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Abstract: Ion channels and transporters typically consist of biomolecules that play key roles in a
large variety of physiological and pathological processes. Traditional therapies include many ion-
channel blockers, and some activators, although the exact biochemical pathways and mechanisms
that regulate ion homeostasis are yet to be fully elucidated. An emerging area of research with great
innovative potential in biomedicine pertains the design and development of synthetic ion channels
and transporters, which may provide unexplored therapeutic opportunities. However, most studies
in this challenging and multidisciplinary area are still at a fundamental level. In this review, we
discuss the progress that has been made over the last five years on ion channels and transporters,
touching upon biomolecules and synthetic supramolecules that are relevant to biological use. We
conclude with the identification of therapeutic opportunities for future exploration.

Keywords: ion channels; ion transporters; ionophores; ion carriers; channelopathies; cystic fibrosis;
AMPs; peptides; supramolecular medicinal chemistry; nanotubes

1. Introduction
1.1. Ion Channels and Ion Transporters as Therapeutic Targets

Natural ion channels are composed of large proteins that form pores spanning through
lipid membranes (Figure 1a), and they can be grouped based on ion selectivity (e.g., Na+,
Cl−) [1], and type of gating mechanism (e.g., activation mediated by voltage [2], ligand [3],
mechanical [4,5], or light stimuli [6]). They are involved in a plethora of physiological
and pathological processes, for which they have been attracting increasing interest for
therapeutic intervention [7]. Remarkably, 19% of drugs that have been approved by the
U.S. Food and Drug Administration (FDA) target ion-channel proteins, both gate-activated
and ligand-activated [8]. Research in ion-channel modulation has become a hot topic, and
encompasses both synthetic molecules [9] and biomolecules, such as lipids [10–12], tox-
ins [13], antibodies and nanobodies [14], and venom-derived peptides [15,16]. Dysfunction
of ion channels is linked to several pathologies that are generally termed channelopathies,
which comprise a plethora of diverse diseases, of the central nervous system, the renal
system, and cardiac tissue, as recently reviewed [17], and many others, affecting for instance
the skeletal muscle [18], the immune response [19], and glucose levels [20]. The reasons
for channel dysfunction are diverse, and include mutations [21–23] and post-translational
defects [24,25].

Ion transporters are considered a separate class that plays a role in the regulation
of ion homeostasis. They are mobile and they can travel through cell membranes. They
transiently bind ions to enable their crossing through the lipid barrier (Figure 1b). They
have been proposed as anticancer agents and sensitizers, and they include both natural
biomolecules (e.g., peptides and antibiotics) and synthetic molecules (e.g., polyethers,
crown ethers) [27,28]. They have been proposed as antimicrobial (AM) agents [26,29–31],
with the added benefit of immunomodulation activity [26]. However, their successful use
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in therapy suffers from unsolved challenges in formulation, and in targeting, thus resulting
in sub-optimal performance and side-effects. A potential solution could be their selective
activation at the pathological site [28].
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In therapy, channel blockers are used to treat numerous diseases. As a well-known
example, selective Ca2+-channel blockers are anti-hypertensive drugs [32]. Several types of
ion transporters are being considered as therapeutic targets for ischemic stroke [33]. They
include transient receptor potential (TRP) channels, which are an inhibition target to treat
not only stroke, but also depression, epilepsy, and neurodegenerative forms [34]. In fact,
Ca2+-channel blockers used to treat hypertension were found to exert a neuroprotective
effect against Alzheimer’s disease and depression [35]. Dysregulation of Ca2+ homeostasis
was found to occur ubiquitously in Alzheimer’s disease, and thus it has been proposed as
a therapeutic target for neurodegeneration [36,37].

Na+ and Ca2+ channel blockers find use in the treatment of bipolar disorders too, and
another ion-related therapy that is effective for some patients includes administration of
lithium salts [38]. Ca2+ channel blockers attenuate cellular hyperactivity, and for this reason
they are considered in psychiatry to treat various disorders [39]. Na-K-Cl cotransporters
are therapeutic targets for many diseases, including pain, epilepsy, brain edema, and
hypertension [40]. Furthermore, Ca2+ and Na+ channel blockers are used to treat chronic
and neurogenic pain [41]. Acid-sensing ion channels have been proposed as therapeutic
target for migraine [42].

Recently, however, disruption of ion channel function was found to play a role in
the etiology of type-2 diabetes [43]. Several types of ion channels are dysregulated in
diabetes and could serve as therapeutic targets, although a key limitation is the risk of side
effects arising from sub-optimal selectivity of channel blockers [44]. Furthermore, insulin
resistance and altered Ca2+ homeostasis are associated with non-alcoholic liver steatosis,
which is another important pathology that would benefit from Ca2+-channel targeting, as
long as it is specific for pathologically relevant channel isoforms that are expressed in the
liver [45].

