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Abstract: MiRNAs could play an important role in tumorigenesis and progression. The oncoprotein
MDM2 (murine double minute 2) was identified as a negative regulator of the tumour suppressor
p53. This study aims to analyse the expression of the MDM2 target miRNA candidates (miR-3613-3p,
miR-371b-5p and miR-3658) and the MDM2 gene in oral squamous cell carcinoma tumour and
margin samples and their association with the selected socio-demographic and clinicopathological
characteristics. The study group consisted of 50 patients. The miRNAs and MDM2 gene expression
levels were assessed by qPCR. The expression analysis of the miRNAs showed the expression of only
one of them, i.e., miR-3613-3p. We found no statistically significant differences in the miR-3613-3p
expression in tumour samples compared to the margin samples. When analysing the effect of smoking
on miR-3613-3p expression, we demonstrated a statistically significant difference between smokers
and non-smokers. In addition, we showed an association between the miR-3613-3p expression
level and some clinical parameters in tumour samples (T, N and G). Our study demonstrates that
miR-3613-3p overexpression is involved in the tumour progression of OSCC. This indicates that
miR-3613-3p possesses potential prognostic values.

Keywords: oral squamous cell carcinoma; OSCC; MDM2; miR-3613-3p; miR-371b-5p; miR-3658;
tumour; margin

1. Introduction

Oral squamous cell carcinoma (OSCC) refers to a group of malignancies affecting more
than 370,000 men and women each year, accounting for an estimated 177,757 deaths in
2020 [1]. In addition, OSCC is a type of cancer with 5-year survival rates reaching only
45 to 50% [2,3]. Previous studies have shown that smoking and alcohol consumption are
two well-known independent risk factors for OSCC [4,5]. In addition, genetic background,
HPV (Human Papilloma Virus) infections, oral hygiene and diet are also considered risk
factors [6–8]. Therefore, it seems important to better understand the genetic risk factors that
could be crucial for developing effective diagnostic, prognostic and treatment strategies
for OSCC.

MicroRNAs (miRNAs) are a class of small (about 18–22 nucleotides in length), non-
coding RNAs that regulate gene expression at the post-transcriptional level by directly
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targeting the mRNA’s 3′ untranslated region (3′ UTR) [9,10]. These types of tissue-specific
molecules could serve as oncogenes (OncomiRs) or tumour suppressors (oncosuppressor
miRs) [11,12]. Accordingly, miRNAs could play an important role in tumorigenesis and
progression by affecting different processes, such as cell differentiation, migration, pro-
liferation and apoptosis [13]. miRNAs are promising key biomarkers for the diagnosis,
prognosis and a possible therapeutic strategy of cancers [14].

The oncoprotein MDM2 (murine double minute 2) was identified as a negative reg-
ulator of the tumour suppressor p53. MDM2 is a protein that contains an N-terminal
p53 interaction domain, central acidic domain, Zinc-finger domain and C-terminal RING
domain [15]. This molecule is an E3 ubiquitin-protein ligase that binds to the tumour
suppressor p53, causing its ubiquitination and subsequent proteasomal degradation [16].
The proto-oncogene MDM2 encoding this protein is located on the human chromosomes
12q14.3 to q15 [17].

Based on several studies, it can be assumed that miRNAs directly target the MDM2
gene to regulate tumour progression. It has also been shown that targeting the MDM2
gene significantly reduces the viability of cancer cells and improves chemosensitivity in a
p53-dependent manner [18–22].

The present study aims to analyse the expression of the MDM2 target miRNA candi-
dates (miR-3613-3p, miR-371b-5p and miR-3658) and the MDM2 gene in oral squamous
cell carcinoma tumour and margin samples and their association with the selected socio-
demographic and clinicopathological characteristics.

