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Abstract: Childhood asthma represents a heterogeneous disease resulting from the interaction
between genetic factors and environmental exposures. Currently, finding reliable biomarkers is
necessary for the clinical management of childhood asthma. However, only a few biomarkers are
being used in clinical practice in the pediatric population. In the long run, new biomarkers for
asthma in children are required and would help direct therapy approaches. This study aims to
identify potential childhood asthma biomarkers using a genetic-driven biomarkers approach. Herein,
childhood asthma-associated Single Nucleotide Polymorphisms (SNPs) were utilized from the GWAS
database to drive and facilitate the biomarker of childhood asthma. We uncovered 466 childhood
asthma-associated loci by extending to proximal SNPs based on r2 > 0.8 in Asian populations and
utilizing HaploReg version 4.1 to determine 393 childhood asthma risk genes. Next, the functional
roles of these genes were subsequently investigated using Gene Ontology (GO) term enrichment
analysis, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and a protein–protein
interaction (PPI) network. MCODE and CytoHubba are two Cytoscape plugins utilized to find
biomarker genes from functional networks created using childhood asthma risk genes. Intriguingly,
10 hub genes (IL6, IL4, IL2, IL13, PTPRC, IL5, IL33, TBX21, IL2RA, and STAT6) were successfully
identified and may have been identified to play a potential role in the pathogenesis of childhood
asthma. Among 10 hub genes, we strongly suggest IL6 and IL4 as prospective childhood asthma
biomarkers since both of these biomarkers achieved a high systemic score in Cytohubba’s MCC
algorithm. In summary, this study offers a valuable genetic-driven biomarker approach to facilitate
the potential biomarkers for asthma in children.

Keywords: bioinformatics; biomarkers; childhood asthma; genome-wide association study; hub genes

1. Introduction

Childhood asthma is the most frequent condition characterized by chronic airway
inflammation [1]. In particular, asthma exacerbations are a significant cause of childhood
morbidity and mortality. Asthma attacks frequently occur, sometimes leading to pro-
gressive lung damage or fatal in mild asthmatics. Exacerbation prevention becomes a
top priority in treating all asthmatics [2]. The death rate of asthma in Children reached
0.7 per 100,000 people. This trend was predicted to increase and reach 400 million in
2025, consisting of adults and children. Asthma is the most prevalent chronic disease
affecting children, and it is among the top 20 conditions in the world for disability-adjusted
life years in children [3,4]. In addition, asthma prevalence has been rising over the past
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few decades, and differences in rates between nations strongly imply that environmental
exposures play a significant role in asthma development. Asthma risk factors associated
with the environment include tobacco smoke, farm animals and their products, domestic
cats, respiratory viral infections, microbial exposures, dietary factors, breastfeeding, medi-
cation, occupational exposures, indoor and outdoor air pollution, and various allergens [5].
Environmental exposures begin in early childhood and play a crucial role as determinants
of health. When these exposures occur at critical stages of development, they influence
genetic responses and individual risk profiles that ultimately contribute to asthma develop-
ment [6,7]. Genetic and environmental variables influence asthma’s pathophysiology and
treatment effectiveness [8]. Developing an understanding of gene–environment interactions
may aid in elucidating the cause of illness and classifying specific genes or exposures in the
same pathway [9].

Over the past few decades, significant achievement has been made in understanding
and treating asthma, including developing biomarkers and innovative targeted therapies [8].
However, the causes of and effective therapy for childhood severe asthma exacerbations
only remain known at a low level [10]. In addition, severe asthma unresponsive to inhaled
corticosteroids (ICS) therapy results in poor symptom control and increased exacerba-
tions [11]. Since 2019, personalized management for children (6–11 years old) with asthma
has already been mentioned in Global Initiative for Asthma (GINA), focusing on using
Leukotriene receptor antagonist (LTRA) as the alternative to the low dose inhaled corti-
costeroid and Short acting β2 agonists [12]. The discovery of new asthma treatments can
be discovered by a better understanding of the mechanism of different biomarkers and
phenotypes [13]. Identifying biomarkers may provide new approaches to managing and
treating childhood asthma [14].