Overall, selectivity is indeed key, and there is a recent trend to employ biologics to
achieve it, including engineered antibodies, nanobodies, and venom-derived peptides [46].
Besides organ-specificity (e.g., cardiac [47], cerebellar [48], and liver [45] tissues), organelle-
specificity is also relevant, for instance to target ion channels of mitochondria [49] or
lysosomes [50]. In particular, mitochondrial-associated endoplasmic reticulum membranes
(MAMs) contain specific proteins and ion channels that control key cellular processes,
such as redox homeostasis and Ca2+ signaling, and their alteration has been linked to
several pathologies, including cancer (Figure 2) [51]. Likewise, lysosomes are underesti-
mated regulators of Ca2+ levels that could be interesting targets for anticancer agents [51].
Several ion-channel blockers are being considered for the treatment of cancer metastases
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(Table 1), which are accompanied by ion alterations and are characterized by unique protein
expression patterns that are different from the originating tumors and target host tissue [52].
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Figure 2. Cancer-associated defects of endoplasmic reticulum Ca2+ homeostasis. Reproduced with
permission from ref. [51]. Copyright Elsevier 2020.

Detailed knowledge of specific expression of the various types of ion channels is
thus of paramount importance to develop effective therapy and reduce side-effects [53].
Alternatively, organism selectivity could be exploited to develop antiviral agents target-
ing ion channels (i.e., viroporins), which play key roles in the virus lifecycle and are
immunomodulatory [54].

Besides cationophores, anionophores could also be interesting targets for therapeutic
treatment. In particular, Cl− ion transporters are relatively underexplored to treat various
diseases, such as constipation and secretory diarrheas, kidney stones, and polycystic kidney
disease, but also dry eye disorders, hypertension, and even osteoporosis [55].

Table 1. Ion-channel blockers and chelators that are drug candidates in clinical trials against cancer.
The table includes drugs that are being considered or in clinical trials as anti-metastatic agents, which
may counteract the ionic imbalance in disseminating or disseminated cancer cells. Adapted from [52]
under a Creative Commons license.

Ion Function Drug Candidate Feature Target Cancer Phase

Ca2+
Blocker Amlodipine besylate Selective for L-type Ca2+

channels, antihypertensive drug

Metastatic triple
negative

breast cancer
1,2

Blocker Verapamil Antihypertensive drug Brain Cancer 2

K+ Blocker Imipramine Targets voltage-gated channels,
drug against depression

HER2 Positive
Breast Carcinoma 0
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Table 1. Cont.

Ion Function Drug Candidate Feature Target Cancer Phase

Cu2+ Chelator

Trientine Anti-angiogenesis, normally used
to treat Wilson disease

Fallopian Tube Cancer
Ovarian Neoplasms
Malignant/primary

peritoneal cancer

1,2

Salicylaldehyde
pyrazole hydrazone Anti-angiogenesis - -

Tetrathiomolybdate Drug used against primary biliary
cholangitis, Wilson Disease

Prostate cancer,
carcinoma,

colorectal cancer
non-small cell lung

cancer

1,2

Penicillamine Drug against cystine renal calculi Brain and CNS tumors 2

Disulfiram Drug against alcohol dependency
Metastatic breast cancer

Metastatic pancreatic
cancer

2

Clioquinol Drug against dermatitis
and eczema

Acute lymphocytic
leukemia

Acute myeloid leukemia
Chronic lymphocytic

leukemia

1 *

Fe2+/Fe3+ Chelator

Ciclopirox olamine Drug against onychomycosis, foot
dermatoses

Hematologic
malignancy,

acute lymphocytic
leukemia,

advanced solid tumors

1

Thiosemicarbazones Drug against renal failure, renal
artery stenosis

Unspecified adult solid
tumor, protocol specific,

prostate
cancer/metastatic well

differentiated
neuroendocrine

neoplasm

1

Deferiprone
Drug against cardiomyopathy,

iron overload, deteriorating renal
function

Colon cancer, breast
cancer, rectal cancer,
urethral carcinoma

2

Deferasirox

It suppresses
N-Cadherin; drug against acute
undifferentiated leukemia/ iron

overload

Breast cancer, leukemia 2 *

desferrioxamine

restores
E-Cadherin localization. Drug
against cardiomyopathy/iron

overload

Acute myeloid
leukemia/acute
lymphoblastic

leukemia/
myelodysplastic

syndrome

*

Many Blocker Chlorotoxin NKCC channel blocker

Breast cancer/non-small
cell lung

cancer/melanoma/
brain neoplasm

1,2
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Table 1. Cont.

