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Abstract: Stress, as a physiological response, is a major factor that affects several processes, including
reproductive functions. The main hormonal players of stress are cortisol (humans) and corticosterone
(rodents). Sertoli cells (SCs), as key contributors for the testicular homeostasis maintenance, are
extensively challenged by different hormones, with glucocorticoid corticosterone being the signaling
modulator that may impact these cells at different levels. We aimed to characterize how corticos-
terone modulates SCs energy balance, putting the mitochondrial performance and signaling output
in perspective as the cells can disperse to the surroundings. TM4 mouse SCs were cultured in the
absence and presence of corticosterone (in nM: 20, 200, and 2000). Cells were assessed for extracel-
lular metabolic fluxes, mitochondrial performance (cell respirometry, mitochondrial potential, and
mitochondrial complex expressions and activities), and the expression of androgen and corticos-
teroid receptors, as well as interleukine-6 (IL-6) and glutathione content. Corticosterone presented
a biphasic impact on the extracellular fluxes of metabolites. Low sub-physiological corticosterone
stimulated the glycolytic activity of SCs. Still, no alterations were perceived for lactate and alanine
production. However, the lactate/alanine ratio was decreased in a dose-dependent mode, opposite
to the mitochondrial complex II activity rise and concurrent with the decrease of IL-6 expression
levels. Our results suggest that corticosterone finely tuned the energetic profile of mouse SCs, with
sub-physiological concentrations promoting glycolytic expenditure, without translating into cell
redox power and mitochondrial respiratory chain performance. Corticosterone deeply impacted the
expression of the pro-inflammatory IL-6, which may alter cell-to-cell communication in the testis, in
the last instance and impact of the spermatogenic performance.

Keywords: male fertility; Sertoli cell; stress; corticosterone; metabolism; mitochondria; interleukine-6

1. Introduction

Corticosterone is the main glucocorticoid in most mammals, with it being described as
a whole-body energy balancer. It regulates several metabolic pathways, as well as immune
cascades and triggering responses, that are attributed to the physiological manifestation
of stress [1]. Indeed, glucocorticoids regulate the availability of energy via modulation of
gluconeogenesis, glucose expenditure, fat, and protein metabolism [2,3]. Glucocorticoid
secretion is a classic endocrine response to stress. Increased glucocorticoid production
induces gluconeogenesis to maintain the circulating glucose levels necessary to respond to
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stress. When the production of glucocorticoids is increased, an imbalance occurs in various
organs, as well as the reproductive organs. Glucocorticoids affect testicular function
at several levels: (1) in the hypothalamus, they decrease the synthesis and release of
GnRH; (2) in the pituitary, which inhibits the synthesis and release of luteinizing hormone
(LH) and follicle-stimulating hormone (FSH); (3) in the testis, which directly modulates
steroidogenesis and gametogenesis [4]. Although it has been described that normal male
reproductive function requires residual levels of glucocorticoids and the activation of the
associated receptors [1], it is documented that corticosteroids negatively impact males’
fertility, with a particular focus on the Sertoli cells (SCs). SCs are the somatic cells that
are responsible for the compartmentalization of the testis and support of spermatogenesis.
Adjacent SCs are connected, creating a blood–testis barrier (BTB), which allows them to
create a protected environment within the seminiferous tubules. These somatic cells play
five essential roles that allow for the occurrence of the spermatogenic event: (1) creation of
the BTB; (2) nutritional and structural support to the developing germ cells; (3) elimination
of non-viable germ cells; (4) production of fluid tubular seminiferous; (5) creation of an
immune-privileged environment [5].

In general, glucocorticoid receptors activity regulates testicular function, thus mod-
ulating the circulating levels of FSH and LH and impacting the ratio between the SCs
and germ cells [6]. At the physiological level, corticosterone effects on mouse SCs have
never been described, especially considering their impact on metabolic fitness, in general,
and in mitochondria, in particular, as well as the effects that could alter the way these
cells communicate with neighboring cells. The commitment of energetic management and
oxidative stress underlying the mitochondrial activity, particularly in respiratory chain
electron flux and ATP synthesis coupling, is a major question to be addressed upon corti-
costerone treatment. SCs present a crucial metabolic role, based on aerobic glycolysis, to
produce lactate to feed developing germ cells [7]. Still, mitochondria do not become totally
dysfunctional, with their activity being maintained to restore intermediate metabolites and
the pools of ATP for the SC’s use, as well as to balance its redox power [8].

The deviation from baseline corticosterone values and possible alteration in the control
of the release of certain cytokines [9] can also impact the normal performance of testicular
homeostatic management, which is attributed, in large part, to SCs. Minimal levels of
interleukin-6 (IL-6) are needed to trigger the essential actions (autocrine and paracrine) in
testicular physiology and maintain healthy male fertility. However, in some way, if these
interleukin levels deviate from the predicted physiological levels, it may impact the full
process, regarding spermatogonia maintenance and maturation [9]. IL-6 was reported to
inhibit the synthesis of DNA in a specific phase of meiosis in spermatocytes, maybe working
as a paracrine regulator of the seminiferous epithelium and negatively controlling germ
cell DNA replication [10]. Considering the major relevance of SCs in the structural support,
nurturing, and innate protection against agents external to the testicular environment of
spermatogonia, the local production of pro-inflammatory cytokines in the testis (by SCs)
can be of major importance. IL-6 is also described to regulate the BTB by perturbing the
integrity of the BTB and altering the normal localization and steady-state levels of the
BTB integral membrane proteins [11]. In other species and tissues, interesting correlations
between the metabolic performance and redox state were reported with inflammatory
signaling, including IL-6 [12].

Considering the multiple targets for corticosterone action described above, we consid-
ered a panel of corticosterone concentrations, in order to expose the mouse SCs, based on
the literature [13–15], and evaluated their glycolytic and mitochondrial performance, as
well as their autoimmune activity, through the expression of IL-6.

2. Materials and Methods
2.1. Chemicals

Fetal bovine serum (FBS) was obtained from Merck-Millipore (Berlin, Germany).
Insulin–transferrin–sodium selenite (ITS) supplement was purchased from Life Technolgies
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(Gaithersburg, MD, USA). Pierce BCA protein assay kit was obtained from Thermo Scientific
(Waltham, MA, USA). Clarity™ western ECL substrate was purchased from Bio-Rad
(Bio-Rad, CA, USA). NZYColour Protein Marker II, NZY M-MuLV reverse transcriptase
(M-MLV RT), random hexamer primers, dNTPs, NZYTaq green master mix, Greensafe and
NZY qPCR green master mix, and NZYDNA Ladder VI were obtained from NZYTech
(Lisbon, Portugal). Corticosterone (with 98.5% purity minimum) and all other chemicals
were purchased from Sigma–Aldrich (St. Louis, MO, USA). Other specific reagents are
described alongside their respective methods.

