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Cysewski, D.; Pączek, L.; Kaleta, B.;

Mucha, K. Osteopontin—A Potential

Biomarker for IgA Nephropathy:

Machine Learning Application.

Biomedicines 2022, 10, 734.

https://doi.org/10.3390/

biomedicines10040734

Academic Editors:

Giuseppe Cappellano and

Marie Černá
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Abstract: Many potential biomarkers in nephrology have been studied, but few are currently used
in clinical practice. One is osteopontin (OPN). We compared urinary OPN concentrations in 80 par-
ticipants: 67 patients with various biopsy-proven glomerulopathies (GNs)—immunoglobulin A
nephropathy (IgAN, 29), membranous nephropathy (MN, 20) and lupus nephritis (LN, 18) and 13
with no GN. Follow-up included 48 participants. Machine learning was used to correlate OPN with
other factors to classify patients by GN type. The resulting algorithm had an accuracy of 87% in
differentiating IgAN from other GNs using urinary OPN levels only. A lesser effect for discriminating
MN and LN was observed. However, the lower number of patients and the phenotypic heterogeneity
of MN and LN might have affected those results. OPN was significantly higher in IgAN at baseline
than in other GNs and therefore might be useful for identifying patients with IgAN. That observation
did not apply to either patients with IgAN at follow-up or to patients with other GNs. OPN seems to
be a valuable biomarker and should be validated in future studies. Machine learning is a powerful
tool that, compared with traditional statistical methods, can be also applied to smaller datasets.

Keywords: biomarkers; IgA nephropathy; lupus nephritis; machine learning; membranous
nephropathy; osteopontin; peroxiredoxins

1. Introduction

According to the U.S. Centers for Disease Control and Prevention, the number of peo-
ple affected with chronic kidney disease (CKD) in the United States has reached 37 million—
15% of the adult population [1]. In 2018, the leading causes of end-stage kidney disease
were diabetes (39%), hypertension (26%), and glomerulonephritis (15%). Those conditions
can present a similar clinical picture or can overlap, necessitating the use of invasive di-
agnostic methods such as kidney biopsy. The need to define and implement noninvasive
diagnostic markers is particularly pressing in the immune-related glomerulonephropathies
(GNs), whose treatment is different from that for diabetes- or hypertension-related CKD.
Efforts to create noninvasive tests that will help diagnose and monitor kidney disease
have included genomic, transcriptomic, and proteomic approaches to detect gene polymor-
phisms [2,3], mRNA expression [4], and serum and urinary proteins [5,6]. Unfortunately,
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new biomarkers are not used in everyday clinical practice, mostly because of insufficient
diagnostic sensitivity and specificity as demonstrated in clinical trials. Thus, the search for
clinically useful biomarkers in CKD continues.

Osteopontin (OPN) is a multifunctional, extracellular phosphoprotein that is expressed
in various cells and tissues, including fibroblasts, osteoblasts, macrophages, endothelial
cells, adipocytes, Kupffer cells, and dendritic cells. Studies have demonstrated that OPN
plays a role in the development of inflammation, wound healing, cancer metastases, dia-
betes, nephrolithiasis, and modulation of osteoclast function (reviewed in [7]).

The role of OPN in glomerular diseases is not clearly defined. OPN gene polymor-
phisms are associated with the development of diabetic nephropathy in type 2 diabetes [8],
urinary OPN (uOPN) excretion in patients with IgA nephropathy (IgAN) [9], and acute
renal allograft rejection [10]. OPN mRNA expression in tissue is increased in areas of
tubular damage [11] and in patients with renal calculi [12]. Interestingly, serum OPN has
been confirmed to be a biomarker correlating with renal involvement in patients with
systemic lupus erythematosus [13] and to be independently associated with the develop-
ment of microalbuminuria in patients with type 1 diabetes mellitus [14]. Finally, urinary
OPN is known to rise in active lupus nephritis (LN) [15]. However, OPN as a factor
for discriminating between various kidney diseases has not yet been fully explored. In
previous research, our team focused on the link between OPN gene polymorphisms and
excretion of uOPN in patients with IgAN [9]. In the present study, we compared uOPN in
various immune-related glomerulopathies. IgAN is the most common primary GN, with
an incidence of 2–5 adults per 100,000 [16]. Primary membranous nephropathy (MN) is
a rare disease (ORPHA number 97,560), but an important cause of proteinuria. LN is a
frequent secondary autoimmune GN with variable histopathologic picture. We measured
uOPN concentrations in patients with those GNs to assess the potential utility of uOPN
as a biomarker. We also compared uOPN with concentrations of peroxiredoxins (PRDXs),
previously studied markers of oxidative stress [5], creating a network of biologic pathways
that involve OPN to better understand the role of OPN in cells.