Ion Function Drug Candidate Feature Target Cancer Phase

Na+ Blocker

Propranolol
Targets VGSC 1, used for

post-traumatic stress disorder,
brain injuries

Invasive epithelial
ovarian cancer, primary

peritoneal carcinoma,
fallopian tube cancer,

cervical cancer, pediatric
cancer/breast cancer

1,2

Ranolazine Targets VGSC 1, used for
pulmonary hypertension, angina

Adenocarcinoma of the
prostate, bone

metastases, soft tissue
metastases

-

Phenytoin
Targets VGSC 1, used for acute
kidney injury/impaired renal

function/kidney failure

Pancreatic cancer, locally
advanced breast cancer

and large operable
breast cancer/metastatic
breast cancer, metastatic

pancreatic cancer

2,3

Carbamazepine
Targets VGSC 1, used for bipolar

disorder (bd), epilepsy,
erythromelalgia

Brain and central
nervous system tumors,

glioblastoma
1,2

Valproate
Targets VGSC 1, used for acute
kidney injury/impaired renal

function/kidney failure

Advanced
cancer/prostate cancer,

breast cancer, pancreatic
cancer

1,2

Lamotrigine Targets VGSC 1, used for bipolar
disorder

Brain and central
nervous system

tumors/malignant
glioma

2,4

Ranolazine Targets VGSC 1

Adenocarcinoma of the
prostate, bone

metastases, soft tissue
metastases

-

Ropivacaine

Targets VGSC 1, used for
anesthesia, conduction/

arthroplasty, replacement/
postoperative pain

Malignant neoplasm of
breast 3

Lidocaine Targets VGSC 1, used for
anesthesia

Lung cancers,
unspecified adult solid
tumor, prostate cancer

1,2

Riluzole Targts VGSC 1 Breast cancer/metastatic
cancer 1 *

* Denotes terminated clinical trials. 1 VGSC = voltage gated sodium channels.

1.2. Therapeutic Activation of Ion Channels and Ion Transporters

The pathology that is mostly known for the therapeutic effects of ion-channel activation
is cystic fibrosis (CF). This disease has been ascribed to mutations of the CF transmembrane
conductance regulator (CFTR) gene (Figure 3), which encodes for the epithelial anionic
channel that transports Cl− and HCO3

−, resulting in defective mucus hydration and
clearance. The resulting clinical manifestations are diverse and multi-organ, affecting
especially the lungs, and the gastrointestinal and the endocrine systems. Management
strategies have been traditionally aimed at treating symptoms, while interventions at the
root of the problem through modulation of ion-channel activity have just opened a whole
new scenario for improved life-quality of affected patients. In particular, the identification



Biomedicines 2022, 10, 885 6 of 23

of mutations in CFTR in CF patients has enabled the development of targeted therapies to
restore the function of the ion channel [56]. Besides Cl− and HCO3

− channel activators [57],
several biologics are used to restore the channel function, i.e., gene therapy and editing,
RNA therapy and micro RNAs [58]. Readers interested in further details pertaining this
pathology and treatment strategies are referred to an excellent and comprehensive recent
review [59].
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The therapeutic potential of ion channel activation goes well beyond CF and represents
an unexplored avenue for new therapies. For instance, potentiation of specific sub-types of
TRP channels has been proposed to prevent and treat obesity [60]. Importantly, dysregula-
tion of Na+, K+, Ca2+, or Cl− intracellular levels can lead to programmed cell death, and
for this reason several ion-channel modulators have been proposed against cancer [61]. It is
worth noting that increasing cytosolic Ca2+ concentration can have opposite downstream
effects in cancer cells, depending on the biochemical activation pathway [62]. Therefore,
not only channel blockers, but also activators or artificial channels could pave the way to
new therapeutic approaches, as long as cancer cell selectivity is achieved.

Restoration of cation transport is another underexplored avenue that can be of thera-
peutic relevance. For instance, impaired Na+ transport was recently identified as an up-
stream pathogenic factor in inflammatory bowel disease [63]. Numerous enteric pathogens
target the expression and/or function of ion transporters, causing diarrhea [64]. Another
type of cation transport that is neglected pertains Mg++ channels. Mg++ homeostasis is
regulated by several ion channels that are either downregulated or upregulated in many
digestive cancers, thus providing an opportunity for innovative treatments [65]. Zn++

transporters were also found to ameliorate oxidative stress and insulin resistance, and were
thus identified as new therapeutic targets [66].
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2. Biomolecular Ion Channels and Transporters as Therapeutic Agents
2.1. Ion-Channel Biomolecules as Therapeutic Agents

There are several ion-channel biomolecules that have attracted interest not only for
their therapeutic potential, but also as models to design artificial channels. The majority
consist of polypeptides or proteins. They have enabled the development of synthetic 3-in-1
transporters for cations, anions, and zwitterions [67]. Here we will provide a brief overview
of the most studied channels.

Ion-transporting rhodopsins are fascinating light-activated proteins that were firstly
identified in photo-responsive chemotactic bacteria. Nowadays, they are mainly used in
optogenetics, and they have inspired the design of biomimetics. The two main groups
are light-driven ion-pumps, and light-gated ion channels. The former use light energy
to transport specific ions (H+, Na+, Cl−) against electrophysiological potential, while the
latter are less specific and employ passive transport. Light-activation of rhodopsin pumps
results in hyperpolarization of membrane potential that effectively inhibits neuron firing,
thus exerting an inhibitory role [68]. Many variants have been described, and the detailed
mechanisms of their activity were recently reviewed [69,70]. Their therapeutic application
has been envisaged mainly in gene therapy to restore vision in patients with degenerative
retinal diseases, which otherwise can progress to blindness [71].

Natural KcsA K+ channels have inspired the biomimetic design of highly selective K+

transporters that require their dehydration to enable transport [72]. A columnar wire that
alternates K+ ions and water molecules allows to overcome the electrostatic destabilization
through the channel, and it was reproduced in supramolecular biomimetics [73]. Interest-
ingly, inclusion of light-driven rotary molecular motors boosted ion transport, thanks to
the continuous rotation that is beneficial to the mass-transport, offering a mechanism of
action that is different to the common conformational switches [74].