2. Materials and Methods
2.1. Patient and Samples

The characteristics of the study group were presented in the previous study [23]. The
study group comprised 50 OSCC patients recruited at the Department of Otorhinolaryngol-
ogy and Oncological Laryngology in Zabrze, Medical University of Silesia, in Katowice
(Poland). The tissues (paired tumour and matching margin specimens) were obtained
following surgical resection. The tumour stage was assessed according to the American
Joint Committee on Cancer (AJCC, version 2007) [24,25] and the WHO Classification of
Head and Neck Tumours [26]. The normal tissues (margins) were checked and classified as
cancer-free by pathologists. The main inclusion criteria were as follows: written informed
consent to participate in the study, age over 18 years, no metabolic diseases (e.g., diabetes
and hypertension), or no chronic inflammatory diseases, primary tumours and no history
of preoperative radio- or chemotherapy. The data on the patients (age, sex, medical history
and the use of tobacco and alcohol) were collected using an ad hoc questionnaire. The study
was approved by the Bioethics Committee of the Medical University of Silesia (approval
no. KNW/022/KB1/49/16 and no. KNW/002/KB1/49/II/16/17) [23]. The clinical data
of the OSCC group are presented in Table 1.

Table 1. Characteristics of the OSCC group.

Parameters Patients, n (%)

Age (median): 62.5 (range: 27–87 years)
Gender

Men 38 (76)
Women 12 (24)

Smoking
Smokers 28 (56)

Non-smokers 22 (44)
Alcohol consumption

Drinker 27 (54)
Non-drinker 23 (46)

Both smokers and alcohol users 17 (34)
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Table 1. Cont.

Parameters Patients, n (%)

HPV status
HPV-positive 13 (26)
HPV-negative 37 (74)

T classification
T1 10 (20)
T2 23 (46)
T3 16 (32)
T4 1 (2)

Nodal status
N0 24 (48)
N1 2 (4)
N2 20 (40)
N3 4 (8)

Histological grading
G1 9 (18)
G2 23 (46)
G3 18 (36)

Patient status at 3 years
Alive 12 (24)
Dead 38 (76)

2.2. Expression Analysis of miRNAs and the MDM2 Gene
2.2.1. RNA and miRNA Extraction and Quantification

The methodology for the extraction was presented in previous studies [23,27]. All
tissue samples were homogenized with the FastPrep®-24 homogenizer (MP Biomedicals,
Solon, CA, USA) with Lysing Matrix D ceramic beads (MP Biomedicals, Solon, CA, USA).
The RNA and miRNAs were extracted using the RNA isolation kit (catalogue number RIK
001, BioVendor, Brno, Czech Republic) to the standard instruction. The concentration and
purity of the isolated RNA were determined using spectrophotometry in a NanoPhotometer
Pearl UV/Vis Spectrophotometer (Implen, Munich, Germany) [23,27].

2.2.2. Complementary DNA (cDNA) Synthesis

The methodology for the cDNA synthesis was presented in previous studies [23,27].
The obtained RNA (5 ng) was reverse-transcribed using the TaqMan® Advanced

miRNA cDNA Synthesis Kit (Applied Biosystems, Foster City, CA, USA) according to
manufacturer’s protocol. The whole procedure consists of four reactions: poly(A) tailing
reaction, the adaptor ligation reaction, the reverse transcription (RT) reaction and the miR-
Amp reaction. Furthermore, the obtained RNA (5 ng) was reverse-transcribed into cDNA
using the High-Capacity cDNA Reverse Transcription Kit with RNase Inhibitor (Applied
Biosystems, Foster City, CA, USA), according to the manufacturer’s protocol. The reactions
were prepared in Mastercycler personal (Eppendorf, Hamburg, Germany) [23,27].