Our aim in the present study was to compare uOPN concentrations in patients with
various GNs and to use machine learning (ML) to correlate those concentrations with
clinical factors and with PRDXs.

2. Materials and Methods
2.1. Patients and Healthy Participants

OPN at baseline was measured in 80 participants: 67 patients—IgAN (n = 29), LN
(n = 18), MN (n = 20) and 13 healthy individuals defined by the absence of any kidney
disease or other chronic diseases requiring treatment. Measurement from 48 participants
were available during follow-up: 43 patients—IgAN (n = 18), LN (n = 11), MN (n = 14) and
5 healthy individuals. IgAN, LN, and MN were confirmed by renal biopsy. The healthy
control group consisted of age- and sex-matched volunteers. Exclusion criteria were active
infection, current pregnancy, history of malignancy, or prior organ transplantation. Written
informed consent was given by all study participants. Tables 1 and 2 present the clinical
characteristics of the study participants.

We measured uOPN in the participants at two separate time points: baseline and
follow-up. The study period for IgAN and LN was October 2015–October 2018, MN: Octo-
ber 2016–October 2018, Control: April 2017–November 2018. The average and standard de-
viation of the follow-up period was 27.79 ± 7.85 months for OPN and 45.56 ± 18.45 months
for estimated glomerular filtration rate (eGFR), body mass index, and 24 h proteinuria.

The study was approved by the Ethics Committee of the Medical University of War-
saw, nos.: KB/9/2010 (26 January 2010) and KB/199/2016 (11 October 2016). All study
procedures proceeded in accordance with the Helsinki Declaration of 1975, revised in 2000.
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Table 1. Characteristics of the study participants at baseline (first sampling) and follow-up (second
sampling).

Variable Sampling IgAN
(n = 29)

LN
(n = 18)

MN
(n = 20)

Control
(n = 13) p Value

Demographics a,b

Age, years (avg ± SD) 1st 44 ± 12 43.74 ± 11.85 50.1 ± 14.09 44.38 ± 12.62 0.477
2nd 48 ± 12 47.55 ± 12.26 51.86 ± 13.33 44.8 ± 14.81 0.799

Male (%) 1st 48 21 60 54 0.109
2nd 50 0 50 60 0.023

BMI, kg/m2 (avg ± SD)
1st 26.3 ± 5.3 24.4 ± 4.6 26.1 ± 4.2 24.7 ± 2.0 0.541
2nd 26.0 ± 4.9 24.0 ± 4.3 26.7 ± 4.1 24.8 ± 21.3 0.469

Laboratory data (avg ± SD) b

White blood cells (g/L) 1st 7.6 ± 2.3 6.4 ± 2.4 13.8 ± 8.2 5.7 ± 1.4 0.016
2nd 7.9 ± 2.7 6.1 ± 1.9 7.1 ± 2.3 5.8 ± 2.1 0.114

Hemoglobin (g/dL) 1st 14.2 ± 1.5 12.7 ± 1.5 13.4 ± 1.9 14.2 ± 1.4 0.019
2nd 13.7 ± 1.0 12.6 ± 1.2 13.1 ± 1.7 13.8 ± 1.0 0.095

Platelets (g/L) 1st 252.5 ± 59.6 255.1 ± 75.7 257.7 ± 62.4 232.1 ± 51.5 0.636
2nd 244.2 ± 64.1 228.5 ± 94.2 237.4 ± 75.5 213 ± 46.3 0.824

Serum creatinine (mg/dL) 1st 1.3 ± 0.6 1.0 ± 0.3 1.2 ± 0.6 0.9 ± 0.1 0.155
2nd 1.6 ± 0.9 1.0 ± 0.4 1.1 ± 0.5 0.9 ± 0.1 0.150

eGFR (mL/min × 1.73 m2)
1st 73.8 ± 31.3 80.3 ± 26.2 74.9 ± 29.0 94.4 ± 10.9 0.202
2nd 61.0 ± 33.8 78.7 ± 31.6 74.3 ± 28.3 97.0 ± 14.1 0.111