Another interesting class of ion-channel therapeutics falls within the category of
antimicrobial peptides (AMPs). They typically exert their bioactivity through the formation
of pores in bacterial membranes, and some AMPs actually form ion channels. Of these,
the most studied is gramicidin. Gramicidin A presents features alternating L- and D-
amino acids, which increase proteolytic resistance and they enable the formation of an
amphipathic transmembrane ion channel through dimerization. Several analogues are
being continuously developed to reduce its hemolytic side-effects that limit systemic
use [75]. Others are being optimized to induce apoptosis in cancer cells [76]. Gramicidin A
has inspired the design of cation transporters [77], and recent biomimetics composed of
helical foldamers could match gramicidin’s speed of proton transport [78].

The alternating D- and L-amino acid design is also effective to attain cyclopeptides
that stack into nanotubular ion channels, as recently reviewed [79,80]. Interestingly, both
homochiral [81,82] and heterochiral linear peptides as short as two amino acids can form
supramolecular nanotubes that gel [83,84]. These systems could be interesting to develop
smart AMs, so that the bioactive supramolecular channels are formed when needed [85],
and presence of D-amino acids could improve AMPs’ pharmacokinetics [86].

Amongst non-peptidic natural ion channels, amphotericin B is a well-known antifun-
gal agent produced by bacteria that forms non-selective channels, which are permeable
to both cations and anions. In cultured cells derived from CF patients, it restored HCO3

−

secretion, and, overall, host defenses. The process was independent from CFTR and it
required functional interfacing with Na+, K+-ATPase [87]. This work offered an important
proof of concept that biomolecule-based ion channels can compensate for deficient ion
transport in human disease models, and it opened up new avenues for intervention [88].

2.2. Biomolecular Ion Transporters as Therapeutic Agents

There are several AMs that exert their activity through ion transport, as recently
reviewed [26]. In many cases, the AM activity was well-known, and only later the ion
transport was identified. Among peptides, daptomycin is one of the few AMPs that has
been approved by the U.S. FDA for clinical use, with gramicidin, colistin, and vancomycin
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and its derivatives [89]. All of them derive from Gram-positive bacteria in the soil and
disrupt lipid membrane organization. Daptomycin was recently found to bind Ca2+ and
form transient ion carriers, leading to ion leakage [90]. Among the non-peptidic natural
molecules, several polyethers act as ion transporters, such as salinomycin and monesin,
which will not be discussed here since they have been recently reviewed in detail [30].

3. Artificial Ion Channels and Transporters as Therapeutic Agents

Self-assembly can be a powerful tool to use relatively simple (bio)molecules that
organize into supramolecular ion channels for membrane insertion to mimic proteins [91].
There are diverse types of artificial ion channels based on supramolecular chemistry that
can be grouped in cages and capsules, stacks of macrocycles, nanotubes, and helical
structures [92,93]. The concept of self-assembly into chiral supramolecular structures,
such as nanotubes, has attracted great attention for the inherent properties of molecular
recognition [94], which are at the basis of medicinal chemistry to develop drugs.

The majority of artificial ionophores are designed for selective ion transport, and they
can be divided in cationic and anionic transporters or channels [95]. Anion carriers are
the most studied class, and readers interested in an overview of their biological use are
referred to an excellent recent review [96]. Readers interested in the chemical details of
non-covalent interactions pertaining the design of anion channels, especially for chloride
anion transport to address CF, are referred to existing tutorial reviews covering aspects
of supramolecular medicinal chemistry [97]. A common limitation regards the undesired
concomitant proton transport, although recent research efforts successfully addressed this
side effect [98]. The careful insertion of positive charges along the channel interior, for
instance, ensures that only anions are transported [99].

While the majority of supramolecular anion transporters target chloride, bicarbon-
ate is attracting interest for therapeutic applications too [100]. Iodide is also selectively
transported [101]. Finally, macrocycles have been devised as ion-pair receptors for the
concomitant transport of opposite-charged ions, but this topic will not be covered here since
it has been comprehensively covered in detailed and excellent recent reviews [102,103].

Several biomolecule classes have inspired the design of artificial ion channels. For in-
stance, cyclodextrins have attracted great interest for their biocompatibility [104]. Rhodopsin
has inspired the design of supramolecular Cl− channels that can be regulated by visible
light, offering means to potentially control the circadian clock [105]. The field of light-
activated ion channels is making progress. As an example, Cl− transporters were recently
designed to respond to red and blue light to control the transmembrane ion-transport
rate [106]. More traditional systems rely on UV-light triggers to enable cis–trans conforma-
tional switches [107].

Light is not the only stimulus that has attracted interest to regulate ionophores’ activ-
ity. Metal–organic supramolecular Cl− channels were designed to be switched off upon
ligand binding [108]. Voltage-dependent H+/Cl− symport, without uniport activity, was
envisaged for new channel-design strategies [109]. Biomimetic approaches have recently
produced dual-responsive ion channels that can be controlled by voltage and ligand bind-
ing [110], although the research in this area is for the majority still at a fundamental level.
Below we discuss more in-detail recent examples of artificial channels and transporters
designed for biological applications, mainly as anticancer or AM agents, and that were
tested on cells or animal models.