A reliable genetic marker could identify and aid in treating childhood asthma more
quickly. The discovery of new genetic targets can also provide new insights into the
pathophysiology of childhood asthma [14]. Genetic variations that influence susceptibility
to childhood asthma could lead to the development of novel therapeutics [15]. Several
potential loci have been implicated in the genetics of childhood asthma, but no robust
and specific markers for the disease have been identified [1]. Therefore, we systematically
integrated several genomic databases to drive biomarkers for childhood asthma. This
study used the Genome-Wide Association Study (GWAS) Catalog database to identify
genetic markers associated with particular childhood asthma. Next, we perform functional
enrichment and protein–protein interaction (PPI) network analyses to identify how these
genes interact and cooperate to drive childhood asthma development. In addition, the
Cytohubba plugin of Cytoscape provides 11 topological methods to identify some key
genes. Maximal Clique Centrality (MCC) was selected in this study to predict essential
proteins from the yeast PPI network more accurately among the eleven methods. Several
articles have been published using the CytoHubba to identify potential biomarkers in
different diseases [16–19]. In short, a combination of the data could enable the identification
of novel childhood asthma as biomarkers and provide new insight into the underlying
cellular mechanism of this debilitating condition.

2. Methods
2.1. Identified Childhood Asthma Risk Genes

We extracted the childhood asthma-associated SNPs by using National Human Genome
Research Institute (NHGRI) (EMBL-EBI, Wellcome Genome Campus, Hinxton, Cam-
bridgeshire, CB10 1SD, UK) GWAS catalog database (http://www.ebi.ac.uk/gwas) [20]
accessed on 14 April 2022. The SNPs were chosen based on the disease/trait attribute
of “Childhood asthma.” Next, HaploReg version 4.1 is used to expand the number of
SNPs r2 > 0.8 in Asian populations, indicative of a childhood asthma risk gene. Detailed
information on the study workflow is depicted in Figure 1.

http://www.ebi.ac.uk/gwas
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Figure 1. Study workflow of bioinformatics analysis. We integrated several genomic databases
(GWAS and HaploReg) and several functional enrichment-based approaches (GO, PPI and KEGG) to
identify potential biomarkers for childhood asthma.

2.2. Gene Ontology Enrichment Analysis

Data analyzed for gene ontology enrichment analysis were obtained from the WEB-
based Gene SeT Analysis Toolkit (WebGestalt) 2019 [21]. In general, gene ontology (GO)
was divided into three categories as follows: biological process (BP), cellular component
(CC), and molecular function (MF) [22]. The GO database contains annotations that explain
the features of genes and gene products from various organisms and putative functions for
enriched genes. BP is an ordered set of molecular functions that describe various biological
processes. The MF is used to explain a gene’s or gene product’s function, while the CC
describes genes’ subcellular structures, locations, and macromolecular complexes [16]. The
significance threshold was set at a q-value (FDR) < 0.05.

2.3. KEGG Pathway Enrichment Analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis
was performed using the WebGestalt 2019 online tools regarding the KEGG database
on candidate genes to enrich significantly altered pathways. The KEGG database links
genomics information with higher-order functional information to systematically analyzed
gene functions [23]. KEGG enrichment results are presented with q-values (FDR) < 0.05,
indicating significance.

2.4. Discovering Biomarker Gene of Childhood Asthma

A protein–protein interaction (PPI) analysis was conducted based on candidate genes
and proteins in the STRING database (https://string-db.org/), accessed on 14 April 2022.

https://string-db.org/
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The STRING database is designed to provide a comprehensive listing of all known and
predicted protein–protein interactions, including physical and functional associations [24].
STRING’s default settings were used. The PPI network was built and visualized using
Cytoscape software version 3.7.2 (Bethesda, MD, USA) [25], accessed on 5 August 2022.
Cytoscape is a graphical network visualization tool for complicated biological networks.
We also utilized the Cytoscape plugin molecular complex detection (MCODE) to screen and
identify important modules in the PPI network using the following scores and parameters:
k score = 2, degree cutoff = 2, node score cutoff = 0.2, and maximum depth = 100 [26].
Next, using the CytoHubba plugin in Cytoscape, we calculated and analyzed the net-
work structure of the PPI network to identify hub genes. CytoHubba features eleven
topological analysis methods, including Degree (Deg), Edge Percolated Component (EPC),
Maximum Neighborhood Component (MNC), Density of Maximum Neighborhood Com-
ponent (DMNC), Maximal Clique Centrality (MCC), and six centralities based on shortest
paths (Bottleneck, EcCentricity, Closeness, Radiality, Betweenness, and Stress). Among the
eleven methods, we used the MCC algorithm to predict essential proteins more accurately
from the yeast PPI network [27]. The top gene from the MCC algorithm was considered as
a potential biomarker gene.

2.5. Statistical Analysis

Our study used RStudio 4.2.1 (RStudio, 250 Northern Ave, Boston, MA 02210, USA)
for all analytic workflows. Over-representation analysis (ORA), including gene ontology
(GO) and KEGG pathway enrichment analysis, were performed using the WebGestalt 2019
R package [28]. GO and KEGG were visualized using R with the ggplot2 package [29]. In
addition, STRING and Cytoscape were used to construct and visualize the PPI [25].