Proteinuria (g/24 h) 1st 0.6 ± 0.6 0.8 ± 1.9 1.2 ± 1.4 n.a. 0.242
2nd 0.9 ± 0.9 0.2 ± 0.1 0.6 ± 0.8 n.a. 0.052

Comorbidities (n/n) a,*

Hypertension 1st 24/29 9/18 20/20 n.a. <0.001
2nd 15/18 5/11 20/14 n.a. 0.003

Coronary artery disease 1st n.a. 1/18 5/20 n.a. 0.009
2nd n.a 1/11 2/14 n.a. 0.276

Atherosclerosis
1st 1/29 2/18 6/20 n.a. 0.026
2nd n.a. n.a. 3/14 n.a. n.a.

Anemia
1st 2/29 6/18 1/20 n.a. 0.015
2nd 1/18 2/11 1/14 n.a. 0.495

Diabetes mellitus
1st 1/29 1/18 2/20 n.a. 0.634
2nd 2/18 1/11 2/14 n.a. 0.919

Atrial fibrillation
1st n.a. n.a. 1/20 n.a. n.a.
2nd n.a. n.a. 1/14 n.a. n.a.

Cancer
1st 1/29 1/18 2/20 n.a. 0.634
2nd 1/18 1/11 2/14 n.a. 0.700

Autoimmune diseases (other) 1st 1/29 2/18 2/20 n.a. 0.546
2nd 1/18 n.a. 2/14 n.a. 0.114

Infections
1st 2/29 6/18 3/20 n.a. 0.058
2nd 1/18 1/11 1/14 n.a. 0.936

Tuberculosis
1st 1/29 1/18 1/20 n.a. 0.935
2nd n.a. n.a. 1/14 n.a. n.a.

Colon polyposis 1st n.a. 1/18 1/20 n.a. 0.251
2nd n.a. n.a. n.a. n.a. n.a.

Dyslipidemia 1st 16/29 7/18 20/20 n.a. <0.001
2nd 12/18 6/11 14/14 n.a. 0.022

VTE disease
1st 1/18 2/18 5/20 n.a. 0.073
2nd n.a. n.a. 3/14 n.a. n.a.

Stroke/TIA
1st 1/29 1/18 1/20 n.a. 0.592
2nd n.a. n.a. n.a. n.a. n.a.

Thyroid diseases 1st 1/29 4/18 2/20 n.a. 0.123
2nd 1/18 2/11 2/14 n.a. 0.548

Medications (%) a,*

Immunosuppression 1st 10/29 17/18 15/20 n.a. <0.001
2nd 5/18 5/11 10/14 n.a. 0.002

Angiotensin-converting enzyme inhibitors 1st 24/29 14/18 14/20 n.a. 0.574
2nd 14/18 8/11 9/14 n.a. 0.699

Angiotensin II receptor antagonists 1st 2/29 n.a. 9/20 n.a. <0.001
2nd 2/18 1/11 7/14 n.a. 0.015

Steroids
1st 10/29 14/18 14/20 n.a. 0.005
2nd 5/18 9/11 11/14 n.a. 0.003

The level of significance was calculated using: a—Chi-Squared test or b—nonparametric Kruskal–Wallis test;
* only within the glomerulopathies group, IgAN = immunoglobulin A nephropathy; LN = lupus nephritis;
MN = membranous nephropathy; avg ± SD = average plus or minus the standard deviation; BMI = body
mass index; eGFR = estimated glomerular filtration rate; n.a. = not available; VTE = venous thromboembolism;
TIA = transient ischemic attack.
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Table 2. Characteristics of the study participants during long-term clinical follow-up.

