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Abstract: Nuclear factor kappa B (NF–κB) is a potential therapeutic target in breast cancer. In the
current study, a new class of oxazine– and piperazine–linked pyrimidines was developed as inhibitors
of NF–κB, overcoming the complexity of the oxazine structure found in nature and enabling synthesis
under laboratory conditions. Among the series of synthesized and tested oxazine–pyrimidine and
piperazine–pyrimidine derivatives, compounds 3a and 5b inhibited breast cancer cell (MCF–7)
viability with an IC50 value of 9.17 and 6.29 µM, respectively. In silico docking studies showed
that the pyrimidine ring of 3a and the 4–methoxybenzyl thiol group of 5b could strongly bind
the p65 subunit of NF–κB, with the binding energies −9.32 and −7.32 kcal mol−1. Furthermore,
compounds 3a and 5b inhibited NF–κB in MCF–7 breast cancer cells. In conclusion, we herein report
newer structures that target NF–κB in BC cells.

Keywords: oxazines; piperazines; pyrimidines; NF–κB; Alamar Blue assay; molecular docking;
apoptosis assay; western blot

1. Introduction

Breast cancer has become the world’s second-leading cause of cancer-related death
(lung cancer being first), accounting for about 13.7% of all cancer-related fatalities [1,2].
Nuclear factor kappa B (NF–κB) signaling has been extensively studied for over three
decades since its discovery by Sen et al. [3]. Recent evidence confirms that activation of
NF–κB promotes human breast cancer progression. For that reason, NF–κB has emerged as
a potential therapeutic target in breast cancer treatment [4,5]. The NF–κB family comprises
five transcription factors: NF–κB1/p50, NF–κB2/p52, RelA/p65, RelB, and c–Rel [6]. These
factors can either hetero- or homodimerize to produce NF–κB complexes. The p65 subunit
of NF–κB is a critical component in activating and regulating downstream target genes.
Most of them are found in the cytoplasm of dormant cells; when they are activated, they
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move to the nucleus for transcription, which in turn causes hundreds of genes to be
activated or repressed directly, indirectly, or both [7].

NF–κB is activated by viral and bacterial antigens, UV radiation, and cytokines such
as IL–2 and TNF–α. The nuclear factor supports cell proliferation, apoptosis, and immuno-
logical responses to infection and inflammation. However, system disruption is associated
with disorders including cancer, immunosuppression, and chronic inflammation [8]. NF–
κB activation promotes cell survival by inhibiting apoptosis (programmed cell death). It
controls the expression of anti-apoptotic proteins that aid cancer cells to avoid cell death
and promote their survival, including Bcl–2, Bcl–xL, and inhibitors of apoptosis (IAPs) [9].
Additionally, NF–κB signaling promotes cell proliferation by increasing the expression of
genes essential for cell cycle progression, including cyclins and cyclin-dependent kinases
(CDKs) [10,11].

It has been demonstrated that several drugs, including aspirin, sodium salicylate, and
dexamethasone, decrease NF–κB activation by preventing the breakdown of IκB [12–14].
The current anti-TNF–α antibodies approved by the FDA include infliximab, adalimumab,
and golimumab [15]. Ongoing research is being conducted to produce innovative small
molecules that target the NF–κB pathway. New compounds and therapeutic strategies
are continually explored and may emerge as potential candidates for further investigation
in breast cancer treatment [16]. Piperazines derivatives, among other heterocycles, were
discovered as promising anti-cancer agents [17–20], and many of the FDA-approved drugs
include piperazines [21]. Novel piperazine compounds could suppress NF–κB translocation
to the nucleus [22] and inhibit NF–κB by decreasing TNF–α levels [23]. Pyrimidines also
play a vital role in anti-cancer drug discovery [24]. Ibudilast, spebrutinib, and dasatinib are
a few pyrimidine-based drugs (Figure 1) that block the NF–κB pathway [25]. Furthermore,
many reports have shown that oxazine derivatives might emerge as promising anti-cancer
agents [26,27], and that they are potential candidates for NF–κB inhibitors [28–30]. The
oxazine derivative compound 1 decreased the DNA binding ability of NF–κB and NF–κB-
dependent luciferase expression and IκBα phosphorylation in hepatocellular carcinoma
(HCC) and HCT116 cells. Furthermore, treatment of inflammatory bowel disease (IBD)-
induced mice with compound 1 decreased myeloperoxidase activity in colonic extracts
and modulated the colon length and serum levels of cytokines such as TNF–α, IFN–γ,
IL–6, IL–1β, and IL–10 [31,32]. Similarly, compound 2 inhibited proliferation in HepG2,
HCCLM3, and Huh–7 cells in a dose- and time-dependent manner, as well as decreased
p65 subunit DNA binding capacity, p65 phosphorylation, and the consequent production
of NF–κB-dependent luciferase gene expression in several HCC cell lines [33]. From
the abovementioned discoveries, Lys28 was observed to be the active site of the p65
subunit in NF–κB. Benzimidazole-clubbed pyrimidines (3) were demonstrated as covalent
inhibitors of cysteine in NF–κB inducing kinase [34]. Pyrido–pyrimidine (5) inhibited
NF–κB activation by suppressing IκBα and LPS-induced phosphorylation levels of p65 and
Akt, and by indirectly suppressing the MAPK signaling pathway [35], and pyralopyridine
(5)-substituted pyrimidines were discovered as NF–κB transcription inhibitors [36].

Herein, we have synthesized novel oxazine– and piperazine–linked pyrimidine small
molecules using thiouracils active in breast cancer cells (MCF–7) that target NF–κB. Alamar
Blue assay showed that newly synthesized compounds 3a and 5b produced an IC50 of
9.17 and 6.29 µM in MCF–7 cells. In silico docking studies showed that compounds 3a
and 5b exhibited −9.32 and −7.32 kcal mol−1 binding energy. Lys28 of the p65 subunit
of NF–κB and the pyrimidine ring of 3a and 4–methoxy benzyl thiol group of 5b showed
strong pi–alkyl interactions.
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Figure 1. Marketed drugs and potent inhibitors of NF–κB. (1, 2) bearing oxazines (red), (3, 4, 5) 
pyrimidine (pink) motifs are reported inhibitors. 6 and 7 are newly synthesized piperazine (blue)– 
and oxazine (red)–linked pyrimidine (pink) derivatives as NF–κB inhibitors. 

2. Materials and Methods 
All chemicals and solvents were purchased from Sigma-Aldrich (Bangalore, India). 

The completion of the reaction was monitored by pre-coated silica gel TLC plates. An Ag-
ilent mass spectrophotometer was used to record the mass of the synthesized compounds. 
1H and 13C NMR (Santa Clara, CA, USA) were recorded on Agilent and Jeol NMR spectro-
photometers (400 MHz). TMS was used as an internal standard, and DMSO was used as 
a solvent. Chemical shifts were expressed as ppm. 