2.2. Sertoli Cell Line

Assays were performed using immortalized SCs from mouse (TM4) (CRL-1715™), pre-
viously purchased from ATCC (LGC Standards, Middlesex, UK). Cells were cultured and
handled accordingly with ATTC protocol and original guidelines [16]. SCs culture medium
was a 1:1 mixture of DMEM:Ham’s F12, supplemented with 10% heat-inactivated FBS,
25 mg/mL gentamicin, 100 U/mL penicillin, 100 µg/mL streptomycin sulfate, 2.5 µg/mL
amphotericin B, 15 mM HEPES, and sodium bicarbonate, with pH adjusted to 7.4. Cells
were plated on standard surface treated plates and incubated at 37 ◦C, 5% CO2.

2.3. Experimental Groups and Sample Collection

TM4 SCs were cultivated as described above, until reaching 70–80% confluence before
corticosterone treatment. Then, cells were washed thoroughly with PBS, and the culture
medium was replaced by serum-free DMEM:F12 (1:1) medium, with ITS supplementation
(insulin 10 mg/L; transferrin 5.5 mg/L; sodium selenite 6.7 µg/L, pH 7.4), and supplemented
with three different corticosterone concentrations (in nM: 20, 200, and 2000). The chosen con-
centrations were based on those described in mice serum (sub, iso, and supra-physiological
concentrations, respectively) [13–15]. Additionally, we considered a condition without corti-
costerone (CORT-free) to perform data normalization. After 24-h exposure, cells were used to
perform, i.e., 1H-NMR metabolic profiling (collecting and freezing 0.5 mL of culture medium),
protein and RNA extraction by cellular pellet, intact cell respirometry [17], and mitochondria
isolation [18], in order to assess complex I and II activities [19,20]. Additional TM4 cell cultures
in 6- and 96-well plates, under the same culture conditions, were used to address glutathione
content [21] and mitochondrial membrane potential [17], respectively. The TM4 cell line used
to make these experimental groups was between passages 10 and 20.

2.4. Evaluation of Cellular Metabolic Performance by Proton Nuclear Magnetic
Resonance Spectroscopy

TM4 SCs were cultivated as described previously, considering 24 h treatment with cor-
ticosterone. At time zero of incubation 0.5 mL of medium was collected (corresponding to
basal composition, with no metabolization) and freeze-clamped in liquid nitrogen for later
1H-NMR analysis. After 24 h treatment, 0.5 mL of medium from each plate were collected
and freeze clamped. The 1H-NMR spectra were acquired at 14.1 Tesla, at 25 ◦C, using a
Varian (Varian Inc, Palo Alto, CA, USA) 600 MHz spectrometer, equipped with a 3 mm indi-
rect detection probe, to determine metabolite variation in the different experimental groups
during the time-course of the experiment using previously described methods [7], with
minor modifications. In brief, each 1H-NMR spectra consisted of 21.5 k points, defining a
7.2 kHz spectral width. A minimum of 64 scans were averaged using an interpulse delay
of 10 s, as well as a 30◦ radiofrequency pulse, to ensure full relaxation of magnetization
towards quantitative analysis. Sodium fumarate was used as an internal reference (singlet,
6.50 ppm) to quantify the metabolites in the solution: lactate (doublet, 1.33 ppm), alanine
(doublet, 1.45 ppm), succinate (singlet, 2.393 ppm), glutamine (triplet, 3.766 ppm), and
H1-α glucose (doublet, 5.22 ppm). The relative areas of 1H-NMR resonance were quantified
using the curve-fitting routine supplied with the NUTSpro NMR spectral analysis program
(Acorn, NMR Inc., Fremont, CA, USA). Before Fourier transform, each FID was zero-filled
and multiplied by a 0.2 Hz Lorentzian. Metabolite consumption (or production) per cell
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was calculated by measuring the accumulated variation of the metabolite (versus time zero)
after 24 h and dividing it by the total number of cells in each plate [7].

2.5. Oxygen Consumption Rate Measurements in Intact Cells

Cells were cultivated until reaching around 70–85% confluence. Prior to oxygen mea-
surements, cells were trypsinized, resuspended in respiration medium (specific for SCs), and
counted in a Neubauer chamber to address cell density. Respiration medium was based on
cell culture medium, with a total of 17.5 mM glucose and 4 mM L-glutamine, without serum,
and supplemented with 1% ITS (0.01 mg/mL recombinant human insulin, 0.0055 mg/mL
human transferrin, substantially iron-free, and 0.005 µg/mL sodium selenite). To assess
the oxygen consumption rates we performed open-air oxygen measurements in a thermo-
statized (by a water jacket, at 37 ◦C) 1 mL volume chamber, using a Clark-type electrode
from Hansatech Oxytherm System, connected to Oxytrace Plus data acquisition software.
Respirometry assay was adapted from different protocols [18,22]. Each assay started with a
30 min initial respiration, until it reaches a steady-state, with oxygen consumption rate (OCR)
measured in the last 5 min. Then, the sequential addition of mitochondrial modulators, such
as 2 µg/mL oligomycin, 2 µM FCCP (Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone)
and a mixture of 0.5 µM rotenone + 2.5 µM antimycin A, was performed (each modulation
period lasting, on average, 15 min) to assess the rates needed to calculate the parameters:
basal respiration (Initial respiration minus Rotenone+Antimycin A state), maximal respiration
(FCCP state minus Rotenone+Antimycin A state), ATP turnover (Initial respiration minus
Oligomycin state), proton leak (Oligomycin state minus Rotenone+Antimycin A state), spare
respiratory capacity (FCCP state minus Initial respiration), and non-mitochondrial respiration
(Rote-none+Antimycin A state). All values were normalized to 1 × 106 cells. The parameter
analysis was adapted to the polarographic measurement of oxygen from the literature [22,23].

2.6. Mitochondrial Membrane Potential (∆Ψm) Assay in Intact Cells

The measurement of mitochondrial membrane potential (∆Ψm) was performed by fluores-
cence detection of a cationic dye, JC-1 (1,1′,3,3′-Tetraethyl-5,5′,6,6′-tetrachloroimidacarbocyanine
iodide), that migrates to negatively polarized mitochondria, using a protocol adapted from [24,25].
Briefly, cells were seeded in 96-well black side clear bottom microplates and treated with different
concentrations of corticosterone for 24 h. At the end of treatment, cells were incubated with
JC-1 (3 µL/10 mL) for 30 min at 37 ◦C, 5% CO2. Afterwards, cells were washed with Hank’s
balanced salt solution (HBSS) supplemented with 17.5 mM glucose and 10 mM HEPES, as well
as with calcium and magnesium salts. Fluorescence was determined (two-wavelength pairs:
Ex485/Em528 nm and Ex530/Em590 nm, JC-1 monomers and aggregates, respectively) using a
Synergy™ HTX multi-mode microplate reader, Bi-oTek (Winooski, VT, USA). Fluorescence ratio
(JC-1 aggregates/monomers) was calculated to assess changes in ∆Ψm, which can represent
mitochondrial depolarization or hyperpolarization. Data was normalized to values obtained
from non-treated cells.