Variable
Clinical Laboratory Value (Mean ± SD)

IgAN
(n = 29)

LN
(n = 18)

MN
(n = 20)

Control
(n = 13) p Value

BMI (kg/m2) 26.7 ± 5.3 24.8 ± 4.9 26.8 ± 4.4 24.7 ± 2.0 0.324
Serum creatinine (mg/dL) 1.3 ± 0.7 1.0 ± 0.3 1.2 ± 0.4 0.9 ± 0.13 0.029
eGFR (mL/min × 1.73 m2) 70.5 ± 31.0 83.6 ± 26.2 70.0 ± 21.9 97.1 ± 12.0 0.014

Hemoglobin (g/dL) 14.0 ± 1.22 12.6 ± 0.9 13.2 ± 1.6 14.0 ± 1.3 0.002
Platelets (g/L) 250.4 ± 56.5 246.3 ± 60.8 255.2 ± 61.2 237.7 ± 42.5 0.883

White blood cells (g/L) 8.0 ± 1.9 6.5 ± 2.3 8.7 ± 2.8 5.9 ± 1.4 <0.001
Proteinuria (g/24 h) 0.7 ± 0.6 0.4 ± 0.7 1.1 ± 1.4 n.a. 0.004

∆eGFR (mL/min × 1.73 m2) 51.2 ± 31.9 42.7 ± 31.1 15.6 ± 21.2 −0.05 ± 5.6 <0.001
Months of total clinical follow-up 55.21 ± 14.97 46.22 ± 19.95 43.05 ± 12.09 23.64 ± 15.03 <0.001

Months of follow-up for OPN 33.72 ± 1.56 33.91 ± 1.7 19.36 ± 3.29 16.6 ± 2.07 <0.001

SD = standard deviation; IgAN = immunoglobulin A nephropathy; LN = lupus nephritis; MN = membranous
nephropathy; BMI = body mass index; eGFR = estimated glomerular filtration rate; n.a. = not available. The level
of significance was calculated using nonparametric Kruskal–Wallis test, p value was set as <0.05.

2.2. Methods
2.2.1. Material Collection

Urine samples (second or third morning urine) were centrifuged (10 min at 2000 rpm)
within 120 min from collection, aliquoted into 2 mL cryovials, and frozen at −80 ◦C
until use. Laboratory tests such as serum creatinine, blood morphology, urinalysis, and
urinary protein were performed using routine laboratory techniques. PRDX concentrations
had been obtained during a previous study of the same patient sample [5]. The eGFR
was calculated using the chronic kidney disease epidemiology collaboration (CKD-EPI)
equation. Body weight in kilograms was divided by the square of the height in meters
(kg/m2) to evaluate body mass index.

2.2.2. OPN Measurements

OPN was measured with the Human Osteopontin (OPN) Quantikine ELISA Kit (R&D
Systems, Minneapolis, MN, USA). Urine samples were diluted 20× with assay diluent
according to the manufacturer’s instructions. To each well in the 96-well microplate
(precoated with a monoclonal antibody specific for human OPN), 100 µL of assay diluent
was added; then, 50 µL each of standard and sample were pipetted into the wells in
duplicate. The microplate was then incubated for 2 h at room temperature (22–25 ◦C),
allowing the OPN in the sample to be bound by the immobilized antibody. After incubation,
any unbound substances were washed away manually using a wash buffer provided by
the manufacturer and according to the assay procedure, and 200 µL of an enzyme-linked
polyclonal antibody specific for human OPN was added to the wells. The plate was again
incubated for 2 h at room temperature (22–25 ◦C). After a wash to remove any unbound
antibody–enzyme reagent, 200 µL of a substrate solution was added to the wells, where
color developed in proportion to the amount of OPN bound in the initial step. The color
development was stopped by the addition of the stop solution included with the assay, and
the optical density was subsequently measured using a BioTek PowerWave XS microplate
reader (Agilent, Santa Clara, CA, USA) at a wavelength of 450 nm. To determine the OPN
concentration (ng/mL), the GraphPad Prism software application (version 9.0.1: GraphPad
Software, San Diego, CA, USA) used the optical density with a standard curve (4-parameter
logistic equation), including extrapolation. Each result was multiplied by 20 to obtain the
actual urine OPN concentration.
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2.3. Statistical Analysis
2.3.1. Demographic Data and OPN Measurements

The statistical analysis was performed in the GraphPad Prism (version 9.0.1) and Sta-
tistica (version 13.1, StatSoft, Tulsa, OK, USA) software applications. Results are expressed
as mean ± standard deviation, median ± interquartile range, or a percentage. All variables
were examined by the Shapiro–Wilk test for normal distribution. Non-normally distributed
variables were analyzed using nonparametric tests. Comparisons between demographic
variables were tested using the Kruskal–Wallis test and between the control and GN groups,
using the Mann–Whitney U-test. Correlations between pairs of parameters were examined
using Spearman’s correlation analysis., The differences between categorical variables were
calculated with Chi square test. The level of significance was set to p < 0.05.