2.1. General Procedure for the Synthesis of Oxazine and Piperazine Clubbed Pyrimidine Deriva-
tives 
2.1.1. Synthesis of Compound 2 

Substituted thiouracils (1) (1.0 mmol) and various benzyl chlorides (1.2 mmol) were 
refluxed with KOH (1.2 mmol) in EtOH: H2O (1:1) as a solvent for 1 h. After the completion 

Figure 1. Marketed drugs and potent inhibitors of NF–κB. (1, 2) bearing oxazines (red), (3, 4, 5)
pyrimidine (pink) motifs are reported inhibitors. 6 and 7 are newly synthesized piperazine (blue)–
and oxazine (red)–linked pyrimidine (pink) derivatives as NF–κB inhibitors.

2. Materials and Methods

All chemicals and solvents were purchased from Sigma-Aldrich (Bangalore, India).
The completion of the reaction was monitored by pre-coated silica gel TLC plates. An
Agilent mass spectrophotometer was used to record the mass of the synthesized com-
pounds. 1H and 13C NMR (Santa Clara, CA, USA) were recorded on Agilent and Jeol NMR
spectrophotometers (400 MHz). TMS was used as an internal standard, and DMSO was
used as a solvent. Chemical shifts were expressed as ppm.

2.1. General Procedure for the Synthesis of Oxazine and Piperazine Clubbed Pyrimidine Derivatives
2.1.1. Synthesis of Compound 2

Substituted thiouracils (1) (1.0 mmol) and various benzyl chlorides (1.2 mmol) were
refluxed with KOH (1.2 mmol) in EtOH: H2O (1:1) as a solvent for 1 h. After the completion
of the reaction, the solid mass was filtered off and washed with aqueous NaHCO3 solution
and water, yielding compound 2.
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2.1.2. Synthesis of Compound 3

Compound 2 (1.0 mmol), substituted oxazines (1.0 mmol), and K2CO3 (2 mmol) were
refluxed in acetone for 2–3 h. After the completion of the reaction, the crude reaction mass
was extracted to ethyl acetate (25 mL × 3). The combined organic layer was distilled under
reduced pressure and purified by column chromatography using ethyl acetate and hexane.

2.1.3. Synthesis of Compounds 4/5

Compound 2 (1.0 mmol) was treated with tert–butyl bromoacetate (1.2 mmol) and
K2CO3 (1.5 mmol) in refluxing DMF. After the completion of the reaction, reaction mass
was extracted with ethyl acetate and the crude product was purified by column chromatog-
raphy, yielding compound 4. The solution of 4 in trifluoroacetic acid was stirred at room
temperature for 1–2 h. After completion of the reaction, it was quenched with sodium
bicarbonate and extracted with ethyl acetate. The solid formed was filtered off and dried,
yielding compound 5.

2.1.4. Synthesis of Compound 5a

Compound 4 (1.0 mmol) was treated with 2–((2–((4–methoxybenzyl)thio) –pyrimidine–
4–yl)oxy)–1–(4–methyl piperazin–1–yl)ethanone with EDC.HCl and DMAP as catalysts in
basic conditions in DCM as solvent under nitrogen atmosphere for 2 h. After completion of
the reaction, the crude mass was extracted with ethyl acetate, and the combined organic
layer was distilled off and purified through column chromatography.

2.1.5. Synthesis of Compound 5b/f/k/o

Compound 4 (1.0 mmol) was treated with acetyl piperazines (1.2 mmol) with EDC.HCl
and DMAP as catalysts in basic conditions in DCM as solvent under nitrogen atmosphere for
2 h. After completion of the reaction, the crude mass was extracted with ethyl acetate, and the
combined organic layer was distilled off and purified through column chromatography.

2.1.6. Synthesis of Compounds 5d/h/m/q

Compound 4 (1.0 mmol) was treated with N–boc piperazines (1.2 mmol) with EDC.HCl
and DMAP were used as catalysts in basic conditions in DCM as solvent under nitrogen
atmosphere for 2 h. After completion of the reaction, the crude mass was extracted with
ethyl acetate, and the combined organic layer was distilled off and purified through column
chromatography, yields 5d, 5h, 5m, or 5q.

2.1.7. Synthesis of Compounds 5c/g/l/p

Compounds 5d, 5h, 5m, or 5q (1.0 mmol) were treated with trifluoroacetic acid. After
completion of the reaction, the crude mass was neutralized with K2CO3 and extracted with
ethyl acetate. The combined organic layer was distilled off and purified through column
chromatography, yielding compounds 5c, 5g, 5l, or 5p, respectively.

2.1.8. Synthesis of Compounds 5e/i/j/n

Compounds 5c, 5g, 5l, or 5p (1 mmol) were treated with 5–bromopyridine–2–carboxylic
acid (1.2 mmol) with EDC. HCl and DMAP were used as catalysts in basic conditions in DCM
as solvent under nitrogen atmosphere for 2 h. After completion of the reaction, the crude
mass was extracted with ethyl acetate, and the combined organic layer was distilled off and
purified through column chromatography, yielding compounds 5e, 5i, 5j, or 5n, respectively.

2.1.9. 6,6–Dimethyl–3–(((2–((3–methylbenzyl)thio)pyrimidin–4–yl)oxy)methyl)–4–phenyl
–5,6–dihydro–4H–1,2–oxazine (3a)

Yellow solid; MP: 120–122 ◦C; 1H NMR (400 MHz, DMSO) δ 8.34 (s, 1H), 7.34–7.12
(m, 8H), 7.07 (s, 1H), 6.59 (s, 1H), 4.69 (s, 2H), 4.26 (s, 2H), 3.65 (s, 1H), 2.27 (s, 3H), 2.11 (s,
1H), 1.79 (t, J = 12.4, 24.8 Hz, 1H), 1.29 (s, 3H), 1.21 (s, 3H); 13C NMR (100 MHz, DMSO) δ
170.48, 167.99, 158.56, 153.96, 139.95, 138.00, 137.96, 129.86, 129.25, 128.79, 128.75, 128.19,
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127.62, 126.31, 104.34, 79.64, 75.07, 65.73, 37.45, 34.58, 28.45, 22.94, 21.40; Calculated for
C25H27N3O2S: actual = 433.5658, found = 434.1108 [M + 1]+.

2.1.10. 4–(4–Methoxyphenyl)–3–(((2–((3–methylbenzyl)thio)pyrimidin–4–yl)oxy)methyl)-
4a,5,–6,7,8,8a–hexahydro–4H–benzo[e][1,2]oxazine (3b)

Yellow solid; MP: 128–130 ◦C; 1H NMR (400 MHz, DMSO) δ 8.33 (s, 1H), 7.25–6.98
(m, 6H), 6.88 (s, 2H), 6.56 (s, 1H), 4.87 (s, 2H), 4.26 (s, 2H), 3.91 (s, 1H), 3.69 (s, 3H), 3.28 (s,
1H), 2.25 (s, 3H), 1.88 (s, 1H), 1.61 (s, 2H), 1.38–1.22 (m, 6H); 13C NMR (100 MHz, DMSO) δ
170.60, 168.12, 158.66, 158.63, 151.58, 138.00, 137.84, 133.15, 129.85, 129.62, 128.74, 128.17,
126.30, 114.55, 104.30, 69.03, 66.10, 55.43, 42.73, 38.67, 34.66, 28.99, 27.33, 24.68, 21.34, 20.24;
Calculated for C28H31N3O3S: actual = 489.2086, found = 490.2234 [M + 1]+.