3.1. Artificial Anion Channels as Anticancer Agents

Talukdar’s research group has been very active on the development of artificial ion
channels. Bis-diols were reported to self-assemble into amphipathic nanotubes via hy-
drogen bonds [111]. The diols were tethered at two alkyne ends of a central rigid 1,3-
diethynylbenzene moiety and functionalized with dialkylamino groups with different
lengths of the alkyl chain to modulate the lipophilicity of the systems. Among the members
of the family, compound C1 (Table 2) had the optimal lipophilicity to allow its translocation
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across the phospholipid membrane of egg-yolk phosphatidylcholine large unilamellar vesi-
cles. A detailed study allowed to define the selectivity towards Cl− over other anions, such
as Br−, ClO4

−, F−, NO3
−, and I−, and the preferred transport mechanism as a Cl−/NO3

−

antiport. The Cl− transport ability across cell membranes was also successfully tested, by
monitoring the dose-dependent fluorescent quenching of the cell-permeable Cl−-selective
dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) after incubation
of HeLa cells with C1 for 24 h. The impact of Cl− transport mediated by C1 on cell viability
was studied by MTT assay on different cell lines. The increased Cl− level inside the cells
resulted in an increase in cell death. The disruption of Cl− homeostasis caused a change
in the mitochondrial membrane potential that was accompanied by an increase in ROS
production and release of cytochrome c. A detailed study of the cell death mechanism
demonstrated that it was caspase-mediated (Figure 4).

Table 2. Cl− selective artificial channels recently developed to induce apoptosis as anticancer agents.

Compound LogP EC50
(µM) N Cell

Line Ref.
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The same group reported C2 (Table 2) forming channels for Cl− transport [113,114].
C2 could be obtained upon activation of a precursor, mediated either by an esterase or
by glutathione (GSH). The latter is particularly appealing for two reasons. Firstly, GSH
is an antioxidant that helps preventing oxidative stress linked to apoptosis in cancer
cells [117]. Secondly, high levels of GSH in cancer cells can cause resistance to various
chemotherapeutics [118]. The nanotube formed similarly to C1 through non-covalent
interactions. The preferred transport mechanism was a M+/Cl− symport, and the channel
formation was demonstrated by measuring the ionic conductance across planar lipid bilayer
membrane [119] and molecular modelling. The study of cell viability demonstrated that the
precursor was more toxic (IC50 = 0.5–1.0 µM) than C2 (IC50 = 50 µM). This difference was
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attributed to the presence of the sulfonyl group that increases cell membrane permeability.
Fluorescence measurements demonstrated that cancer cells treated with the precursor
had high levels of GSH that effectively produced C2. Cytotoxicity studies in the presence
of Cl− demonstrated that cell death was connected to Cl− transport, with an effect also
on the symport transport of Na+ and K+. Similarly to C1, also in this case the apoptotic
pathway was caspase-mediated. Interestingly, the authors showed that 3D cultures of
breast cancer cells treated with the C2 precursor displayed similar effects to those treated
with doxorubicin, a potent inhibitor of their growth [120].
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A similar compound (C3, Table 2) formed a channel capable of M+/Cl− symport
across unilamellar vesicles and cancer-cell membranes, thus leading to apoptosis. The
intrinsic fluorescence of C3 allowed to live-image cancer cells, to reveal the ability of the
system to permeate the cytosol. Real-time analysis showed that the permeation occurred in
a few seconds, and in a few minutes the cell morphology changed, and the cell volumes
were decreased. Apoptosis was confirmed by mitochondrial membrane depolarization,
reactive oxygen species generation with consequent cytochrome c release, activation of
the caspase 9 pathway, poly (ADP-ribose) polymerase cleavage, and staining of nuclear
contents with propidium iodide [115].

Another example of a Cl−-selective transmembrane channel was reported by Zeng
and co-workers [116]. The authors described a family of receptors containing an amino
acid-based scaffold functionalized with a Cl−-binding group. These receptors were able
to self-assemble and stack by means of halogen and hydrogen bonding. In particular,
the alanine-substituted C4 (Table 2) showed a good capability for OH−/Cl− antiport. C4
inhibited breast-cancer cell growth with an ic50 value of 20 µm, which was lower than that
of the anticancer drug cisplatin (IC50 = 37 µm) [121].

3.2. Artificial Anion Channels as Antimicrobial (AM) Agents

Synthetic transmembrane channels have found applications also as AM agents, thanks
to their ability to interact with the membrane of prokaryotic cells, similarly to certain
antibiotics and AMPs. Hou and co-workers described the ability of tubular pillar [5]arene
macrocycles (C5A–D, Scheme 1) functionalized with amino acidic sidechains to form
channels and insert into the lipid bilayers of Gram-positive bacteria [122]. All the channels
were selective for K+. C5B–D showed AM activity on Gram-positive S. aureus that was
higher than that of gramicidin A, with C5B exhibiting the highest activity (IC50 = 0.3 µM).
However, in mammalian-cell membrane models, C5A showed a weaker insertion ability
than C5B–D, suggesting that the length of the sidechain played a role in the interaction with
membrane lipids. In Gram-positive bacteria S. epidermidis, red-fluorescent derivatives could
be imaged as rings in the bacterial wall. The authors hypothesized the formation of H-bonds
and dipole interactions between the indole residues of the Trp and the membrane lipids, in
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contrast with the classic electrostatic interactions between positively charged AMPs and
negatively charged membrane [123,124]. Conversely, when C5A–D were incubated with
erythrocytes, the red fluorescence rings were not observed only for C5A, with very low
hemolytic activity (HC50 > 100 µM).