2.7. Isolation of Mitochondria

TM4 SCs were treated over 24 h with corticosterone, as described above. Cells were
trypsinized, and freshly obtained pellets were homogenized with Glass/Teflon Potter–
Elvehjem (approximately 20 strokes) in 2 mL ice cold buffer (130 mM sucrose, 50 mM KCl,
5 mM MgCl2, 5 mM KH2PO4, 5 mM HEPES; pH 7.4, and 0.01% digitonin) to promote the
rupture of cells. Mitochondria-rich fractions were obtained after differential centrifugations,
at 4 ◦C (800× g, 10 min, pellet down cell debris, recovering supernatant; 12,000× g, 15 min,
recovering pellet, washed with ice cold buffer—250 mM sucrose, 5 mM HEPES, pH 7.2, and
12,000× g, 15 min, recovering pellet, and adding approximately 50 µL of the same buffer),
using the traditional procedures with minor modifications [18,19]. The protein content of
mitochondrial-enriched pellets was measured using the PierceTM BCA assay kit according
to manufacturer’s instructions, using a spectrophotometer Synergy H1 (Biotek Instruments,
Winooski, VT, USA).
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2.8. Mitochondrial Complexes I and II Activities

Previously isolated mitochondria were submitted to three cycles of freezing/thawing
to give substrates access to the mitochondrial matrix. Mitochondrial complex I and II
activities assays were conducted at 37 ◦C, using up to 10 µg of mitochondrial protein, both
developed in 25 mM KH2PO4 (pH = 7.5) reaction buffer, following the absorbance of DCPIP
(2,6-dichloroindophenol, λ = 600 nm, ε = 20.7 × 10−3 M−1 cm−1), for 10 min with a 5 s read
interval, using a microplate spectrofluorometer Synergy H1 (BioTek, Winooski, VT, USA).
In detail, complex I (NADH-ubiquinone oxidoreductase) was evaluated spectrophotomet-
rically, following the reduction of 0.07 mM DCPIP, according to [26] and [19], with major
modifications. Buffer was previously supplemented with 1 mM KCN and 8 µM antimycin
A. Immediately before starting to read the kinetics, 0.1 mM NADH was added. Thus, the
time-dependent decrease of DCPIP optical density, promoted by the mitochondria-rich
fraction in the absence and presence of rotenone (a specific inhibitor of complex I, at a final
concentration of 0.01 mM), was recorded. Enzyme activity was determined by the differ-
ence between the slopes in the absence and presence of rotenone (to discard non-specific
reduction of DCPIP), and it was expressed as nM DCPIP reduced/min/mg of protein.

Complex II (succinate-coenzyme Q reductase) activity was evaluated spectrophotometri-
cally, following the reduction of 0.07 mM DCPIP, which is used as an exogenous final acceptor
of the electrons, resulting from the succinate oxidation promoted by the enzyme [19,20]. Buffer
was previously supplemented with 0.2 mM decylubiquinone, 0.01 mM rotenone, 1 mM KCN,
and 8 µM Antimycin A. Immediately before starting to read the kinetics, 2 mM succinate
was added. Thus, the time-dependent decrease of DCPIP optical density, promoted by the
mitochondria-rich fraction in the absence and presence of oxaloacetate (compete with succi-
nate to be catalyzed by complex II, at a final concentration of 10 mM), was recorded. Enzyme
activity was determined by the difference between the slopes in the absence and presence of
oxaloacetate (to discard non-specific reduction of DCPIP), and it was expressed as nM DCPIP
reduced/min/mg of protein. For both activities, the calculation algorithm was based on the
equation ∆[DCPIP]/min = Kinetic slope/(ε × optical path length).

2.9. Quantitation of Glutathione’s Levels

Reduced and oxidized glutathione levels (GSH and GSSG levels, respectively) were
determined by a spectrofluorometric assay [21]. The protocol assumes the extraction of
cytosolic and mitochondrial pool of glutathione. We considered 0.5 mg protein of cell
pellet to one mL of a phosphate buffer (100 mM NaH2PO4, 5 mM EDTA, pH = 8) and
0.5 mL of 2.5% H3PO4. The mixture was sonicated and centrifuged at 10,000× g, 30 min,
at 4 ◦C, to promote deproteinization. Supernatants were collected and neutralized with
NaOH. To determine GSH content, supernatants were incubated at room temperature
in 2.5 mL of phosphate buffer supplemented with 200 g orthophthalaldehyde (OPT) for
15 min. To determine GSSG content, supernatants were first incubated at 22 ◦C, with
12 mM N-ethylmaleimide (NEM) for 45 min. After that, 1.66 mL of 0.1 M NaOH and
0.7 mL of phosphate buffer supplemented with 200 µg OPT were added to the reaction,
followed by 15 min incubation at 22 ◦C. Concentrations were calculated using standard
curves prepared with different concentrations of GSH and GSSG, which underwent the
same sample treatment. Fluorescence (Ex350/Em420 nm) was measured in a microplate
spectrofluorometer Synergy H1, BioTek, Winooski, VT, USA). The results were expressed
as GSH/GSSG ratio.

2.10. Total Protein Extraction

Protein extraction of TM4 SCs was developed overnight, using RIPA buffer previously
supplemented with 1% protease inhibitor cocktail (B14002, Bimake, Houston, TX, USA),
1% of 100 mM phenylmethanesulfonyl fluoride, and 1% of 100 mM sodium orthovanadate
(modified from [17]). Total protein concentration was determined using the Pierce™ BCA
protein assay kit, as described previously.
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2.11. Evaluation of Mitochondrial Complexes and Lactate Dehydrogenase Protein Levels

Quantification of protein levels of mitochondrial complexes and lactate dehydro-
genase (A/C) were performed with a Western blot methodology [27] and subsequent selec-
tive immuno-detection. Total OXPHOS analyses were performed with 25 µg of total protein,
mixed with sample buffer (60 mM Tris-HCl, 10% glycerol, 2% SDS, 5% β-mercaptoethanol,
0.01% bromophenol blue, pH 6.8), and denatured for 15 min at 37 ◦C. Proteins were frac-
tionated in 12% polyacrylamide gels, and electrophoresis was carried out for 120 min, at
100 V. Afterwards, proteins were transferred from gels to previously activated polyvinyli-
dene difluoride membranes (Merck Millipore, Darmstadt, Germany) in a Mini Trans-Blot®