2.1.11. 4–(4–Chlorophenyl)–6,6–dimethyl–3–(((2–((3–methylbenzyl)thio)pyrimidin–4–
yl)oxy)–methyl)–5,6–dihydro–4H–1,2–oxazine (3c)

Yellow solid; MP: 130–132 ◦C; 1H NMR (400 MHz, DMSO) δ 8.34 (s, 1H), 7.32–7.17
(m, 7H), 7.07 (s, 1H), 6.57 (s, 1H), 4.72 (s, 2H), 4.27 (s, 2H), 3.69 (s, 1H), 2.28 (s, 3H), 2.11 (s,
1H), 1.77 (t, J = 24, 12 Hz, 1H), 1.29–1.20 (m, 6H); 13C NMR (100 MHz, DMSO) δ 170.45,
167.92, 158.59, 153.53, 138.90, 138.02, 137.95, 132.26, 130.72, 129.87, 129.16, 128.80, 128.21,
126.31, 104.34, 75.14, 65.63, 36.74, 34.59, 28.41, 22.97, 21.40; Calculated for C25H26ClN3O2S:
actual = 467.1434, found = 468.1520 [M + 1]+.

2.1.12. 3–(((2–((4–Chlorobezyl)thio)pyrimidin–4–yl)oxy)methyl)–6,6–dimethyl–4–phenyl–
5,6–dihydro–4H–1,2–oxazine (3d)

Yellow solid; MP: 124–126 ◦C; 1H NMR (400 MHz, DMSO) δ 8.33 (s, 1H), 7.39–7.36 (m,
4H), 7.29 (s, 2H), 7.23 (s, 3H), 6.59 (s, 1H), 4.68 (s, 2H), 4.29 (s, 2H), 3.64 (s, 1H), 2.11 (s, 1H),
1.78 (t, J = 12.4, 24.4 Hz, 1H), 1.29 (s, 3H), 1.20 (s, 3H); 13C NMR (100 MHz, DMSO) δ 170.12,
168.05, 158.61, 153.92, 139.95, 137.61, 132.08, 131.04, 129.25, 128.80, 128.75, 127.62, 104.48,
75.09, 65.76, 37.42, 33.69, 28.45, 22.95; Calculated for C24H24ClN3O2S: actual = 453.9843,
found = 454.1443 [M + 1]+.

2.1.13. 3–(((2–((4–Chlorobezyl)thio)pyrimidin–4–yl)oxy)methyl)–4–(4–methoxyphenyl)–
4a,5,6,–7,8,8a–hexahydro–4H–benzo[e][1,2]oxazine (3e)

Yellow solid; MP: 110–112 ◦C; 1H NMR (400 MHz, DMSO) δ 8.34 (s, 1H), 7.37 (d,
J = 28.1 Hz, 4H), 7.11 (s, 2H), 6.89 (s, 2H), 6.59 (s, 1H), 4.85 (s, 2H), 4.31 (s, 2H), 3.91 (s, 1H),
3.72 (s, 3H), 2.52 (s, 1H), 1.91 (s, 1H), 1.64 (s, 2H), 1.40–1.22 (m, 6H); 13C NMR (100 MHz,
DMSO) δ 170.20, 168.19, 158.72, 158.65, 151.59, 137.58, 133.19, 132.07, 131.03, 129.65, 128.77,
114.57, 104.47, 69.03, 66.16, 55.49, 42.67, 38.67, 33.73, 28.97, 27.31, 24.65, 20.25; Calculated for
C27H28ClN3O3S: actual = 509.15, found = 510.1613 [M + 1]+.

2.1.14. 3–(((2–((4–Chlorobezyl)thio)pyrimidin–4–yl)oxy)methyl)–4–(4–chlorophenyl)–6,6–
di–methyl–5,6–dihydro–4H–1,2–oxazine (3f)

Yellow solid; MP: 106–108 ◦C; 1H NMR (400 MHz, DMSO) δ 8.34 (s, 1H), 7.40–7.26 (m,
8H), 6.58 (s, 1H), 4.71 (s, 2H), 4.31 (s, 2H), 3.68 (s, 1H), 2.10 (s, 1H), 1.76 (s, 1H), 1.24–1.20
(m, 6H); 13C NMR (100 MHz, DMSO) δ 170.12, 167.98, 158.62, 153.48, 138.90, 137.61, 132.26,
132.09, 131.04, 130.71, 129.16, 128.81, 104.47, 75.14, 65.67, 36.73, 33.70, 28.41, 22.98; Calculated
for C24H23Cl2N3O2S: actual = 488.4293, found = 490.0965 [M + 1]+.

2.1.15. 3–(((2–((4–Fluorobenzyl)thio)pyrimidin–4–yl)oxy)methyl)–6,6–dimethyl–4–
phenyl–5,6–dihydro–4H–1,2–oxazine (3g)

Yellow solid; MP: 136–138 ◦C; 1H NMR (400 MHz, DMSO) δ 8.34 (s, 1H), 7.41 (s,
2H), 7.26 (m, 5H), 7.12 (s, 2H), 6.60 (d, J = 2.0 Hz, 1H), 4.68 (s, 2H), 4.29 (s, 2H), 3.65 (s,
1H), 2.17–2.04 (m, 1H), 1.78 (t, J = 12.4, 25.8 Hz, 1H), 1.29 (s, 3H), 1.20 (s, 3H); 13C NMR
(100 MHz, DMSO) δ 170.25, 168.03, 162.91, 160.49, 158.59, 153.93, 139.96, 134.59, 134.56,
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131.18, 131.10, 129.25, 128.75, 127.62, 115.73, 115.52, 104.44, 75.08, 65.75, 37.43, 33.67, 28.45,
22.94; Calculated for C24H24FN3O2S: actual = 437.5297, found = 438.1714 [M + 1]+.

2.1.16. 3–(((2–((4–Fluorobenzyl)thio)pyrimidin–4–yl)oxy)methyl)–4–(4–methoxyphenyl)–
4a,5,6,–7,8, 8a–hexahydro–4H–benzo[e][1,2]oxazine (3h)

C27H28FN3O3S; Yellow solid; MP: 142–144 ◦C; 1H NMR (400 MHz, DMSO) δ 8.35
(s, 1H), 7.42 (s, 2H), 7.11 (s, 4H), 6.89 (s, 2H), 6.59 (s, 1H), 4.85 (s, 2H), 4.30 (s, 2H), 3.91
(s, 1H), 3.71 (s, 3H), 3.28 (s, 1H), 1.90 (d, J = 10.0 Hz, 1H), 1.64 (s, 2H), 1.40–1.24 (m, 6H);
13C NMR (100 MHz, DMSO) δ 170.33, 168.18, 162.90, 160.48, 158.73, 158.65, 151.62, 134.54,
134.51, 133.19, 131.19, 131.11, 129.66, 115.71, 115.50, 114.57, 104.45, 69.05, 66.12, 55.49, 42.65,
36.68, 33.71, 28.96, 27.31, 24.64, 20.26; Calculated for C27H28FN3O3S: actual = 493.5929,
found = 494.1919 [M + 1]+.

