic information
from the mother and father and healthy mitochondria from the donor.

The two most used techniques for performing MRT in current research are ST and
PNT. Tachibana et al. (2009) successfully tested ST in macaques [218]. They transferred the
spindle–chromatin complex of the recipient oocyte to the donor oocyte depleted of its own
genome (oocyte spindle transfer) to fuse into a reconstructed oocyte prior to fertilization.
The reconstituted oocytes from the mitochondrial replacement were able to support normal
fertilization, embryonic development, and the production of healthy offspring. However,
this technique would face additional technical, efficiency, ethical, social, and policy issues if
applied to humans, and long-term preclinical studies of these important and vital issues
in clinically relevant non-human primate models are necessary. In contrast, however, the
maternal ST technique is a selective reproductive technique performed pre-fertilization,
similar to prenatal diagnosis and pre-implantation genetic diagnosis [219]. Therefore, the
ST technique may be more promising and easier to implement in humans in the future.

4.2.4. Mitochondrial Transplantation

Given the complexity of mitochondrial biological functions, researchers have begun
to consider mitochondrial transfer to rescue damaged cells, that is replacing damaged
mitochondria with healthy mitochondria from donor cells. Mitochondrial transplantation
involves the isolation of active mitochondria from normal tissues, such as non-ischemic
areas, and the delivery of functionally normal mitochondria to damaged tissues and organs
by direct injection or vascular delivery. This approach can replace damaged mitochondria,
thereby restoring normal mitochondrial structure and function for the therapeutic purpose
of reducing myocardial tissue damage and improving cardiac function [220,221].

Scientists have developed cytoplasmic hybrid cell lines as a practical model for mi-
tochondrial disease. This method of fusing normal cells with mtDNA-deficient cells to
form healthy hybrids compensates for mitochondrial dysfunction in mtDNA-deficient
cells [222]. Lee et al. observed in a co-culture model that exogenous mitochondria were
preferentially transported to mitochondria-damaged cells and tissues, which has impli-
cations for the delivery of therapeutic agents to sites of injury or disease [223]. Shin and
co-workers used a pig model to show that mitochondrial transplantation by intracoronary
delivery in the heart is safe, has specific distribution to the heart, and leads to a significant
increase in coronary blood flow [224]. Pre-ischemic mitochondrial transplantation with a
single or continuous intracoronary injection prophylactically protected the myocardium
from IR injury, significantly reduced the infarct area, and enhanced overall and regional
heart function [220]. The myocardia of New Zealand white rabbits subjected to ischemic
shock were injected with mitochondria isolated from their own pectoral muscles. Injected
mitochondria were internalized by cardiomyocytes within 2–8 h. This uptake resulted
in improved cell viability that manifested as a reduced infarct area and increased ven-
tricular contractility [225]. Intracoronary injection of mitochondria 2 h into reperfusion
was found to significantly reduce the size of myocardial infarction and increase local and
systemic myocardial function in Yorkshire pigs [226]. Even more strikingly, skeletal muscle
mitochondria from children with myocardial ischemia injected into their own ischemic
myocardium led to significant improvements in ventricular function, with many parame-
ters returning to normal [227]. Moreover, there were no adverse reactions or complications
related to scarring, intramyocardial hematoma, arrhythmia, etc. [227]. This finding marks
the first successful application of this technique in human IR injury and suggests mito-
chondrial transplantation as a promising treatment modality for other CVDs. However,
whether mitochondrial transplantation affects intracellular homeostasis, and their efficacy,
compatibility, and safety issues require further consideration.
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Table 2. Therapeutic strategies for targeting mitochondria in CVDs.

Drugs/Therapy Mitochondrial Target Disease Therapeutic Mechanism Ref.

Elamipretide ETC BTHS
Increasing mitochondrial
oxygen flux, complex I
and IV

[168–170]

OP2113 ROS/H2O2 IR injury Specific blockade of
ROS/H2O2 production [179,180]

Idebenone ETC/ROS FRDA/HCM/AMI Increasing ATP synthesis;
ROS-AMPK-mTOR axis [181–183]

Carvedilol OXPHOS DIC Lower troponin levels [185–187]

Mito-TEMPOL OXPHOS DIC Scavenging oxygen
free radicals [189–191,228]

Propofol OXPHOS IR injury
Transcriptional activation
of mitochondrial protein
LRPPRC

[193]

Diazoxide OXPHOS CVD

Turn on ATP-sensitive
potassium channel
(KATP)and reduces ROS
and Ca2+-induced swelling

[194]

CsA The mPTP IR injury Inhibition of mPTP [197]

The mPTP The mPTP IR injury Improves CaCl2-induced
mitochondrial swelling [198]

TRO40303 The mPTP AMI Delayed mPTP opening. [199,200]

Ranolazine The mPTP Arrhythmia Delayed mPTP opening;
improved complex I [202]

Mdivi-1 Dynamics HF Inhibition of DRP1 [206]

Dynasore Dynamics IR injury Improved survival and
viability [207]

BGP-15 Dynamics CVD Increasing OPA1 [209]

SAMβA Dynamics HF Inhibits the interaction of
MFN1 with βIIPKC [210]

Trimetazidine Dynamics Angina pectoris
Improves mitochondrial
structural and functional
damage

[211]

PCSK9-siRNA Autophagy IR injury Inhibition of autophagy [126]

β-hydroxybutyric acid Acetylation/inflammation HFpEF
β-Hydroxybutyric acid
targets mitochondrial
hyperacetylation

[130]

MitoTALENs MtDNA CVD
Targeting mutant loci and
suppressing mutant gene
replication

[212,213]

CRISPR/Cas9 MtDNA CVD Gene editing [214]

5. Discussion and Outlook

In the past, considerable effort has been invested in elucidating mitochondrial dysfunc-
tion in CVDs and in developing mitochondria-targeted drugs and technologies. However,
many challenges remain to be addressed. The failure of conventional mitochondria-targeted
delivery drugs to achieve the desired efficacy in clinical trials is due to the fact that most are
only symptomatic treatments instead of pathogenic treatments. Furthermore, the complex
and diverse pathogenic mechanisms of CVDs cannot be addressed by a single drug directed
at the prevention and treatment of mitochondrial damage.

In contrast, gene therapy in theory remains the ultimate strategy for all-cause treat-
ment. To date, mitochondria-targeted gene therapy trials mainly treated diseases affecting
specific tissues, such as eye diseases and neurological-related disorders, with genes deliv-
ered to only a very limited number of sites. However, CVDs often involve multiple organ
systems and require systemic targeted therapies. This significantly increases the number of
therapeutic genes used and the cost of treatment. Furthermore, the risk of off-target effects
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and abnormal immune responses to systemic gene therapy poses a significant challenge.
Novel interventional therapies for mitochondrial dysfunction, such as MRT and mitochon-
drial transplantation, are now being advanced in experimental and clinical studies. To
ensure mitochondrial activity and viability, an optimal method for mitochondrial isola-
tion and storage needs to be established. In addition, further research into mitochondrial
delivery methods, dosing regimens, efficiency, and side effects, is still needed.

While many challenges remain to be addressed, we anticipate that with further ex-
ploration of mitochondrial function and therapeutic potential, future therapies targeting
mitochondrial dysfunction may become a useful option for the treatment of CVDs.
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