cell (Bio-Rad, Hemel Hempstead, UK) and then blocked for 3 h in a 5% non-fat milk
solution at room temperature. The membranes were incubated overnight at 4 ◦C, with
a mouse anti-rodent total OXPHOS antibody cocktail (1:1000, ab110413, Abcam, UK).
The antibody mixture was the purpose for targeting five mitochondrial proteins epitopes:
NDUFB8 (NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 8), represent-
ing complex I; SDH8 (succinate dehydrogenase assembly factor 4), complex II; UQCRC2
(cytochrome b-c1complex subunit 2), complex III; MTCO-1 (mitochondria-encoded cy-
tochrome c oxidase I), complex IV; and ATP5A (ATP synthase F1 subunit alpha), complex
V. As a protein-loading control and band normalization, Ponceau S (5%) staining was used.
The immune-reactive proteins were detected with goat anti-mouse antibody (1:5000, A3562,
Sigma-Aldrich, Taufkirchen, Germany). Membranes were reacted with WesternBright™
ECL and visualized with the Bio-Rad ChemiDoc XR (Bio-Rad, Hemel Hempstead, UK).
Densities from each band were calculated using the Image Lab Software (Bio-Rad, Hemel
Hempstead, UK), normalized to Ponceau S total protein band) [17]. LDH detection com-
prised the same protocol, but primary antibody overnight incubation was performed with
rabbit anti-mouse LDH (1:15000, an-ti-LDHA/LDHC, C28H7, Cell Signaling Technology,
USA), and immune reactive proteins were detected with goat anti-rabbit IgG (1:5000, A3687,
Sigma-Aldrich, Taufkirchen, Germany).

2.12. Reverse Transcriptase Polymerase Chain Reaction (RT-PCR)

Extraction of total RNA (tRNA) from TM4 cells was performed using the NZY total RNA
isolation kit (NZYTech, Oeiras, Portugal), as indicated by the manufacturer protocol [17]. tRNA
obtained for each sample was reversely transcribed using the NZY M-MLV RT. The resulting
complementary DNA (cDNA) was used with exon–exon spanning primer sets designed [28]
to amplify Ar (androgen receptor), B2m (Beta-2-microglobulin), Il-6v1 (Interleukin 6, transcript
variant 1), and Nr3c1 (glucocorticoid receptor) transcripts (Table 1). Each polymerase chain
reaction (PCR) contained 1 µL of cDNA in 12.5 µL of final volume of a mixture containing
6.5 µL of NZYTaq green master mix, 0.1 µL (50 µM) of each primer, and sterile H2O up to
20 µL. Mouse testis tissue was used as positive control, and cDNA-free sample was used
as a negative control. At the end of the experiments, samples were run in 2% agarose gel
electrophoresis with 2 µL of Greensafe in 200 mL, for 30 min at 120 V. Gels were visualized
and analyzed in a Bio-Rad GelDoc XR (Bio-Rad, Hemel Hempstead, UK) using the Quantity
One software (Bio-Rad, Hemel Hempstead, UK). The sizes of the expected products were
compared to a DNA ladder.
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Table 1. Accession number, oligonucleotide sequence, and respective conditions for PCR amplifica-
tion of targeted mRNAs from mouse Sertoli cells (TM4 cells).

Target
(Accession Number) Sequence (5′-3′) AT (◦C) Number of Cycles Specie of Origin

Ar
(NM_013476.4)

FWD: GCTCACCAAGCTCCTGGATT
60 40 Mus musculusRVS: TCAGGAAAGTCCACGCTCAC

B2m
(NM_009735.3)

FWD: ACGTAACACAGTTCCACCCG
58 35 Mus musculusRVS: TCTCGATCCCAGTAGACGGT

Il-6v1
(NM_031168.2)

FWD: TGAGAAAAGAGTTGTGCAATGG
60 40 Mus musculusRVS: GGAGAGCATTGGAAATTGGGG

Nr3c1
(NM_008173.4)

FWD: GTGGAAGGACAGCACAATTACC
60 40 Mus musculusRVS: GAGACTCCTGCAGTGGCTTG

Abbreviations: Ar (androgen receptor); AT (annealing temperature); B2m (beta-2-microglobulin); FWD (forward);
Il-6v1 (interleukin 6, transcript variant 1); Nr3c1 (glucocorticoid receptor); RVS (reverse).

2.13. Evaluation of mRNA Transcripts Levels of Glucocorticoid Receptor, Androgen Receptor and
Interleukin-6 by Quantitative PCR (qPCR)

mRNA expression levels of Ar, Il-6v1, and Nr3c1 were evaluated by qPCR [17]. The
specific primers (Table 1) were again used to semi-quantify the transcripts. qPCR was carried
out in a CFX Connect™ real-time PCR system (Bio-Rad, Hercules, CA, USA), using unskirted
low-profile 96-well PCR plates (Bio-Rad, Hercules, CA, USA) and considering SYBR® green
as fluorescent dye. Amplification efficiency was determined for all primer sets using serial
dilutions of cDNA. qPCR amplifications of cDNA targets considered per reaction 1 µL of
diluted 1:15 cDNA,10 µL NZY qPCR green master mix, 0.8 µL (10 mM) of forward and reverse
primers for each gene, and sterile H2O up to 20 µL final. Amplification conditions comprised
an initial denaturation step of 5 min at 95 ◦C, followed by 40 (Ar, Il-6 and Nr3c1) or 35 (B2m)
runs of a 3-step cycle: denaturation—30 s, at 95 ◦C; annealing—30 s, at a specific temperature
(see Table 1); and extension—1 min, at 72 ◦C. B2m transcript levels were used as a reference
gene to normalize the mRNA expression of target genes. Fold variation of the expression
levels was calculated following the mathematical model proposed by Pfaffl (considering the
formula: 2−∆∆Ct [29]) and normalized to data from untreated cells.

2.14. Statistical Analysis

Experimental results comprised at least three or more biological replicates (additional
technical replicates were considered, when mentioned). Corticosterone-free condition
(CORT-free) was considered, when mentioned, to normalize data in independent biological
replicates. Data were graphically presented in most as box plots (with median, minimum,
and maximal values, as well as total points and first and third quartiles) or as mean ± SEM.
Statistical analysis was performed using GraphPad Prism 8.0.1 (GraphPad Software, San
Diego, CA, USA), considering by routine an ordinary One-way ANOVA, with a Tukey’s
multiple comparison test. Data with p < 0.05 were considered statistically different.

3. Results

We evaluated the impact of different corticosterone concentrations in TM4 SCs metabolic
performance and physiology. Prior to the protocols described above, viability assays (data
not shown) were performed, showing that none of the concentrations of corticosterone
impacted SCs survival or proliferation.

3.1. Corticosterone Did Not Cause an Alteration on Androgen Receptor and Glucocorticoids
Receptor Transcript Levels in Sertoli Cells

The effects of corticosterone on gene expression of relevant receptors, AR and NR3C1/GR
(glucocorticoid receptors), were addressed by qPCR, as presented in Figure 1. The exposure to the
three concentrations of the hormone did not significantly alter the transcription of Ar and Nr3c1
genes in TM4 SCs (Figure 1); interestingly, the Nr3c1 transcripts levels were all slightly depressed
(median under 1, regarding fold variation), and the Ar transcripts were mildly increased (median
equal or above 1), as compared to the levels observed in absence of corticosterone.
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Figure 1. Effect of corticosterone (20, 200, and 2000 nM) treatment in mouse SCs (TM4) Ar (panel (A))
and Nr3c1 (panel (B)) transcript levels. Corticosterone-free condition (CORT-free) was taken into
account to normalize data. Ordinary one-way ANOVA, with a Tukey’s multiple comparison test,
was used for statistical analysis. Results are expressed as box plots (with median, minimum, and
maximal values, as well as total points and first and third quartiles) (n = 6 for each condition). Data
with p < 0.05 were considered statistically different (* p < 0.05).