2.1.17. 4–(4–Chlorophenyl)–3–(((2–((4–fluorobenzyl)thio)pyrimidin–4–yl)oxy)methyl)–
6,6–dimethyl–5,6–dihydro–4H–1,2–oxazine (3i)

C24H23ClFN3O2S; Yellow solid; MP: 120–122 ◦C; 1H NMR (400 MHz, DMSO) δ 8.34 (s,
1H), 7.42 (s, 2H), 7.29 (m, 4H), 7.13 (s, 2H), 6.58 (s, 1H), 4.71 (s, 2H), 4.31 (s, 2H), 3.69 (s, 1H),
2.10 (s, 1H), 1.76 (t, J = 11.6, 23.6 Hz, 1H), 1.29–1.20 (m, 6H); 13C NMR (100 MHz, DMSO) δ
170.24, 167.95, 162.91, 160.49, 158.61, 153.50, 138.90, 134.58, 134.55, 132.26, 131.19, 131.11,
130.72, 129.16, 115.74, 115.53, 104.43, 75.14, 65.64, 36.72, 33.67, 28.40, 22.96; Calculated for
C24H23ClFN3O2S: actual = 471.12, found = 472.1271 [M + 1]+.

2.1.18. 3–(((2–((4–Fluorobenzyl)thio)–6–methylpyrimidin–4–yl)oxy)methyl)–6,6–
dimethyl–4–phenyl–5,6–dihydro–4H–1,2–oxazine (3j)

Yellow solid; MP: 130–132 ◦C; 1H NMR (400 MHz, DMSO) δ 7.41 (s, 2H), 7.30–7.22 (m,
5H), 7.12 (s, 2H), 6.45 (s, 1H), 4.66 (s, 2H), 4.27 (s, 2H), 3.62 (s, 1H), 2.31 (s, 3H), 2.11 (s, 1H),
1.77 (t, J = 12, 23.2 Hz, 1H), 1.29 (s, 3H), 1.19 (s, 3H); 13C NMR (100 MHz, DMSO) δ 169.49,
168.62, 168.54, 162.86, 160.44, 154.11, 140.01, 134.85, 134.82, 131.22, 131.14, 129.26, 128.73,
127.60, 115.68, 115.46, 102.72, 75.05, 65.68, 37.40, 33.58, 28.44, 23.65, 22.89; Calculated for
C25H26FN3O2S: actual = 451.5562, found = 452.1881 [M + 1]+.

2.1.19. 3–(((2–((4–Fluorobenzyl)thio)–6–methylpyrimidin–4–yl)oxy)methyl)–4–(4–
methoxy–phenyl)–4a,5,6,7,8,8a–hexahydro–4H–benzo[e][1,2]oxazine (3k)

Yellow solid; MP: 124–126 ◦C; 1H NMR (400 MHz, DMSO) δ 7.42 (s, 2H), 7.10 (s, 4H),
6.88 (s, 2H), 6.44 (s, 1H), 4.83 (s, 2H), 4.27 (s, 2H), 3.90 (s, 1H), 3.71 (s, 3H), 3.25 (s, 1H),
2.30 (s, 3H), 1.90 (d, J = 10.0 Hz, 1H), 1.63 (d, J = 7.2 Hz, 2H), 1.40–1.24 (m, 6H); 13C NMR
(100 MHz, DMSO) δ 169.53, 168.78, 168.64, 162.84, 160.43, 158.62, 151.81, 134.78, 134.74,
133.16, 131.19, 131.11, 129.64, 115.64, 115.43, 114.54, 102.73, 69.03, 65.99, 55.46, 42.62, 38.61,
33.62, 28.95, 27.29, 24.62, 23.58, 20.22; Calculated for C28H30FN3O3S: actual = 507.6195,
found = 508.2078 [M + 1]+.

2.1.20. 4–(4–Chlorophenyl)–3–(((2–((4–fluorobenzyl)thio)–6–methylpyrimidin–4–yl)oxy)–
methyl)–6,6–dimethyl–5,6–dihydro–4H–1,2–oxazine (3l)

Yellow solid; MP: 100–102 ◦C; 1H NMR (400 MHz, DMSO) δ 7.42 (s, 2H), 7.33 (s, 2H),
7.25 (s, 2H), 7.12 (s, 2H), 6.42 (s, 1H), 4.69 (d, J = 11.6 Hz, 2H), 4.28 (s, 2H), 3.66 (s, 1H),
2.31 (s, 3H), 2.10 (s, 1H), 1.75 (t, J = 12.4, 24.4 Hz, 1H), 1.29 (s, 3H), 1.19 (s, 3H); 13C NMR
(100 MHz, DMSO) δ 169.48, 168.65, 168.47, 162.87, 160.45, 153.69, 138.95, 134.82, 132.24,
131.21, 131.13, 130.70, 129.16, 115.68, 115.47, 102.70, 75.11, 65.61, 36.73, 33.60, 28.40, 23.67,
22.92; Calculated for C25H25ClFN3O2S: actual = 485.13, found = 486.1400 [M + 1]+.

2.1.21. 1,1′–(Piperazine–1,4–diyl)bis(2–((2–((4–methoxybenzyl)thio)pyrimidin–4–
yl)oxy)ethan–one) (5a)

White solid; MP: 150–152 ◦C; 1H NMR (400 MHz, CDCl3): δ 8.30 (d, J = 5.2 Hz, 1H),
7.32 (d, J = 7.6 Hz, 2H), 6.85 (d, J = 8.0 Hz, 2H), 6.55 (d, J = 5.2 Hz, 1H), 4.90 (s, 2H), 4.30 (s,
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2H), 3.79 (s, 3H), 3.75 (s, 7H); 13C NMR (400 MHz, CDCl3) δ 171.5, 168.7, 167.7, 159.0, 158.0,
130.1, 129.2, 114.1, 103.9, 62.6, 55.4, 52.3, 34.9.

2.1.22. 1–(4–Acetylpiperazin–1–yl)–2–((2–((4–methoxybenzyl)thio)pyrimidin–4–
yl)oxy)ethan–one (5b)

Yellow thick mass; 1H NMR (400 MHz, CDCl3) δ 8.29 (d, J = 5.4 Hz, 1H), 7.30 (d,
J = 8.0 Hz, 2H), 6.83 (d, J = 8.0 Hz, 2H), 6.56 (d, J = 5.5 Hz, 1H), 4.99 (s, 2H), 4.32 (s, 2H), 3.78
(s, 3H), 3.51 (d, J = 68.9 Hz, 8H), 2.09 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 171.3, 169.4,
167.7, 165.9, 159.0, 157.9, 130.1, 129.3, 114.1, 104.1, 63.1, 55.4, 46.0, 44.7, 42.0, 41.3, 34.8, 21.4.