3. Results
3.1. Childhood Asthma Risk Genes Identification

The GWAS catalog yielded a total of 466 childhood asthma-associated SNPs with
criterion p-value < 10−5 (Table S1). Following that, we utilized HaploReg version 4.1
(Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA)
to determine the proxy SNPs of childhood asthma-associated SNPs. Interestingly, our
study emphasized that 393 childhood asthma risk genes overlap with the childhood
asthma-associated SNPs, and it is based on the characteristic of r2 > 0.8 used in Asian
populations (Table S2).

3.2. Gene Ontology Enrichment Analysis of Childhood Asthma Risk Genes

In order to analyze the biological features of the discovered genes and proteins, GO
enrichment analysis was done using the WebGestalt 2019 online tools. The GO enrich-
ment analysis includes a biological process (BP), cellular component (CC), and molecular
function (MF). For each GO enrichment analysis, the significance level was set at a q-value
(FDR) < 0.05. The analysis of BP showed that a total of 471 functions were significantly
enriched. The top-ranked results indicated that BP is primarily associated with “regulation
of immune system process”, “cellular response to cytokine stimulus”, “positive regulation
of immune system process”, “cytokine-mediated signaling pathway”, and “response to
cytokine production”. The CC analysis included 39 functions significantly enriched, such
as “MHC class II protein complex”, “integral component of luminal side of endoplasmic
reticulum membrane”, luminal side of endoplasmic reticulum membrane”, “MHC protein
complex”, and “side of membrane”. The MF analysis revealed that 30 functions were sig-
nificantly enriched, including “peptide antigen binding”, “MHC class II receptor activity”,
“signaling receptor binding”, “cytokine activity”, and “interleukin-1 receptor activity”.
Figure 2 depicts the top ten GO enrichment analyses (BP, MF, CC). The complete results of
the GO enrichment analysis are shown in Table S3.
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3.3. KEGG Pathway Analysis of Childhood Asthma Risk Genes

KEGG enrichment pathway analysis was performed using WebGestalt 2019 to establish
the potential involvement of pathways related to identified gene candidates. The KEGG
analysis revealed 34 significantly changed pathways (q < 0.05) (Table S4). Most of the
highly ranked pathways were involved in categories such as “Th17 cell differentiation”,
“inflammatory bowel disease (IBD)”, “Th1 and Th2 cell differentiation”, “allograft rejection”,
and “asthma”. The KEGG pathway enrichment analysis results for the top 10 ranks are
illustrated in Figure 3.
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3.4. Identification of Potential Biomarkers of Childhood Asthma

Protein–protein interaction (PPI) network of 393 childhood asthma risk genes was
constructed by using the STRING database (Figure 4). In addition, biomarker genes were
isolated from the PPI networks using Cytoscape plugins such as MCODE and CytoHubba.
The Cytoscape plugin MCODE was used to identify gene clusters (probable biomarkers)
from the PPI networks. The PPI network was subclustered into eight subclusters using the
MCODE method (Figure 4). Table S5 contains a comprehensive list of MCODE clusters,
including their score, number of nodes, and edges. Next, we utilized CytoHubba to choose
hub genes for the PPI network. The hub genes are the nodes of the network with high
connectivity. Cytohubba’s MCC algorithm was used to rank all nodes. We highlighted
that 10 biomarkers (IL6, IL4, IL2, IL13, PTPRC, IL5, IL33, TBX21, IL2RA, and STAT6) were
identified as the highest 10 ranked hub genes (Table 1). Among these biomarkers, we
emphasized that IL6 and IL4 were the top two of the ten hub genes and were determined to
represent the key genes and considered potential biomarkers of childhood asthma.
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Table 1. The top 10 hub genes identified by using CytoHubba.

Rank Gene
ID Gene Name Score

1 IL6 Interleukin 6 22,370,717,281
2 IL4 Interleukin 4 22,370,701,130
3 IL2 Interleukin 2 22,370,622,650
4 IL13 Interleukin 13 22,369,670,594
5 PTPRC Protein Tyrosine Phosphatase Receptor Type C 22,363,673,434
6 IL5 Interleukin 5 22,340,430,000
7 IL33 Interleukin 33 21,784,097,718
8 TBX21 T-Box Transcription Factor 21 21,767,214,138
9 IL2RA Interleukin 2 Receptor Subunit Alpha 21,701,358,536

10 STAT6 Signal Transducer and Activator of Transcription 6 21,233,178,024
The higher score, the higher rank of the biomarker. The score of genes was identified from CytoHubba.