When TM4 SCs were exposed to 20, 200, and 2000 nM corticosterone the mRNA levels
of Ar gene were 1.04 ± 0.20, 1.23 ± 0.26, and 1.21 ± 0.16-fold variation to CORT-free
conditions (Figure 1, panel A), respectively, while those of Nr3c1 transcripts decreased to
0.32 ± 0.12, 0.43 ± 0.08, and 0.60 ± 0.27-fold variation to CORT-free conditions (Figure 1,
panel B), respectively.

3.2. Corticosterone Impacted the Metabolic Profiling of Sertoli Cells

By following the extracellular metabolic secretome, it was possible to observe the pro-
file of glucose, glutamine, and succinate consumption (Figure 2, panels A–C). SCs exposed
to the sub-physiological concentration of corticosterone (20 nM) presented a strong increase
in the consumption of these three metabolites, as compared to the cells from all the other
groups. When the cells were exposed to 20 nM of corticosterone for 24 h, they consumed
19.7 ± 2.7 µmol of glucose/million of cells (Figure 2, panel A), which was significantly
higher than the consumption by the cells under CORT-free conditions (13.8 ± 0.9 µmol
of glucose/million of cells). The consumption of glucose was also significantly higher
in the SCs exposed to the supra-physiological concentration of corticosterone (2000 nM)
(14.5 ± 1.4 µmol of glucose/million of cells) than that of cells exposed to the physiological
concentration of corticosterone (200 nM) (8.9 ± 1.4 µmol of glucose/million of cells).

An analogous trend was observed in the consumption of glutamine and succinate.
SCs exposed to 20 nM of corticosterone consumed significantly more glutamine (1.78 ±
0.23 µmol/million of cells) than the cells exposed to CORT-free conditions (1.23 ± 0.11 µmol/
million of cells), as well as the physiological and supra-physiological concentrations of corti-
costerone (1.03 ± 0.03 and 1.12 ± 0.10 µmol/million of cells, respectively) (Figure 2, panel B).
Similarly, the cells exposed to the sub-physiological concentration of corticosterone (20 nM) con-
sumed significantly more succinate (0.23 ± 0.03 µmol of glucose/million of cells) than the cells
exposed to CORT-free conditions (0.15± 0.02µmol/million of cells), with 200 nM corticosterone
(0.13 ± 0.01 µmol/million of cells) and 2000 nM corticosterone (0.16 ± 0.02 µmol/million of
cells) (Figure 2, panel C).

In contrast, the lactate and alanine production by SCs (Figure 2, panels D,E) was not signif-
icantly altered in the presence of corticosterone; however, the lactate/alanine ratio presented an
inverse trend to that of corticosterone concentration (Figure 2, panel F). Cells from the groups
exposed to CORT-free conditions (6.31 ± 0.08 µmol of lactate/million of cells; 0.10 ± 0.03 µmol
of alanine/million of cells), and 20 nM corticosterone (6.60 ± 1.20 µmol of lactate/million of
cells; 0.10 ± 0.03 µmol of alanine/million of cells), 200 nM corticosterone (6.75 ± 1.25 µmol
of lactate/million of cells; 0.11 ± 0.03 µmol of alanine/million of cells), and 2000 nM corti-
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costerone (6.24 ± 0.77 µmol of lactate/million of cells; 0.13 ± 0.03 µmol of alanine/million
of cells) presented similar production to lactate and alanine (Figure 2, panels D,E). As con-
cerning lactate/alanine ratio, there was a decrease in the cells treated with the physiological
(66 ± 9 arbitrary units) and supra-physiological (55 ± 7 arbitrary units) concentrations, as
compared to the ones exposed to 20 nM corticosterone (104 ± 16 arbitrary units), which
was not statistically different from the ratio observed in the cells from the CORT-free group
(80 ± 12 arbitrary units) (Figure 2, panel F). As lactate is a key metabolite in spermatogene-
sis, we also evaluated the impact of corticosterone on lactate dehydrogenase protein levels,
being that the quantity of this enzyme was not affected by exposure of the SCs to any of the
concentrations used (Figure 2, panels G,H).
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Figure 2. Effect of corticosterone (20, 200, and 2000 nM) treatment in mouse SCs (TM4) consumption
and production of the 1H-NMR detectable metabolites glucose, glutamine, lactate, succinate, and
alanine (Panels (A–E)), as well as lactate/alanine ratio (Panel (F)) and LDH protein expression (semi-
quantitation–Panel (G); representative membrane–Panel (H)). Corticosterone-free condition (CORT-free)
was considered to normalize data (Panel (G)). Ordinary one-way ANOVA, with a Tukey’s multiple
comparison test, was used for statistical analysis. Results are expressed as box plots (with median,
minimum, and maximal values, as well as total points and first and third quartiles)—panels (A–F)
(n = 6 for each condition) and mean± SEM-Panel (G) (n = 5 for each condition). Data with p < 0.05 were
considered statistically different (* p < 0.05; ** p < 0.01; *** p < 0.001).