2.2.3. Analysis of miRNA and MDM2 Gene Expression

The methodology for the miRNA and MDM2 gene expression analysis was presented
in previous studies [23,27]. The target miRNAs of the MDM2 gene were predicted by the
miRCode (version 11) [28], miRDB (version 6.0) [29] and TargetScan (version 7.2) [30] online
databases. The relative expression (RQ) of miR-3613-3p, miR-3658 and miR-371b-5p was
assessed based on the guidelines using the TaqMan® Advanced miRNA Assays (Assay ID:
478434_mir for miR-3613-3p; Assay ID: 478853_mir for miR-371b-5p; Assay ID: 479696_mir
for miR-3658; and Assay ID: 478056_mir for miR-361-5p; Applied Biosystems, Foster City,
CA, USA). The kit was supplied with primers and fluorescently marked molecular probes.
All reactions were performed in the QuantStudio 5 Real-Time PCR System and Analysis
Software v1.5.1 (Applied Biosystems, Foster City, CA, USA). The housekeeping miR-361-5p
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was used for normalizing the expression. Five surgical margin samples were used as a
calibrator. RQ was calculated using 2−∆∆Ct after normalization with the reference miRNA.
Table 2 shows the sequences of the miRNAs.

Table 2. Sequences of analysed miRNAs.

miRNA Mature miRNA Sequence

miR-3613-3p ACAAAAAAAAAAGCCCAACCCUUC
miR-371b-5p ACUCAAAAGAUGGCGGCACUUU

miR-3658 UUUAAGAAAACACCAUGGAGAU
miR-361-5p

(Housekeeping control) UUAUCAGAAUCUCCAGGGGUAC

The analysis of the relative MDM2 gene expression (RQ) was performed by real-
time PCR (qPCR) using TaqMan® Gene Expression Assays (Assay ID: Hs01066930_m1 for
MDM2; and Assay ID: Hs03929097_g1 for GAPDH), QuantStudio 5 Real-Time PCR System
and Analysis Software v1.5.1 (Applied Biosystems, Foster City, CA, USA). The kit was
supplied with primers and fluorescently marked molecular probes. The glyceraldehyde-
3-phosphate dehydrogenase gene (GAPDH) was used as an endogenous control. Five
surgical margin samples were used as a calibrator. The comparative threshold cycle (Ct)
method 2−∆∆Ct was used to determine the RQ [23,27].

2.3. HPV 16 Detection

The methodology for HPV detection was presented in a previous study [23]. DNA
was extracted from tissue samples using a Gene Matrix Tissue DNA Purification Kit (EURx,
Gdansk, Poland), according to the manufacturer’s instructions. The concentration and
purity of the isolated DNA were prepared using spectrophotometry in a NanoPhotometer
Pearl UV/Vis Spectrophotometer (Implen, Munich, Germany). HPV was detected using
an AmpliSens® HPV 16/18-FRT PCR kit (InterLabService, Moscow, Russia), according to
the manufacturer’s protocol. All PCR reactions were performed using the QuantStudio
5 Real-Time PCR System (Applied Bio-systems, Foster City, CA, USA) [23].

2.4. Statistical Analyses

The Shapiro–Wilk test was used to evaluate the distribution of the variables. The
median with interquartile range (25–75%) was used to describe expression of miRNAs and
MDM2 gene expression. The Mann–Whitney U test was used to compare the sociodemo-
graphic and clinical characteristics, miRNAs and the MDM2 gene. Correlations between
miRNAs and the MDM2 gene were calculated using the Spearman’s rank correlation analy-
sis. The level of statistical significance was set at 0.05. The statistical software STATISTICA
version 13 (TIBCO Software Inc., Palo Alto, CA, USA) was used to perform all the analyses.

3. Results
3.1. miRNA Expression and Correlations between the Expression of miRNAs and
Socio-Demographic and Clinicopathological Features

The expression analysis of the miRNAs showed the expression of only one of them, i.e.,
miR-3613-3p. We found no statistically significant differences in the miR-3613-3p expression
in tumour samples compared to margin samples (p-value = 0.738). The median miR-3613-3p
expression was 0.853 (0.515–2.424) in the tumour samples and 0.818 (0.519–1.579) in the
margin samples (Figure 1).
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Figure 1. The relative miR-3613-3p expression level in tumour and margin samples.