2.1.23. Tert–butyl 4–(2–((2–((4–Methoxybenzyl)thio)pyrimidin–4–
yl)oxy)acetyl)piperazine–1–carboxylate (5c)

White solid; MP: 160–162 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.28 (d, J = 5.7 Hz, 1H),
7.30 (d, J = 8.4 Hz, 2H), 6.82 (d, J = 8.5 Hz, 2H), 6.56 (d, J = 5.7 Hz, 1H), 4.98 (s, 2H), 4.31 (s,
2H), 3.77 (s, 3H), 3.57 (s, 2H), 3.42 (d, J = 18.1 Hz, 6H), 1.45 (s, 9H); 13C NMR (100 MHz,
CDCl3) δ 170.7, 167.1, 165.0, 158.3, 157.3, 153.9, 129.5, 128.6, 113.5, 103.5, 79.9, 62.6, 54.8,
44.2, 41.3, 34.3, 27.8; MS: 474.58, m/z = 475.12 [M + 1]+.

2.1.24. 1–(4–(5–Bromopicolinoyl)piperazin–1–yl)–2–((2–((4–
methoxybenzyl)thio)pyramidin–4–yl)–oxy)ethanone (5d)

Yellow thick mass; 1H NMR (400 MHz, CDCl3) δ 8.629 (S, 1H), 8.289 (d, J = 4.0 Hz,
1H), 7.94 (d, J = 6.8 Hz, 1H), 7.73–7.58 (m, 1H), 7.30 (d, J = 7.2 Hz, 2H), 6.82 (d, J = 6.4 Hz,
2H), 6.60 (d, J = 4.4 Hz, 1H), 5.17–4.93 (s, 2H), 4.31 (s, 2H), 3.82–3.51 (m, 11H); 13C NMR
(100 MHz, CDCl3) δ 170.7, 167.1, 165.0, 158.3, 157.6, 157.3, 150.9, 148.8, 139.4, 130.9, 129.5,
128.3, 122.0, 113.4, 103.4, 62.5, 54.8, 46.4, 42.0, 34.2; MS: 558.07, m/z = 559.99 [M + 1]+.

2.1.25. 1–(4–Acetylpiperazin–1–yl)–2–((2–((3–methylbenzyl)thio)pyrimidin–4–
yl)oxy)–ethanone (5e)

Yellow thick mass; 1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 5.5 Hz, 1H), 7.20–7.14 (m,
3H), 7.04 (d, J = 5.5 Hz, 1H), 6.56 (d, J = 5.5 Hz, 1H), 4.98 (s, 2H), 4.32 (s, 2H), 3.64–3.58 (m,
4H), 3.47–3.41 (m, 4H), 2.31 (s, 3H), 2.09 (s, 3H); 13C NMR (100 MHz, CDCl3) 171.2, 169.4,
167.7, 165.9, 157.9, 138.4, 137.2, 129.6, 128.5, 128.2, 125.9, 104.1, 63.0, 46.0, 44.7, 42.0, 41.2,
35.3, 29.8, 21.4.

2.1.26. 2–((2–((3–Methylbenzyl)thio)pyrimidin–4–yl)oxy)–1–(piperazin–1–yl)ethanone (5f)

Yellow thick mass; 1H NMR (500 MHz, CDCl3) δ 8.28 (d, J = 5.5 Hz, 1H), 7.25–7.17 (m,
3H), 7.08–7.01 (m, 1H), 6.56 (d, J = 5.5 Hz, 1H), 4.97 (s, 2H), 4.32 (s, 2H), 3.56 (s, 2H), 3.44
(s, 2H), 3.39 (s, 4H), 2.31 (s, 3H), 1.45 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 171.3, 167.8,
165.6, 157.9, 154.5, 138.3, 137.2, 129.6, 128.5, 128.1, 126.0, 104.1, 80.5, 63.2, 44.8, 43.8, 41.9,
35.3, 28.4, 21.4.

2.1.27. Tert–butyl–4–(2–((2–((3–methylbenzyl)thio)pyrimidin–4–yl)oxy)acetyl)piperazine–1–
car–boxylate (5g)

White solid; MP: 166–168 ◦C; 1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 6.0 Hz, 1H),
7.20–7.17 (m, 3H), 7.05–7.03 (m, 1H), 6.56 (d, J = 5.5 Hz, 1H), 4.97 (s, 2H), 4.32 (s, 2H), 3.57 (s,
2H), 3.39 (s, 2H), 2.87–2.82 (m, 4H), 2.31 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 171.2, 167.8,
165.4, 157.7, 138.3, 137.2, 129.7, 128.4, 128.0, 126.0, 104.1, 63.1, 45.9, 42.9, 35.3, 21.5.

2.1.28. 1–(4–(5–Bromopicolinoyl)piperazin–1–yl)–2–((2–((3–
methylbenzyl)thio)pyrimidin–4–yl)–oxy)–ethanone (5h)

Yellow thick mass; 1H NMR (500 MHz, CDCl3) δ 8.62–8.59 (m, 1H), 8.28 (d, J = 5.5 Hz,
1H), 7.93 (dd, J = 8.5, 2.0 Hz, 1H), 7.61 (dd, J = 16.0, 8.5 Hz, 1H), 7.22–7.13 (m, 3H), 7.07–7.01
(m, 1H), 6.56 (d, J = 5.5 Hz, 1H), 5.01–4.97 (m, 2H), 4.32 (s, 2H), 3.81–3.72 (m, 4H), 3.64 (s,
2H), 3.54–3.49 (m, 2H), 2.30 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 171.2, 167.7, 166.7, 165.8,
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157.9, 151.4, 149.3, 149.2, 140.0, 138.3, 137.2, 129.6, 128.5, 128.2, 126.2, 126.0, 122.5, 104.1, 63.1,
47.1, 44.7, 42.6, 41.8, 35.3, 21.4.

2.1.29. 1–(4–(5–Bromopicolinoyl)piperazin–1–yl)–2–((2–((4–fluorobenzyl)thio)pyrimidin–
4–yl)–oxy)–ethanone (5i)

Yellow thick mass; 1H NMR (500 MHz, CDCl3) δ 8.62–8.60 (m, 1H), 8.28 (d, J = 6.0 Hz,
1H), 7.93 (dd, J = 8.4, 2.3 Hz, 1H), 7.65–7.60 (m, 1H), 7.35–7.33 (m, 2H), 6.96 (t, J = 9.0 Hz,
2H), 6.56 (d, J = 5.5 Hz, 1H), 5.01–4.96 (m, 2H), 4.32 (s, 2H), 3.84–3.71 (m, 4H), 3.64 (s, 2H),
3.55–3.50 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 170.9, 167.7, 166.7, 166.4, 165.8, 163.0,
161.1, 158.0, 157.9, 157.8, 151.4, 149.4, 140.1, 133.3, 130.5, 126.3, 126.0, 122.6, 115.6, 115.5,
115.3, 104.3, 104.2, 63.1, 47.1, 44.72, 42.7, 41.8, 34.5, 29.8.