3.3. Corticosterone Modulated Mitochondrial Complex II Activity in TM4 Sertoli Cells

The full assessment of the mitochondrial electron chain, in an integrated view, was
established by means of oxygen consumption recording (Figure 3, panel A). In general, no
alteration was perceived in the vast majority of the mitochondrial functional parameters
assessed for the cells exposed to corticosterone, as compared with SCs under CORT-free con-
dition. Still, when the cells were exposed to the sub-physiological dose of corticosterone, we
observed a tendency to enhance the majority of the respiratory parameters, as evidenced in
the basal respiration in line, with non-mitochondrial respiration. Overviewing the SCs exposed
2000 nM corticosterone, and data show a slight negative impact on ATP turnover (defined
as the ratio between ATP content and ATP production, and the capacity of ATP synthase to
maintain the phosphorylation of ADP); however, regarding mitochondrial membrane po-
tentials (∆Ψ), no differences were observed (Figure 3, panel B) in SCs exposed to any of the
assayed corticosterone concentrations. In general, oxidative phosphorylation was not im-
pacted as a whole, but small changes where observed. In fact, the screening of protein levels
of all mitochondrial complexes (Figure 3, panels E,F) showed no alterations when cells were
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exposed to corticosterone. Still, when assessing mitochondrial complexes activities, slight
alterations were perceived in mitochondrial complex I activity of SCs exposed to corticos-
terone (Figure 3, panel C); when TM4 SCs were exposed to 20 nM corticosterone, a lower
complex II activity was seen (1.36 ± 0.13 mmol/min/mg protein), as compared with that
observed in cells exposed to CORT-free conditions (1.92 ± 0.11 mmol/min/mg protein),
200 nM corticosterone (1.81 ± 0.15 mmol/min/mg protein), and 2000 nM corticosterone
(1.80 ± 0.19 mmol/min/mg protein) (Figure 3, panel D).
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Figure 3. Effect of corticosterone (20, 200, and 2000 nM) treatment in mouse SCs (TM4) intact cell oxygen
consumption rates (Panel (A)) and mitochondrial membrane potential (∆Ψ relative values by mean of
JC-1 fluorescence aggregates/monomers ratio (Panel (B)). Mitochondrial complexes I and II enzymatic ac-
tivity (Panels (C,D)) and total OXPHOS protein expression (semi-quantitation–Panel (E); representative
membrane–Panel (F)). Corticosterone-free condition (CORT-free) was taken into account to normalize
data in Panels (A,B,E). Ordinary one-way ANOVA, with a Tukey’s multiple comparison test, was used
for statistical analysis. Results are expressed as mean ± SEM—Panels (A) (n = 4–9, different respiratory
parameters) and (E) (n = 5 for each condition)—or box plots (with median, minimum, and maximal
values, as well as total points and first and third quartiles)—Panels (B) (n = 3 for each condition, with
6 technical replicates), (C,D) (n = 4 for each condition). NDUFB8 (NADH dehydrogenase (ubiquinone)
1 beta subcomplex subunit 8), complex I; SDH8 (succinate dehydrogenase assembly factor 4), complex
II; UQCRC2 (cytochrome b-c1complex subunit 2), complex III; MTCO-1 (mitochondria-encoded cy-
tochrome c oxidase I), complex IV; and ATP5A (ATP synthase F1 subunit alpha), complex V. Data with
* p < 0.05 were considered statistically different.
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3.4. Corticosterone Had No Impact on Redox Status of Sertoli Cells

It was possible to indirectly address the redox status (power) of TM4 SCs exposed to cor-
ticosterone, considering a simple interplay between the NADPH/NADP+ and GSH/GSSG
ratios (Figure 4, panel A), orchestrated mainly by the enzymes glutathione reductase and
glutathione peroxidase. Increasing concentrations of corticosterone slightly impacted glu-
tathione pool in these cells, by means of the reduced/oxidized forms ratio, but not enough
to consider that corticosterone increased oxidative stress and decrease in general redox
power. In fact, cells exposed to CORT-free conditions (45 ± 13 arbitrary units), i.e., 20 nM
corticosterone (36 ± 9 arbitrary units), 200 nM corticosterone (50 ± 18 arbitrary units), and
2000 nM corticosterone (31 ± no16 arbitrary units), presented similar reduced/oxidized
glutathione ratios (Figure 4, panel B).
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lined in the panel (A)). Corticosterone-free condition (CORT-free) was considered to normalize data
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3.5. Corticosterone Had a Strong Impact on Interleukin-6 Transcript Levels in Sertoli Cells

Concerning Il6, exposure to increasing concentrations of corticosterone caused an
increasing impact on the mRNA levels of this cytokine. Indeed, we observed an inverse
relationship between the corticosterone concentration and Il6 mRNA levels.

The decrease in the transcription of the gene allocated for the interleukin-6 transcript
levels was the highest in SCs exposed to 2000 nM corticosterone (0.47 ± 0.06-fold varia-
tion to CORT-free conditions), with them also being perceivable in the cells exposed to
200 nM (0.70 ± 0.07-fold variation to CORT-free conditions) and 20 nM corticosterone
(0.83 ± 0.09-fold variation to CORT-free conditions) (Figure 5).
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4. Discussion

Stress is a phenomenon that occurs throughout the human lifespan, which, in punctual
situations can be positive, but if it is chronic, it can affect the individual’s wellbeing. Events
that trigger stress are called stressors, and these can be of either external or internal
origin, with glucocorticoid hormones playing a pivotal role in the response to multiple
stressors [30]. Corticosterone is the main corticosteroid hormone in rats and mice, being
reported throughout the literature as having a multimodal action, with its concentration
being a crucial parameter to differentiate its role for specific tissues [31]. Indeed, it has been
suggested that corticosteroids negatively impact male fertility, with a particular focus on
Sertoli cells (SCs) [32,33], although it is also known that, for a regular male reproductive
function, residual levels of glucocorticoids and the activation of its specific receptors are
required [1]. In this work we aimed to evaluate the impact of increasing concentrations of
corticosterone on the physiology of SCs, particularly on its glycolytic and mitochondrial
performance, as well as its autoimmune activity, through the expression of IL-6.

In our work, we used SCs monocultures, a simpler, but effective, approach to evaluate
autocrine and paracrine activity at the cell levels [34] that were exposed to sub- (20 nM),
iso- (200 nM), and supra-physiological (2000 nM) concentrations of corticosterone [13–15]
in a FBS-free medium to guarantee the existence of a corticosterone-free condition (CORT-
free). We firstly assessed the transcription levels of androgen (AR) and glucocorticoid
(GR) receptors in TM4 SCs exposed to different corticosterone concentrations, in which, no
alteration on the expression levels of AR was seen. Indeed, it seems that the 24-h treatment
of TM4 SCs with the selected concentrations of corticosterone was not able to revert the
phenotype of these cells, concerning the response mechanisms to androgens, a key aspect
of SCs physiology. Still, the expression levels of GR were responsive to the exposure to
corticosterone, with lower levels of mRNA transcripts in the cells exposed to the highest
dose of corticosterone. It has been reported that glucocorticoids are able to autoregulate the
mRNA and/or protein levels of its receptor by distinct feedback mechanisms, either by
directly impacting the mRNA levels or by an indirect mechanism that involves degradation
of the protein in the proteasome [35,36]. In our TM4 SCs, direct feedback seems to be
present, as previously described in lymphoblastoid cell lines [36]. It has been suggested
that this autoregulation mechanism may be a central aspect in the physiological response
to stress, particularly in the modulation of glucocorticoid-dependent catabolic and anabolic
processes [35,36]. Hence, given the extreme relevance of SCs metabolism for the develop-
ment of spermatogenesis [37] and its sensitivity to various endogenous and exogenous
factors [38,39], we analyzed the impact of this glucocorticoid on the extracellular metabolic
fluxes of SCs, allowing us to infer, even if only partially, the relationship between glycolysis,
the Krebs cycle, and the level of mitochondrial activation when these cells were challenged
with corticosterone.