No association was found between the miR-3613-3p expression levels, age, gender,
alcohol consumption, HPV status and 3-year survival rates. When analysing the effect of
smoking on the miR-3613-3p expression, we demonstrated a statistically significant differ-
ence between smokers and non-smokers (0.568 vs. 1.7845, respectively; p-value = 0.006) in
tumour samples. In addition, we showed an association between miR-3613-3p expression
level and some clinical parameters in tumour samples. Patients with T2 had a significantly
lower expression level of miR-3613-3p than those with T3 (0.568 vs. 1.412, respectively;
p-value = 0.043). Furthermore, patients with N0 had a significantly lower expression
level of miR-3613-3p than those with N2 (0.591 vs. 1.257, respectively; p-value = 0.047).
Higher miR-3613-3p expression levels were also noted in patients with G2 compared to
G1 (1.581 vs. 0.455, respectively; p-value = 0.012). The respective results are shown in
Figures 2–5.
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Figure 2. The relative miR-3613-3p expression level in non-smokers and smokers.
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Figure 3. The relative miR-3613-3p expression level in patients with T2 and T3.
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3.2. MDM2 Gene Expression and Correlations between MDM2 Gene Expression and
Socio-Demographic and Clinicopathological Features

We found no statistically significant differences in MDM2 gene expression levels in
tumour samples compared to the margin samples (p-value = 0.075). The median MDM2
gene expression was 0.371 (0.165–0.705) in the tumour samples and 0.555 (0.274–0.989) in
the margin samples (Figure 6).
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Furthermore, no association was found between the MDM2 gene expression, age,
gender, smoking, alcohol consumption, HPV status, clinical parameters (TNM and G) and
3-year survival rates in the analysed samples.

3.3. Correlation of the miR-3613-3p Expression and MDM2 Gene Expression

When analysing the effect of miR-3613-3p expression on MDM2 gene expression, we
showed no statistically significant differences in the tumour or margin samples (Table 3).

Table 3. Correlation between the expressions of miR-3613-3p and MDM2 gene in tumour and margin
samples.

Tumour Margin

Spearman’s rank correlation coefficient

miR-3613-3p
MDM2 gene 0.68 0.49

p-value

miR-3613-3p
MDM2 gene 0.07 0.11

4. Discussion

MiRNAs have become the aim of many cancer studies due to their role in regulating
cellular processes and facilitating the diagnosis, prognosis and treatment strategies. Using
the analysis of the databases, we demonstrated that miR-3613-3p, miR-371b-5p and miR-
3658 could be adequate target miRNAs of the MDM2 gene. To the best of our knowledge,
our study is the first that aimed to determine the importance of selected miRNAs and
MDM2 gene expression in OSCC tumour and margin samples and their association with
the selected socio-demographic and clinicopathological characteristics. The expression
analysis of the miRNAs showed the expression of only one of them, i.e., miR-3613-3p.
When analysing the effect of smoking on the miR-3613-3p expression, we demonstrated a
statistically significant difference between smokers and non-smokers. The effect of smoking
on miRNA expression in head and neck squamous cell carcinoma has been demonstrated by
other studies. The tobacco-specific nitrosamine-NNK (4-(methylnitrosamino)-1-(3-pyridyl)-
1-butanone) has been identified as an important inducing factor for the upregulation
of miR-21 and miR-155 and the downregulation of miR-422 [31]. Possibly, miR-3613-
3p expression is also regulated by the chemical compound. In addition, we showed an
association between miR-3613-3p expression level and some clinical parameters in tumour
samples (T2 vs. T3, N0 vs. N2 and G1 vs. G2). Our results suggest that miRNA could
be involved in the pathogenesis of OSCC. Other analyses showed the importance of miR-
3613-3p in the tumorigenesis of other cancers. Chen et al. [32] reported that a frequent
genomic deletion and changes in miR-3613-3p expression were found in breast cancer.
The miR-3613-3p expression level was lower in the tumour tissues and serum of breast
cancer patients [32]. Zhang et al. [33] demonstrated that miR-3613-3p could be an inhibitor
of hepatoma cell proliferation [33]. In addition, it was discovered that miR-3613-3p was
downregulated in colon cancer cell lines [34]. In their study, Pu et al. [35] found that
miR-3675-3p was a promising biomarker of different stages of lung adenocarcinoma [35].
Other authors showed that miR-3613-3p regulates genes of the EGFR signalling pathway
in the epithelial–mesenchymal progression of lung adenocarcinoma [36].