2.1.30. 1–(4–Acetylpiperazin–1–yl)–2–((2–((4–fluorobenzyl)thio)pyrimidin–4–
yl)oxy)–ethanone (5j)

Yellow thick mass; 1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 5.5 Hz, 1H), 7.35–7.33
(m, 2H), 6.97 (t, J = 8.6 Hz, 2H), 6.57 (d, J = 5.5 Hz, 1H), 4.98 (s, 3H), 4.32 (s, 3H), 3.60 (s,
5H), 3.42 (s, 5H), 2.10 (s, 4H); 13C NMR (100 MHz, CDCl3) δ 170.8, 169.4, 167.7, 165.8, 163.1,
161.1, 157.9, 133.3, 130.6, 130.5, 115.5, 115.4, 104.3, 77.4, 77.1, 76.9, 63.0, 45.9, 44.8, 42.0, 41.3,
34.4, 21.4.

2.1.31. 2–((2–((4–Fluorobenzyl)thio)pyrimidin–4–yl)oxy)–1–(piperazin–1–yl)ethanone (5k)

Yellow thick mass; 1H NMR (500 MHz, CDCl3) δ 1H NMR (500 MHz) δ 8.26 (d,
J = 5.5 Hz, 1H), 7.33 (dd, J = 8.4, 5.5 Hz, 2H), 6.95 (t, J = 8.7 Hz, 2H), 6.55 (d, J = 5.5 Hz, 1H),
4.95 (s, 2H), 4.31 (s, 2H), 3.54 (s, 2H), 3.37 (s, 2H), 2.84–2.80 (m, 4H), 2.05 (s, 1H); 13C NMR
(100 MHz, CDCl3) δ 170.8, 167.9, 165.3, 163.0, 161.1, 157.8, 133.3, 133.3, 130.6, 130.5, 115.5,
115.4, 104.3, 63.2, 46.2, 46.0, 45.8, 43.1, 34.5.

2.1.32. Tert–butyl–4–(2–((2–((4–fluorobenzyl)thio)pyrimidin–4–yl)oxy)acetyl)piperazine–
1–car–boxylate (5l)

White solid; MP: 156–158 ◦C; 1H NMR (500 MHz, CDCl3) δ 8.28 (d, J = 5.5 Hz, 1H),
7.32 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 4.5 Hz, 2H), 6.56 (d, J = 5.5 Hz, 1H), 4.96 (s, 2H), 4.31 (s,
2H), 3.56 (s, 2H), 3.45 (s, 2H), 3.39 (s, 4H), 1.45 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 170.7,
167.8, 165.5, 157.9, 154.5, 136.2, 133.1, 130.3, 128.7, 104.3, 80.6, 63.2, 44.8, 41.9, 34.5, 28.4.

2.1.33. 1–(4–(5–Bromopicolinoyl)piperazin–1–yl)–2–((2–((4–chlorobenzyl)thio)pyrimidin–
4–yl)–oxy)–ethanone (5m)

Yellow thick mass; 1H NMR (500 MHz, CDCl3) δ 8.61 (d, J = 5.5 Hz, 1H), 8.28 (d,
J = 5.5 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.32–7.60 (m, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.24 (d,
J = 8.0 Hz, 2H), 6.56 (d, J = 4.8 Hz, 1H), 5.00–4.95 (m, 2H), 4.31 (s, 2H), 3.82–3.73 (m, 4H),
3.64 (s, 2H), 3.55–3.50 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 170.7, 167.7, 166.7, 165.7,
157.9, 151.5, 149.4, 140.0, 136.2, 133.0, 130.3, 128.7, 126.0, 122.6, 104.3, 63.1, 47.1, 45.3, 44.7,
42.6, 34.5.

2.1.34. 1–(4–Acetylpiperazin–1–yl)–2–((2–((4–chlorobenzyl)thio)pyrimidin–4–
yl)oxy)–ethanone (5n)

Yellow thick mass; 1H NMR (500 MHz, CDCl3) δ 8.28 (d, J = 5.5 Hz, 1H), 7.32 (d,
J = 8.0 Hz, 2H), 7.25 (d, J = 4.8 Hz, 2H), 6.57 (d, J = 5.5 Hz, 1H), 4.97 (s, 2H), 4.31 (s, 2H),
3.66–3.60 (m, 4H), 3.42 (s, 4H), 2.10 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 170.7, 169.4, 167.8,
165.8, 158.0, 136.2, 133.1, 130.3, 128.7, 104.3, 63.0, 46.0, 44.8, 42.0, 41.3, 34.5, 21.4.

2.1.35. 2–((2–((4–Chlorobenzyl)thio)pyrimidin–4–yl)oxy)–1–(piperazin–1–yl)ethanone (5o)

Yellow thick mass; 1H NMR (500 MHz, CDCl3) δ 8.26 (d, J = 5.5 Hz, 1H), 7.31 (d,
J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 6.56 (d, J = 5.5 Hz, 1H), 4.95 (s, 2H), 4.31 (s, 2H),
3.56 (s, 2H), 3.38 (s, 2H), 2.86–2.81 (m, 4H); 13C NMR (100 MHz, CDCl3) 170.7, 167.9, 165.3,
157.8, 136.2, 133.1, 130.3, 128.7, 104.3, 63.2, 46.0, 43.0, 34.6.
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2.1.36. Tert–butyl–4–(2–((2–((4–chlorobenzyl)thio)pyrimidin–4–yl)oxy)acetyl)piperazine–
1–car–boxylate (5p)

White solid; MP: 160–170 ◦C;1H NMR (500 MHz, CDCl3) δ 8.28 (d, J = 5.5 Hz, 1H),
7.32 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 4.5 Hz, 2H), 6.56 (d, J = 5.5 Hz, 1H), 4.96 (s, 2H), 4.31
(s, 2H), 3.56 (s, 2H), 3.45 (s, 2H), 3.39 (s, 4H), 1.61 (s, 3H), 1.45 (s, 9H); 13C NMR (100 MHz,
CDCl3) δ 170.7, 167.8, 165.6, 157.9, 154.5, 136.2, 133.1, 130.3, 128.7, 104.3, 80.6, 63.2, 44.9,
41.9, 34.5, 28.4.

2.2. Cell Viability Assay

MCF-7, MDAMB-231, BT549, and SUM159PT cells were purchased from Procell Life
Science & Technology Co., Ltd. (Wuhan, China). All carcinoma cell lines were cultured
according to ATCC propagation instructions. By following the procedure in Basappa
et al. [37], first, 2 × 103 MCF-7 cells in 200 µL were grown in MEM enriched with 2% FBS
and kept at 37 ◦C in a humidified 5% CO2 environment. The compounds (10 mM) were
dissolved in DMSO and were stored as a stock solution. The DMSO and the stock solution
of compounds were diluted to 0.01, 0.1, 10, 100, and 1000 µM solutions in cell culture
medium, keeping a DMSO amount less than 1%. MCF-7 cells (2 × 103) were incubated
for 72 h with exposure to pyrimidines and Alamar Blue reagent was used to evaluate
cell viability.