It has been reported that glucocorticoids elicit a myriad of distinct metabolic outcomes,
depending on the organ or tissue it acts on. For instance, in the skeletal muscle, glucocorti-
coids decrease glucose uptake (antagonizing insulin) and metabolization, whereas, in the
liver, they promote gluconeogenesis [40]. In the testis, it has been described that corticos-
terone promotes a decrease in lactate content, which might be due to its lower production
by SCs or higher utilization by developing germ cells [32]. In our work, when TM4 SCs
are exposed to the chosen concentrations of corticosterone for 24 h, we observed that the
consumption of glucose, glutamine, and succinate were increased only in the cells exposed
to the sub-physiological concentration of this glucocorticoid (20 nM), while remaining
constant in the cells from the other groups. Still, in the cells exposed to 20 nM corticosterone
(as in the cells from the other groups), no alteration in lactate production was seen (as well
as no alteration in the LDH protein levels), which led us to suggest that TM4 cells might
be stimulated to increase the performance of the Krebs cycle (in a catabolic perspective) to
feed the mitochondrial respiratory chain. The lactate/alanine ratio helped us to further
highlight this hypothesis, considering that this ratio is associated with the cellular redox
state, by means that pyruvate, is converted to lactate (or alanine) and coupled with the
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concomitant oxidation/reduction of NADH to NAD+ [41,42]. The observed increase in the
lactate/alanine ratio observed in the SCs exposed to the sub-physiological concentration of
corticosterone indicates a rise in the reducing potential, which would ultimately feed the
mitochondrial respiratory chain.

When screening the full action of the mitochondrial respiratory chain and mitochon-
drial membrane potential, by means of oxygen consumption and mitochondrial potential
(to address oxidative phosphorylation, OXPHOS), the effects observed were quite tenuous
for all corticosterone concentration assayed. Indeed, few studies were considered to ac-
cess the corticosterone effects on the mitochondria. An in vivo study with a reptile [43],
using metabolic cages, as well as isolated liver mitochondria, reported no correlation of
this hormone augmentation with some respiratory parameters; it additionally observed
positive alterations on ATP content, although the ATP pool in the cells is not a consensual
parameter. Regarding that, in a “fight or flight” response mode, a huge energy demand
to tissues, such as the liver and muscle, occurs; however, in peripheral tissues, such as the
testis, no studies reported the respiratory behavior as a whole. Our results reported that
TM4 maintained the background functioning of mitochondrial activity, where the coupling
of ATP synthesis, by means of the mitochondrial membrane potential and respiratory param-
eter ATP turnover, had been slightly pinched in the highest concentration of corticosterone
assayed, as well as in the tendency to increase non-mitochondrial respiration phenomena.
While the expression of mitochondrial complexes proteins was not altered in any of the
conditions assayed, there was a decrease on mitochondrial complex II activity in the SCs
exposed to the sub-physiological concentration of corticosterone. Still, this effect seems to
have been dimmed by the cells, for they were able to maintain the background functioning
of mitochondrial activity. This suggests that in regular conditions SCs mitochondria might
not be working in full, thus safeguarding the existence of detrimental stimuli and need to
enhance mitochondrial activity to sustain the spermatogenic potential. Moreover, in cells, the
glutathione redox couple GSH/GSSG has a major role and together with other redox-active
couples, including NADPH/NADP+, which regulates and maintains the appropriate cellular
redox status [44]. Changes in the GSH/GSSG ratio are fundamental in the fine-tuning of
redox power transduction. For instance, transient increases of reactive oxygen species (ROS)
have been described to induce an increase on GSH levels aiming at redox status restauration;
however, when oxidative stress becomes prolonged and cell resources are no longer able to
counteract the oxidative-mediated challenges, the GSH pool substantially decrease, impact-
ing several cellular processes, thus leading to cell malfunction and, later on, a deathly fate [44].
Additionally, the relationship between the GSH/GSSG and NADPH/NADP+ ratios in cy-
tosol or mitochondrial matrix are both indirectly connected by membrane shuttles that lately
maintain the “fluxes” of redox players. Our results disclose a maintenance of the GSG/GSSG
ratio in response to the assayed corticosterone concentration, which is in accordance with the
oxygen consumption parameters observed in SCs.

Lastly, we evaluated Il6 expression levels, considering that IL-6 is a recognized sig-
naling cytokine in inflammation processes triggered by glucocorticoids. SCs are known
to produce IL-6 in a FSH and stage dependent manner [10,45]. Several roles have been
attributed to IL-6 within the testis, suggesting that this cytokine is an important autocrine
and paracrine regulator [46]. It has been reported that, in the testis, IL-6 inhibits DNA
synthesis during the seminiferous epithelium cycle, modulates the secretion of both inhibin
B and transferrin by SCs, and is able to reduce the motility of spermatozoa [11]. The
observed decrease in Il6 transcript levels is in agreement with a previously published work
in rat testicular tissue [47]. Still, the deviation from “non-stress” corticosterone, in terms of
Il6 transcription, was a false question in the previous model. Monocultures outputs, where
cells are uprooted from their original tissue environment, may not reflect the organ behavior
when serum corticosterone doses were deviated from physiological levels, as described
for in vivo studies. Additionally, the treatment time (24 h) and absence of a circulatory
system restrain the direct translation of the results to the real perception of corticosterone
effects on animal/human testicular tissues [9]. In fact, for in vitro studies using hormone-
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responsive cells, such as SCs, addressing the proper corticosterone concentration is of
maximal importance. In fact, a previous study evaluated the impact of the distinct doses of
this glucocorticoid using FBS-containing cultured medium [32], which did not guarantee a
CORT-free condition at the start and hampers correlations with our study. FBS is known to
provide a cocktail of multiple components, including several glucocorticoids [48].

It is important to highlight two types of actions: the ones regarding relatively fast
mechanisms (such as interleukin-6 expression and the potential release of the surroundings)
and the metabolic features associated with energy production. In this last one, ATP demand
in the stress response is divided into a known fight or flight response (acute action) or
sustained marathon to reach a metabolic steady state (chronic condition). Our experimental
paradigm may be considered to be in an intermedium state, considering the mature cells in
a confined static medium, and the metabolite consumption/secretion highlight a declared
hormesis effect around the value, assumed as physiological, thus stressing that the TM4 cells
fine-tuned the responses to specific hormonal challenges, increased substrates consumption
to upturn fast ATP synthesis, and prepared cells to a rescue mode.

5. Conclusions

Our work provides new insights regarding the regulation of SCs metabolism un-
der the influence of glucocorticoids by dissecting cell multitargets of corticosterone ac-
tion/repercussion, avoiding the interference of the hypothalamic-pituitary-gonadal axis,
and providing clues to scale up to more complex biological structures. The hormesis effect
observed in some bioenergetic parameters is the major take-home message, when consid-
ering the monoculture and treatment timeframe as the experimental biological paradigm.
Nevertheless, further knowledge on the functioning and regulation of these biochemical
mechanisms is essential for the enlightenment of a process that is central to spermatogenesis
and fertility. The addressment of other metabolic parameters, as well as the intermediary
players, though outside the scope of this work, may help us to further understand the role
of glucocorticoids on male fertility. Athletes, or even men whose jobs include high levels of
responsibility or danger, can have chronic high levels of cortisol (human homologues of
corticosterone) and be important subjects for future studies.