An example of ionophores as AMs and as adjuvants for FDA-approved antibiotics has
been reported by Gokel, Patel and co-workers [125]. In previous works, they had described
the ability of the crown-ether amphiphile C6 (Scheme 1) to form ion-conducting pores in
liposomal membranes and to improve the antibiotic activity of erythromycin, kanamycin,
rifampicin, and tetracycline against Gram-negative bacteria (E. coli and P. aeruginosa),
probably by enhancing the permeability of the membrane [126,127]. Recently, [125], they
demonstrated that C6 can improve the AM activity of tetracycline with ciprofloxacin
(i.e., norfloxacin), towards antibiotic-resistant K. pneumoniae. The effect was ascribed to
a combination of C6 K+ channels abilities to inhibit bacterial growth and to enhance the
bacterial membrane permeability that inhibited the efflux pump, a classic mechanism used
by Gram-negative bacteria for pumping out AMs.

Biomedicines 2022, 10, x FOR PEER REVIEW 11 of 24 
 

An example of ionophores as AMs and as adjuvants for FDA-approved antibiotics 
has been reported by Gokel, Patel and co-workers [125]. In previous works, they had de-
scribed the ability of the crown-ether amphiphile C6 (Scheme 1) to form ion-conducting 
pores in liposomal membranes and to improve the antibiotic activity of erythromycin, 
kanamycin, rifampicin, and tetracycline against Gram-negative bacteria (E. coli and P. ae-
ruginosa), probably by enhancing the permeability of the membrane [126,127]. Recently, 
[125], they demonstrated that C6 can improve the AM activity of tetracycline with ciprof-
loxacin (i.e., norfloxacin), towards antibiotic-resistant K. pneumoniae. The effect was as-
cribed to a combination of C6 K+ channels abilities to inhibit bacterial growth and to en-
hance the bacterial membrane permeability that inhibited the efflux pump, a classic mech-
anism used by Gram-negative bacteria for pumping out AMs. 

 
Scheme 1. Chemical structures of artificial K+ channels recently developed as AM agents [122,126]. 

3.3. Artificial Anion Transporters as Anticancer Agents 
Gale, Davis, and Sheppard have recently showed that some anionophores can be ac-

tive in cells [128]. They previously presented an assay employing the genetically-encoded 
halide-sensitive yellow fluorescent protein (YFP) with encouraging results for several an-
ionophores. They reported an implementation of the YFP-based assay using a standard 
plate reader. The assay was applied to a set of 22 anionophores including several com-
pound classes, such as trans-decalins, substituted cyclohexanes, and the more ideal can-
didates squaramides, anthracenes, ureas, and thioureas. The data indicated that com-
pounds T2–T4 exhibited levels of activity comparable to the previously reported T1 [129]. 
Hence, the four compounds (Table 3) were selected for further studies. 

Table 3. Artificial ion transporters that were recently developed as anticancer agents. T1–T10 are 
selective for Cl− transport, while T11 and T12 for K+. 

Compound LogP EC50 n Cell Line Ref. 

 

4.5 - - YFP-CSBE [129] 

 

4.8 - - YFP-CSBE  [128] 

Scheme 1. Chemical structures of artificial K+ channels recently developed as AM agents [122,126].

3.3. Artificial Anion Transporters as Anticancer Agents

Gale, Davis, and Sheppard have recently showed that some anionophores can be active
in cells [128]. They previously presented an assay employing the genetically-encoded
halide-sensitive yellow fluorescent protein (YFP) with encouraging results for several
anionophores. They reported an implementation of the YFP-based assay using a standard
plate reader. The assay was applied to a set of 22 anionophores including several compound
classes, such as trans-decalins, substituted cyclohexanes, and the more ideal candidates
squaramides, anthracenes, ureas, and thioureas. The data indicated that compounds T2–T4
exhibited levels of activity comparable to the previously reported T1 [129]. Hence, the four
compounds (Table 3) were selected for further studies.

T1–T4 mediated anion transport in CF cells (using CF bronchial epithelial cell line,
YFP-CSBE), with T1 and T2 eliciting a similar response, and T4 being the least efficient.
Cell treatment with purinergic G protein-coupled (p2y) receptor agonist UTP (uridine
triphosphate) elevated the intracellular Ca2+ levels, thus activating Ca2+-dependent Cl−

channels, which in turn did not affect the anion transport mediated by T1–T3. Conversely,
it enhanced T4-mediated ion transport. Finally, XTT assays in YFP-CSBE cells revealed the
cytotoxicity of T2, T3, and especially T4.