2.3. Annexin V Apoptosis and Cell Cycle Analysis Assay

MCF-7 cells were cultured at a density of approximately 1 × 105 cells per well on a
six cm tissue culture petri dish, and treated with compounds 3a or 5b for 72 h. Following
the procedure, attached and floating cells were gathered and rinsed twice with ice-cold
phosphate buffer solution. The degree of apoptosis was determined using the Annexin V-
AbFluorTM 488/PI Apoptosis Detection Kit (Abbkine, KTA0002, Wuhan, China) following
the manufacturer’s instructions. A quantity of 1 × 105 cells were collected, washed once
in ice-cold PBS, and permeabilized with 100 L of 0.5% Triton X-100 to evaluate cell cycle
distribution. A quantity of 1 × 105 cells werefixed with 75% ethanol at −20 ◦C overnight
and stained with 50 µg/mL PI in 200 µL PBS supplemented with 20 µg/mL (w/v) RNase
A (Abbkine, KTA2020, Wuhan, China) for 1 h at 4 ◦C. Cytofluorometric acquisitions were
performed on a BECKMAN COULER CytoFlex at a low flow rate mode.

2.4. Western Blot Analysis

MCF-7 cells were treated with compounds 3a or 5b and harvested, and the cell lysates
were obtained. SDS-PAGE was used to separate the proteins of interest, and were trans-
ferred onto PVDF (Millipore, ISEQ00010, Burlington, MA, USA) membrane. The membrane
was sequentially incubated with primary and secondary antibodies and the correspond-
ing proteins were visualized using an ECL kit Clarity™ and Clarity Max™ Western ECL
Blotting Substrates (BIO-RAD, Hercules, CA, USA).

2.5. Data Analysis and Statistics

The results are presented as mean ± standard deviation. A one-way analysis of
variance (one-way ANOVA), with Bonferroni’s multiple comparison tests, was used to
analyze the statistical change between treatment groups. A 0.05 confidence level was the
significant change cutoff.

2.6. Molecular Docking

The docking studies were determined by using The Scripps Research Institute’s
AutoDock4 tools (v.1.5.6) [38]. Initially, 3a or 5b structures were obtained from the molec-
ular drawing software tools, and the compounds were converted to the PDBQT format.
Later protein preparation was performed by BIOVIA Discovery studio. Before this, the
crystal structure of NF–κB (PDB ID: 1IKN) was retrieved from the Protein Data Bank. The
protein structure was prepared by removing water molecules and adding hydrogen atoms.
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Kollman charges were assigned to the protein. Later ligand preparations were performed
for both compounds 3a and 5b and further used for docking purposes. Docking simulations
were performed using AutoDock4. The Lamarckian Genetic Algorithm was employed
for both ligands. The grid box was defined around the active site of the NF–kappa B p65
subunit, and the grid dimensions were 40 Å × 40 Å × 28 Å with a spacing of 0.375 Å.
The docking parameters were set to default values, and 10 docking runs were performed
for each compound. Later, the resulting docking poses were visualized using BIOVIA
Discovery Studio [39], PyMOL [40], and UCSF Chimera1.16 [41].

3. Results
3.1. Synthesis of Piperazine- and Oxazine-Linked Pyrimidine Derivatives

S–Benzylated of 2–thiouracil (2) was synthesized by refluxing substituted–2–thiouracil
(1) and substituted benzyl chloride in EtOH:H2O at basic conditions. Compound (2)
was treated with substituted oxazine–bromides (I, II, III) in acetone under basic con-
ditions, yielding thiouracil–oxazine hybrids 3(a–l). Also, refluxing compound (2) with
tert–butylbromoacetate in DMF and further deprotection by TFA yielded compound (4).
Compound 4 on acid–amine coupling with substituted piperazines (IV, V, VI, VII, and
VIII) yielded derivatives 5(a–p)(Scheme 1, Figure 2). All the synthesized compounds are
characterised by spectroscopic technique (See supplementary file).

3.2. Efficacy of Pyrimidine Derivatives in Breast Cancer Cells

The newly synthesized pyrimidines were examined for inhibition of cell viability of
human breast cancer (MCF–7) cells (Tables 1 and 2). Tamoxifen and doxorubicin were used
as internal standards and produced a loss of viability of MCF–7 cells, with IC50 values of
2.96 and 1.84 µM, respectively. Among the oxazine-clubbed pyrimidine compounds, 3a
and 3g produced an IC50 of 9.17 and 13.87 µM, respectively. Among piperazines, clubbed
pyrimidine compounds 5a and 5m exhibited IC50 of 6.29 and 14.58 µM. All other deriva-
tive IC50 values were observed from 17.26 to >100 µM (Figure 3A) (see supplementary
file). Among compounds 3(a–g), 4–methoxyphenyl-substituted oxazines (I) were observed
to be active compared to 4–chlorophenyl and phenyl-substituted oxazines, whereas in
compounds 5(a–p), 4–methoxybenzyl-substituted pyrimidine were more potent than other
benzylated derivatives. Also, 5–bromopyridine-substituted piperazines were found to be ac-
tive, whereas the other piperazines were inactive. Lead molecules 3a and 5b were evaluated
against MDA–MB–231, BT–549, and SUM159PT cells (Figure 3B) (Table 3). Among the two
oxazine–pyrimidine derivatives, 5b was more potent, with IC50 of 7.34, 5.98, and 14.81 µM.
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Figure 2. Structures of (I–VIII) substituent.

Table 1. Efficacy of newly synthesized oxazine-tethered thiouracil derivatives in MCF–7 cells.

Entry R1 R2 R3 Yield in % IC50
in µM

3a H 3Me I 96 9.17
3b H 3Me II 96 >100
3c H 3Me III 95 22.68
3d H 4Cl I 94 23.53
3e H 4Cl II 91 >100
3f H 4Cl III 96 48.42
3g H 4F I 95 13.87
3h H 4F II 96 50.74
3i H 4F III 94 ND
3j Me 4F I 94 86.46
3k Me 4F II 96 ND
3l Me 4F III 97 ND

Doxorubicin 2.96
Tamoxifen 1.84

ND = Not Determined.

Table 2. Efficacy of newly synthesized piperazine-tethered thiouracil derivatives in MCF–7 cells.

Entry R1 R2 R4 Yield in % IC50
in µM

5a H 4OMe IV 95 16.38
5b H 4OMe V 90 6.29
5c H 4OMe VI 90 17.26
5d H 4OMe VIII 94 29.38
5e H 3Me V 90 >100
5f H 3Me VII 80 79.00
5g H 3Me VI 89 >100
5h H 3Me VIII 90 30.09
5i H 4F VIII 89 83.30
5j H 4F V 95 >100
5k H 4F VII 85 >100
5l H 4F VI 80 >100

5m H 4Cl VIII 90 14.58
5n H 4Cl V 88 >100
5o H 4Cl VII 92 42.00
5p H 4Cl VI 80 >100

Doxorubicin 2.96
Tamoxifen 1.84
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Table 3. IC50 (µM) of lead molecules 3a or 5b in MDA–MB–231, BT–549, and SUM159PT cells.