4. Discussion

GWAS or through gene-environment interactions can be used to uncover the genetic
variance associated with asthma and identify possible targets for therapeutics [30]. This
study focused on identifying potential biomarkers for childhood asthma based on candi-
date genes from the GWAS-identified loci. A GWAS is a comprehensive analysis of all
genetic variations in the form of SNPs that can be associated with certain traits. GWAS
can help detect genetic biomarkers associated with common, complex diseases or pheno-
types [20,31–35]. An integrated bioinformatics analysis was performed in this study based
on candidate genes identified from GWAS loci, GO enrichment analyses, KEGG pathway
enrichment analyses, and a constructed PPI network. In this way, our findings provide
valuable clues for efforts to investigate the potential biomarker for diagnosis and treatment
of childhood asthma. The discovery of new biomarkers aid in the categorization of patients,
therapeutic response, and clinical outcome prediction [36]. Most biomarkers for asthma
are confined to the Th2 phenotype, and no useful biomarkers for severe asthma have been
confirmed in both children and adults [37]. Our work identified ten potential biomarkers in
childhood asthma, including IL6, IL4, IL2, IL13, PTPRC, IL5, IL33, TBX21, IL2RA, and STAT6.
Among these, IL6 and IL4 were screened out as highly potential biomarkers in childhood
asthma since the gene also acquired a high systemic score in Cytohubba’s MCC algorithm.

Interleukin 6 (IL6) was recently identified as a promising biomarker for adult asthma
in peripheral blood [38]. Nevertheless, IL6 has not been studied as a biomarker in childhood
asthma [39]. IL6 promotes effector T cells, suggesting that it may have a functional role
in asthma. The cytokine IL6 is traditionally thought of as an inflammatory marker, along
with TNFα and IL-1β, instead of a regulatory cytokine [40]. IL6 levels are associated with
systemic inflammation, metabolic dysfunction, and greater asthma severity among lean
and obese adults [38]. Elevated IL6 levels were associated with reduced lung function
and heightened asthma exacerbation risk. In addition, epithelial IL6 trans-signaling has
been identified as a potential mechanism linked to asthma phenotypes characterized by
increased airway inflammation [41]. Interestingly, IL6 increased asthma exacerbation risk
in children but did not affect lung function or other severity indicators as in adults. It is
possible that children with frequent exacerbations and high IL6 levels may grow up to be
adults with severe asthma [39]. Evidence from a longitudinal study indicates that children
with higher plasma IL6 levels are related to obesity, metabolic syndrome, and greater
asthma severity, with a risk for asthma exacerbation and decreased lung function [42].

Allergies and acute asthma exacerbations are generally induced by IL4 [43]. IL4 is an
important cytokine involved in asthma development [44], and it has been reported that
airway hyperresponsiveness, eosinophil infiltration, and inflammation are all symptoms of
bronchial asthma that IL4 likely mediates [45]. IL4 is a potent activator of inflammation and
is involved in developing fibrosis during Th2 inflammation [46]. In asthma patients, Th2 is
hyperactive, causing a rise in IL4 and immunoglobulin E (IgE), which stimulates the growth
and activation of eosinophilic granulocytes, which then secretes a variety of inflammatory
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mediators, leading to bronchial chronic inflammation and asthma [47]. In addition, in
asthmatic children, levels of IL4 were significantly higher among atopic asthmatics than
nonatopic asthmatics [48,49]. IL4 and exhaled nitric oxide, combined with 8-isoprostane
and interferon-gamma (IFN-7), were effective markers for asthma control. Children with
asthma also had a higher IL4/IFN-7 ratio, consistent with a predominant Th2 inflammatory
state [49,50]. IL4 is an anti-inflammatory protein that can modulate inflammation, thus
preventing asthma and vice versa [44]. In particular, we would like to emphasize that our
method of genetic-driven biomarkers ultimately provided a candidate list of the biomarker
in childhood asthma to be used in clinical outcome predictions. Nevertheless, further
research is required to verify this finding.

Our study has some limitations which need careful consideration. The results pre-
sented here are based on current information obtained from GWAS Catalog. In the future,
new information may influence the results. Since we relied on existing data for integrative
bioinformatic analysis, further information may affect the presented results. Addition-
ally, our analyses have primarily been exploratory; therefore, further confirmation in the
functional study is still required.

5. Conclusions

In summary, our findings point to possible biomarkers for asthma in children. These
bioinformatic studies reveal significant hub genes such as IL6, IL4, IL2, IL13, PTPRC, IL5,
IL33, TBX21, IL2RA, and STAT6, which may play a pivotal role in asthma development in
children. We highlighted that IL6 and IL4 obtained a high systemic score in Cytohubba’s
MCC algorithm. We therefore highly proposed both of these biomarkers as potential
childhood asthma biomarkers. However, further study is needed to understand these genes’
regulatory functions better so that their relevance as clinical biomarkers and therapeutic
targets may be established.
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