The roles of miR-371b-5p and miR-3658 in cancer pathogenesis have been analysed
in other types of cancer (non-small cell lung cancer, hepatocellular carcinoma and blad-
der cancer and colorectal cancer) [37–43]. Luo et al. [37] found that miR-371b-5p was
significantly upregulated in non-small cell lung cancer, which resulted in increased cell
proliferation, migration and invasion [37]. The overexpression of this miRNA was also
reported in cancers, such as hepatocellular carcinoma and bladder cancer [38,39]. On the
other hand, miR-371-5p was notably downregulated in colorectal cancer and repressed
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the cell proliferation, invasion, metastasis and self-renewal of this cancer [40,41]. In turn,
miR-3658 was upregulated in bladder cancer. Furthermore, a higher miR-3658 expression
was significantly associated with lymph node invasion, distant metastasis, histological
grade, TNM stage and tumour recurrence [42]. Of note, each type of cancer has a unique
microRNA expression profile that could potentially distinguish it from normal tissues and
other types of cancer [43].

The MDM2 protein is a key negative regulator of the tumour suppressor p53. This
oncoprotein is involved in the pathogenesis of different types of cancer, such as breast
cancer, cervical cancer, endometrial cancer, lung cancer, liver cancer, oesophagogastric
cancer, colorectal cancer, sarcomas, osteosarcomas, gliomas, melanomas, hematopoietic
malignancies, papillary thyroid cancer and ovarian cancer [16,44–50]. The overexpression
of the MDM2 protein was also demonstrated in head and neck squamous cell carcinoma,
laryngeal cancer and squamous cell carcinoma of the tonsillar region [51–54]. Friesland
et al. [52] reported that changes in the level of MDM2 were also associated with a worse
prognosis in the squamous cell carcinoma of the tonsil area [52]. Our analysis showed
no statistically significant differences in the MDM2 gene expression level in the tumour
samples compared to the margin samples. Moreover, the change in MDM2 gene expression
was not associated with any socio-demographic or clinicopathological features.

Several miRNAs, such as miR-192, miR-194, miR-215, miR-221, miR-509-5p, miR-944,
miR-1305, miR-585, miR-548b-3p, miR-219a-2-3p, miR-518, miR-143 and miR-3928, have
been studied for their ability to target the MDM2 gene. These analyses concerned various
malignancies, such as multiple myeloma, hepatocellular carcinoma, pancreatic cancer,
colorectal cancer, non-small cell lung cancer, glioma, breast cancer, pituitary adenoma,
gastric carcinoma and bladder cancer [15,55–64]. Our study found no evidence that miR-
3613-3p, miR-371b-5p and miR-3658 regulated MDM2 gene expression in OSCC samples.
Further studies on larger and more diverse groups are warranted to better understand the
significance of the miRNA and its role in OSCC.

5. Conclusions

Our study demonstrated that miR-3613-3p overexpression is involved in the tumour
progression of OSCC. This indicates that miR-3613-3p possesses potential prognostic val-
ues. Furthermore, our results reveal a differential miR-3613-3p expression in response to
smoking. When analysing the effect of miR-3613-3p expression on MDM2 gene expression,
we showed no statistically significant differences in the tumour or margin samples.
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