Soto-Cerrato, Pérez Tomàs et al. analyzed in detail the cellular and molecular mech-
anisms of action of two marine alkaloids (i.e., tambjamines), bearing aromatic enamine
moieties T5 and T6 (Table 3) [130]. Both promoted transmembrane Cl− and HCO3

− trans-
port in liposomes. MTT assays on lung cancer epithelial cells A549 revealed a 50% decrease
in cell viability within 24 h. It was demonstrated that the IC50 for these two compounds was
much lower than that observed for the anticancer drug cisplatin (CDDP), i.e., 3.38 ± 0.98
and 1.67 ± 0.29 µM, respectively, vs. 200 µM for CDDP. Furthermore, lysosomal pH mod-
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ifications in the same cell lines were evaluated using acridine orange, a pH-dependent
dye. By treating cancer cells with T5 and T6 for 1 h at IC50 values, the orange fluorescence
in vesicle compartments disappeared, indicating an increase in pH of these organelles
and lysosomal alkalization. This may be ascribed to a lysosomal membrane permeabi-
lization induced by T5 and T6 that could inactivate its hydrolytic enzymes, thus blocking
autophagy. Overall, cell death was caused by a combination of caspase-mediated apoptosis,
mitochondrial dysfunctions, and lysosome deacidification promoted by a disruption of the
cell homeostasis, all triggered by T5 and T6.

Table 3. Artificial ion transporters that were recently developed as anticancer agents. T1–T10 are
selective for Cl− transport, while T11 and T12 for K+.

Compound LogP EC50 n Cell Line Ref.

4.5 - - YFP-CSBE [129]

4.8 - - YFP-CSBE [128]

9.3 - - YFP-CSBE [128]
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Table 3. Cont.

Compound LogP EC50 n Cell Line Ref.
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Talukdar et al. conducted transmembrane ion transport studies over a set of bis(sulfon-
amides) derivatives [131]. The anion binding studies and model, along with the anion
transport activity (Cl−/NO3

− antiport mechanism) studies, suggested that T7 (Table 3) was
the most efficient transporter thanks to appropriate lipophilicity and strong anion-binding
ability. Cancer-cell and normal-cell viabilities were tested to evaluate how the influx of Cl−
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into the cell can induce apoptosis. T7 led to higher cancer cell death relative to the untreated
controls, whereas no cytotoxicity was observed in non-cancerous cell lines. Moreover, the
correlation between the increased extracellular Cl− levels and caspase-mediated cell death
was demonstrated. This pattern is well known to trigger apoptosis [136–138].

Shin, Gale, Sessler et al. reported a family of squaramides able to cause a malfunc-
tioning of the ion homeostasis and then induce cell death [139]. Compounds T8–T10
(Table 3) were the most active Cl− transporters (T8 > T9 > T10) in liposomes. The
experimental evidence highlighted that Cl− was transported via antiport mechanism
(Cl−/NO3

−, Cl−/HCO3
−, Cl−/SO4

2−, or Cl−/OH−), along with a symport mechanism
Cl−/H+. Fischer rat thyroid epithelial cells (FRT) were incubated with each compound
and the Cl− transport activity was found to be similar to that observed in liposomes.
MTT assays on HeLa and A549 cancer cell lines revealed an IC50 in the range 2–6 µM
for T8–T10. The apoptotic effect of T8–T10 was compared against carbonyl cyanide-4-
(trifluoromethoxy)phenylhydrazone (FCCP), which is an apoptosis inducer that depolar-
izes mitochondrial membranes. Cell death was found to be caspase-mediated, rather than
necrosis-promoted. The cell death mechanism was further elucidated in another contri-
bution from the same authors [132]. T8 and T9 were studied by Kroemer, Zamzami et al.
too, on a CFBE cell line expressing the most frequent CFTR mutation [140]. Cell treatment
for 24 h with T8 or T9 revealed they inhibited the autophagic flux, which would have a
negative effect on the disease [141,142], thus rendering them more suitable as anticancer
agents [142].

Another interesting strategy was presented by Zhang et al. who have successfully con-
structed an ATP-regulated ion transporter nanosystem for homeostatic perturbation ther-
apy (HTP) and sensitized photodynamic therapy (PDT) [143]. The smart nanotransporter
SQU@PCN (porphyrinic porous coordination network incorporated with squaramide T8),
accumulated in tumor sites avoiding metabolic clearance and side effects. The affinity
of phosphates towards metal ions is well known [144], thus the interaction between the
nanosystem and ATP was studied. The decomposition of the nanosystem along with the re-
lease of T8 inside cells was observed. T8 triggered Cl− transport across the cell membrane,
increasing the intracellular ion concentration, which disrupted ion homeostasis and further
induced tumor cell apoptosis.

The viability of HeLa cells after SQU@PCN treatment was assessed via MTT assay.
The high cytotoxicity (IC50 = 1.36 mg L−1) was attributed to the release of T8 inside cells,
suggesting the selectivity of ATP-SQU@PCN interaction in HeLa cancer cells. Irradiation
with a 660-nm laser further enhanced cytotoxicity and lowered the IC50, suggesting the
synergic effect of HPT and PDT in killing tumor cells. The excellent cancer-cell toxicity
in vitro was confirmed in vivo. In particular, after 12 h of SQU@PCN intravenous injection,
fluorescence intensity reached the maximum, suggesting the accumulation of SQU@PCN,
especially in the tumor region (Figure 5). Hence, when mice were subjected to light
irradiation at 660 nm for 8 min after 12 h of the SQU@PCN injection, the tumor growth was
suppressed, confirming what already observed in vitro [143].
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3.4. Artificial Cation Transporters as Anticancer Agents