Author Contributions: Conceptualization, A.M.S., C.T.R., M.G.A. and P.F.O.; methodology, A.M.S.,
C.T.R., R.L.B. and I.J.; investigation, A.M.S., C.T.R. and R.L.B.; data curation, A.M.S. and P.F.O.; writing—
original draft preparation, A.M.S. and P.F.O.; writing—review and editing, A.M.S., C.T.R., R.L.B., I.J.,
R.A.C., M.A.P.-S., D.B.d.S., M.G.A. and P.F.O.; supervision, P.F.O. and M.G.A.; funding acquisition, P.F.O.
and M.G.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Fundação para a Ciência e a Tecnologia (FCT) to LAQV-
REQUIMTE (UIDB/50006/2020), UMIB (UIDB/00215/2020 and UIDP/00215/2020), and ITR—
Laboratory for Integrative and Translational Research in Population Health (LA/P/0064/2020).
AM Silva and RL Bernardino were funded by FCT (UIDB/00215/2020 and UIDP/00215/2020).
C Ribeiro was funded by the Coordination for the Improvement of Higher Education Person-
nel (CAPES). Marco G Alves (reference 2021.03439.CEECIND) and Pedro F Oliveira (reference
CEECINST/00026/2018) were funded by national funds through FCT, under the Scientific Employ-
ment Stimulus. This work was co-funded by the EU Framework Program for Research and Innovation
H2020 (POCI/COMPETE2020). NMR data were collected at the UC-NMR facility, which is supported
in part by FEDER—European Regional Development Fund, through the COMPETE Programme
(Operational Programme for Competitiveness), and National Funds through FCT—Fundação para
a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology), through grants
REEQ/481/QUI/2006, RECI/QEQ-QFI/0168/2012, CENTRO-07-CT62-FEDER-002012, and Rede
Nacional de Ressonância Magnética Nuclear (RNRMN).

Ethical Approval: This article does not contain any studies with human participants or animals
performed by any of the authors.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Biomedicines 2022, 10, 2331 15 of 16

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Whirledge, S.; Cidlowski, J.A. Glucocorticoids, stress, and fertility. Minerva Endocrinol. 2010, 35, 109–125. [PubMed]
2. Kosenow, W. Facial expression in Down syndrome in the newborn and premature infant. Kinderkrankenschwester 1991, 10, 126–127.

[PubMed]
3. Reeder, D.M.; Kramer, K.M. Stress in Free-Ranging Mammals: Integrating Physiology, Ecology, and Natural History. J. Mammal.

2005, 86, 225–235. [CrossRef]
4. Collu, R.; Gibb, W.; Ducharme, J.R. Effects of stress on the gonadal function. J. Endocrinol. Investig. 1984, 7, 529–537. [CrossRef]
5. Mruk, D.D.; Cheng, Y.C. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the

seminiferous epithelium during spermatogenesis. Endocr. Rev. 2004, 25, 747–806. [CrossRef]
6. Hazra, R.; Upton, D.; Jimenez, M.; Desai, R.; Handelsman, D.J.; Allan, C.M. In vivo actions of the Sertoli cell glucocorticoid

receptor. Endocrinology 2014, 155, 1120–1130. [CrossRef]
7. Rato, L.; Alves, M.G.; Socorro, S.; Carvalho, R.A.; Cavaco, J.E.; Oliveira, P.F. Metabolic Modulation Induced by Estradiol and DHT

in Immature Rat Sertoli Cells cultured In Vitro. Biosci. Rep. 2012, 32, 61–69. [CrossRef]
8. Oliveira, P.F.; Martins, A.D.; Moreira, A.C.; Cheng, C.Y.; Alves, M.G. The Warburg Effect Revisited—Lesson from the Sertoli Cell.

Med. Res. Rev. 2015, 35, 126–151. [CrossRef]
9. Jegou, B.; Cudicini, C.; Gomez, E.; Stephan, J. Interleukin-1, interleukin-6 and the germ cell-Sertoli cell cross-talk. Reprod. Fertil.

Dev. 1995, 7, 723–730. [CrossRef]
10. Hakovirta, H.; Syed, V.; Jégou, B.; Parvinen, M. Function of interleukin-6 as an inhibitor of meiotic DNA synthesis in the rat

seminiferous epithelium. Mol. Cell. Endocrinol. 1995, 108, 193–198. [CrossRef]
11. Zhang, H.; Yin, Y.; Wang, G.; Liu, Z.; Liu, L.; Sun, F. Interleukin-6 disrupts blood-testis barrier through inhibiting protein

degradation or activating phosphorylated ERK in Sertoli cells. Sci. Rep. 2014, 3, 4260. [CrossRef] [PubMed]
12. Feidantsis, K.; Georgoulis, I.; Zachariou, A.; Campaz, B.; Christoforou, M.; Pörtner, H.O.; Michaelidis, B. Energetic, antioxidant,

inflammatory and cell death responses in the red muscle of thermally stressed Sparus aurata. J. Comp. Physiol. 2020, 190, 403–418.
[CrossRef] [PubMed]

13. Shanks, N.; Griffiths, J.; Zalcman, S.; Zacharko, R.M.; Anisman, H. Mouse strain differences in plasma corticosterone following
uncontrollable footshock. Pharmacol. Biochem. Behav. 1990, 36, 515–519. [CrossRef]

14. Kim, D.H.; Jung, J.S.; Suh, H.W.; Huh, S.O.; Min, S.-K.; Son, B.K.; Park, J.H.; Kim, N.D.; Kim, Y.H.; Song, D.K. Inhibition of
stress-induced plasma corticosterone levels by ginsenosides in mice: Involvement of nitric oxide. Neuroreport 1998, 9, 2261–2264.
[CrossRef] [PubMed]

15. Wade, M.R.; Degroot, A.; Nomikos, G.G. Cannabinoid CB1 receptor antagonism modulates plasma corticosterone in rodents. Eur.
J. Pharmacol. 2006, 551, 162–167. [CrossRef]

16. Matfier, J.P. Establishment and characterization of two distinct mouse testicular epithelial cell line. Biol. Reprod. 1980, 23, 243–252.
[CrossRef]

17. Moreira, B.P.; Silva, A.M.; Martins, A.D.; Monteiro, M.P.; Sousa, M.; Oliveira, P.F.; Alves, M.G. Effect of Leptin in Human Sertoli
Cells Mitochondrial Physiology. Reprod. Sci. 2021, 28, 920–931. [CrossRef]

18. Silva, A.M.; Oliveira, P.J. Evaluation of respiration with clark type electrode in isolated mitochondria and permeabilized animal
cells. In Mitochondrial Bioenergetics; Springer: Berlin/Heidelberg, Germany, 2012; pp. 7–24. [CrossRef]

19. Monteiro-Cardoso, V.F.; Silva, A.M.; Oliveira, M.M.; Peixoto, F.; Videira, R.A. Membrane lipid profile alterations are associated
with the metabolic adaptation of the Caco-2 cells to aglycemic nutritional condition. J. Bioenerg. Biomembr. 2014, 46, 45–57.
[CrossRef]
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