Entry MDA–MB–231 BT–549 SUM159PT

3a 7.34 5.98 14.81
5b 57.42 37.54 47.91

3.3. Title Compounds Induce Apoptosis in MCF–7 Cells

We previously described the discovery of 1,2 oxazines as anti-cancer drugs [32], along
with their roles in triggering apoptosis, significantly increasing the population of sub-
G1 cells and inhibiting the capacity of NF–κB to bind DNA in HCC cells. We therefore
used MCF-7 cells to determine the effect of the lead compounds in Figure 4 on apoptosis.
Examination of the data showed that the lead compounds stimulated dose-dependent
apoptosis of MCF–7 cells (Figure 4).
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Figure 4. Evaluation of apoptosis in MCF-7 cells induced by lead compounds (5b, A and 3a, B) at
5 and 10 µM for 24 h. Control MCF–7 cells or MCF–7 cells treated with lead compounds (5b, A and 3a,
B) were stained with Annexin V–AbFluor™ 488/PI Apoptosis Detection (Abbkine, KTA0002, Wuhan,
China) followed by flow cytometry analysis. The percentage of apoptotic cells is indicated. Significant
changes from the control group are shown by (* p < 0.05, *** p < 0.01) of three independent assays.

3.4. Lead Compounds Arrest MCF–7 Cell Cycle at the Sub-G1 Phase

We next investigated whether the lead compounds can hinder specific cell cycle
progression. Propidium iodide labeling was used for the flow cytometric study of untreated
and treated (lead compounds) MCF–7 cells. Lead compounds increased the proportion of
cells in the sub-G1 phase relative to untreated cells [42] (Figure 5).
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3.5. Lead Compounds Inhibited the Phosphorylation of Human p65 Protein (Serine–536 Amino
Acid) of NF–κB Subunit in MCF–7 Cells

NF–κB activation is regulated by the enzyme inhibitor of κB (IκB) and kinase (IKK),
which phosphorylates subunit p65 at serine 536, and which inhibits the NF–κB signaling
pathway. Western blot analysis was used to examine if the lead compounds impacted
the expression of the p65 protein or the levels of phospho–p65 in MCF–7 cells. Lead
compounds 5b and 3a, as shown in Figure 6A,B, produce a concentration-dependent
decrease of phospho–p65 levels relative to p65 protein expression in MCF-7 cells 24 h
after treatment.
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Figure 6. Effects of lead compounds 5b (A) and 3a (B) on the NF–κB signaling pathway in MCF–7
cells. Cells were treated for 24 h with lead compounds (0–10 µM). Western blotting evaluated p65
expression and phospho–p65 levels.

3.6. In Silico Analysis of Novel Compounds 3a and 5b Targeting the NF–Kappa B p65 Subunit

In this study, we performed in silico analysis to evaluate the binding energies and
critical interactions of two novel compounds, 3a or 5b, targeting p65, the active site of NF–
κB. Initially, the NF–κB structure was retrieved from the Protein Data Bank (PDB ID: 1IKN)
and further used for molecular docking simulations using AutoDock4 tools. Molecular
docking simulation revealed that novel compound 3a demonstrated a binding energy of
−9.32 kcal/mol, indicating a strong binding affinity for the active site of the NF–κB p65
subunit, while 5b exhibited a binding energy of −7.32 kcal/mol, indicating a relatively
weaker binding affinity. Further key interactions revealed that compound 3a formed a
hydrogen bond with the residue GLN–29. The hydrogen bond plays a crucial role in
stabilizing the binding of 3a to the active site. One π–anion bond and one π–lone pair bond
formed with the residues GLU–225 and GLU–222, respectively. Additionally, hydrophobic
interactions (π–alkyl) were observed between 3a and specific residues like LYS–28, ARG–30,
ARG–50, and HIS–181 in the binding pocket, contributing to its overall binding affinity.
In comparison, 5b engaged in hydrogen bonding interactions with residues GLN–29 and
ILE–224 within the active site. These hydrogen bonds contribute to the binding stability
of 5b. One π–sigma bond formed with the residue ARG–50. Furthermore, hydrophobic
interactions were observed (LYS–28 and PRO–275), further enhancing the binding of 5b to
the target protein (Figure 7B). The results of the docking study revealed that both 3a and
5b have potential as inhibitors of the NF–kappa B p65 subunit.
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Figure 7. (A) Cartoon representation of both docked compounds 3a (Black) and 5b (Yellow) inside 
the binding pocket of the p65 subunit of NF–κB; (B) 2D interactions of compound 3a and 5b with 
the walls of the binding pocket, respectively andshowing bond distance (Å) between respective ami-
noacid and ligands. Pyrimidine ring of 3a and 4–methoxybenzylthiol group of 5b showed pi–alkyl 
interaction with Lys28 of p65 subunit of NF–κB; (C) Representation of three-dimensional surface 

Figure 7. (A) Cartoon representation of both docked compounds 3a (Black) and 5b (Yellow) inside
the binding pocket of the p65 subunit of NF–κB; (B) 2D interactions of compound 3a and 5b with
the walls of the binding pocket, respectively andshowing bond distance (Å) between respective
aminoacid and ligands. Pyrimidine ring of 3a and 4–methoxybenzylthiol group of 5b showed pi–
alkyl interaction with Lys28 of p65 subunit of NF–κB; (C) Representation of three-dimensional surface
view of docked compounds (3a: Black, 5b: Yellow) inside the grove of NF–κB and its enlarged view
for better understandings.
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4. Discussion

Pyrimidines have been demonstrated to be effective inhibitors of NF–κB, and many of
the pyrimidine-based drugs such as ibudilast, spebrutinib, and dasatinib are also reported
as inhibitors of the NF–κB pathway. In the present work, we have designed and synthesized
a new series of oxazine- and piperazine-clubbed pyrimidine derivatives as novel inhibitors
of NF–κB. Loss of cell viability in MCF-7 cells revealed 3a and 5b to be the most potent
among the series. Further efficacy of the lead compounds was studied by apoptosis and
cell cycle assays, and Western blot analysis. The lead compounds increased the proportion
of cells in the sub-G1 phase relative to untreated cells and induced apoptosis in MCF-7 cells.
Lead molecules 5b and 3a produced a concentration-dependent decrease of phospho–p65
levels in MCF–7 cells. Additionally, an in silico docking study of lead compounds also
supported the above data by prediction of strong binding to the p65 subunit of NF–κB.

5. Conclusions

In this study, novel compounds consisting of oxazines and piperazines linked to
pyrimidines were synthesized and evaluated in MCF–7 breast cancer cells. Compounds 3a
and 5b exhibited IC50s of 9.17 and 6.29 µM, respectively. Through in silico investigation,
it was determined that compounds 3a and 5b potentially bind to the active site of NF–
κB. Subsequent biological assays confirmed that lead compounds 3a and 5b effectively
inhibited NF–κBp65 phosphorylation in MCF–7 cells, presenting a promising chemical
entity targeting NF–κB in breast cancer cells.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines11102716/s1. Figures S2–S23 and S24–S40 contain NMR,
LCMS of 3(a–l), 5(a–p), and Figures S44–S50 contains IC50 values of newly synthesized compounds.
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