Yang et al. reported a family of synthetic K+ transporters [135]. They found that T11
(Table 3), an α-aminoxy acid derivative, exhibited the greatest K+ transport ability at the
concentration of 10 µM, through a 1:1 carrier mechanism. Anionic T11 was able to bind K+

through electrostatic interaction and ion coordination by the aminoxy oxygen atom and the
two carbonyl groups. When T11 entered liposomes with pH~6.8, it could be protonated
to release K+ and freely diffuse through the membrane to complete the carrier cycle. T11
was found to be extremely selective towards K+ over other alkaline metal ions with no Cl−

transport across membranes. However, by conducting the HPTS assay in the presence of
valinomycin and FCCP, the electrogenic transport mediated by T11 displayed H+ > K+,
suggesting how T11 could promote the transport of H+ and K+ independently.

T11 was also tested on human ovarian cancer HEYA8 cells, and no ion transport across
the plasma membrane was detected. The authors hypothesized that the pH gradient in
the intermembrane space (IMS) could be a driving force for the transport of K+ and H+.
T11 could freely move through the IMS, in which T11 is present in its anionic form and
entraps K+. The exchange K+/H+ finally concluded the cycle. This hypothesis was then
confirmed in HeLa cells and in human ovarian SKOV3 cells. The authors further evaluated
the mitochondrial ROS production, respiration, and mitochondrial morphology in HEYA8
cells. It was demonstrated that the transport mediated by T11 caused the damage of the
mitochondrial functions, due to ion homeostasis dysfunction. Moreover, T11 mediated K+
transport also in ovarian cancer stem cells (CSCs) and it inhibited their growth at 5 µM.
This behavior was not observed in the other cancerous and not-cancerous cell lines tested.
The high selectivity towards CSCs prompted the authors to evaluate the effect of T11 on
tumor growth in nude mice. CSCs were thus incubated ex vivo with T11 or paclitaxel (PTX)
and then re-injected into nude mice after 10 days, to reveal a significantly decreased ability
to form tumors, relative to controls [135].

Zeng et al. reported the novel class of cation transporters T12–T14 (Table 2), which
were characterized by three modular components (i.e., a headgroup, a flexible alkyl-chain
derived body, and a crown-ether derived foot for anion binding) [133]. The selective and
efficient transport of K+ ions across large unilamellar vesicles promoted by T12–T14 was
demonstrated, as suggested by the EC50 = 0.18–0.41 mol % relative to the lipid. Moreover,
the most active transporter displayed a potent anticancer activity with low values of IC50
towards HeLa and prostate cancer cells PC3.

3.5. Artificial Ion Transporters as Antimicrobial (AM) Agents

Quesada et al. used 6-indol-7-yl-decorated tambjamine-like compounds T15–T18
(Scheme 2) against Gram-positive and Gram-negative bacterial strains, as well as clinical
isolates [145]. In particular, only T18 inhibited the growth of Gram-negatives, and it was
also the most potent anionophore of the series, with good hemocompatibility.
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4. Conclusions and Future Perspectives

In this Review, we focused on the latest developments in the design of ion channels
and transporters for therapeutic use. Firstly, we mentioned a few well-known natural
examples based on biomolecules that have inspired biomimetic design, and then we have
analyzed more in detail the case of synthetic ionophores (Figure 6) that were tested on
biological models, including cells and animals.
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Figure 6. Examples of artificial ion (a) channels and (b) transporters for membrane insertion that
derive from supramolecular-chemistry design.

There are many challenges to overcome, to bring artificial ionophores to the clinic.
Besides biocompatibility and selectivity for the target cells, ion selectivity is key. This is
not always straightforward, for instance for cation transport. However, good K+ selectivity
over Na+ can be attained [146–148]. Interestingly, simple structural changes can reverse the
selectivity and favor Na+ transport [149].

Sometimes the ionophore performance can be improved through the combination of
different therapeutic agents or functional molecular components. For instance, addition of
biomolecules, such as the K+ transporter valinomycin, to an anion transporter proved to
be an effective strategy [150]. Combination with responsive polymers is another approach
that is being explored to gain control over transport [151]. Moreover, external stimuli are
very attractive to modulate the gating mechanisms, and amongst them, light is the new
frontier for therapeutic approaches, especially to control neuronal ion channels [6].

Besides ion channels, also many other types of transmembrane channels offer un-
explored therapeutic opportunities. Aquaporins selectively transport water and are im-
paired in several water balance disorders, such as nephrogenic diabetes insipidus [152].
Biomimetic approaches to develop artificial water channels capable of excluding ions and
protons is indeed another area of great innovation potential [153,154]. New characterization
methods to assess the transport across membranes are continuously being developed and
are envisaged to assist research towards new therapies [155]. Furthermore, they could serve
also for diagnosis and consequent development of personalized therapies, as demonstrated
for the intestinal current measurements in the case of CF [156]. Overall, as we advance
our understanding of artificial ion channels’ structure-activity relationship, and of the
biochemical pathways involving ion transport in physiological and pathological contexts,
we will witness a bright future at the interface between supramolecular chemistry and
biomimetic design to innovate therapy.
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