2.3.2. Implementation of ML and Mathematical Analysis

We performed analysis of the data set using an approach based on the supervised
machine learning algorithms. Application of machine learning (ML) allows us to perform
rapid exploration of data without prior statements of detailed models and with minimal
assumptions about data. ML also automatically includes interactions between variables
into account. All findings of the ML approach were verified with the help of statistical
analysis, and very good agreement between both methods was obtained, in particular when
a strong signal was obtained. We used the ML algorithm Random Forest [17] to build a
model that used standard clinical indicators, together with OPN and PRDX levels to predict
each participant’s classification: control, IgAN, MN, and LN. Given the available data
collected, eight descriptors were available for all 80 patients: “Gndr” (gender), “BMI” (body
mass index), “CR” (creatinine), “eGFR,” ”Hb” (hemoglobin), “PLT” (platelets), ”WBC”
(white blood cells), and “OPN”. PRDX levels (1–5) were available for only 53 patients: 7 in
the control class, 16 in the IgAN class, 12 in the LN class, and 16 in the MN class.

The analysis consisted of two steps. In the first step, the all-relevant-features selection
algorithm Boruta [18] was used to find the descriptive variables carried information about
the class variable. Then the Random Forest algorithm was built using only the variables
not rejected by Boruta. We used the Random Forest [19] and Boruta [20] libraries in R [21].
Random Forest is a general-purpose ML algorithm for classification and nonparametric
regression, widely used across multiple disciplines. It is an ensemble of decision trees.
Each tree is built using a different data sample, and each split in a tree is built on a variable
selected from a subset of all variables. A subset of the objects not used for the construction of
a particular tree—the so-called out-of-bag objects—can be used for an unbiased estimate of
the classification error and variable importance. In particular, the importance of a variable
is established by measuring the decrease in the accuracy with which out-of-bag objects
are classified when information about the variable under consideration is removed from
the trees.

The Boruta algorithm belongs to the class of all-relevant-features selection algorithms.
It is a wrapper around Random Forest. It works by extending the original set of variables
by their randomized copies, so-called shadow variables. By design, the randomized copies
carry no information about the decision variable. Boruta builds multiple Random Forest
classifiers, each using a different set of shadow variables, and compares the importance of
the original variables with the importance of the most important shadow variable (shadow
max) from each set of shadow variables. The variables whose importance exceeds that of
the most important shadow variable in a statistically significant way are deemed relevant.
The variables that are statistically less important than the most important shadow variable
are deemed irrelevant. The variables for which the test is inconclusive are called tentative.
A full description of applied algorithms is available in Supplement, File S1.

Due to the randomized character of used algorithms, the results may minimally differ
between each calculation.
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3. Results

Our results are divided into three sections. First is the analysis performed with ML.
An algorithm was introduced to a set of laboratory data and biopsy-proven diagnoses from
half the samples, thus “teaching” the algorithm to form diagnostic pathways (decision
trees based on yes/no commands). Those decision trees were then applied to a set of data
without a known diagnosis to test their accuracy (Sections 3.1–3.3). Second is a comparison
of OPN levels at the approximate time of diagnosis and after treatment in all tested groups,
which checked for correlations with clinical factors (Section 3.4). Third is the creation, using
the information previously obtained, of a network of biologic processes that includes OPN.

3.1. Whole-Group Analysis

Based on the provided data, the algorithm “decides” which sample matches which
GN. However, not every variable has equal significance. Figure 1 shows the variables that
were selected by the algorithm as important in correctly placing a patient into a given
GN class. Data are tested against the shadow values created by the Boruta algorithm to
establish a variable’s significance.
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Figure 1. Variables designated as important in the whole-group analysis: green = strong correlation;
yellow = marginal correlation; CR = mean serum creatinine; Hb = mean hemoglobin concentration;
WBC = mean white blood cell count; PLT = mean platelet concentration; Gndr = gender; BMI = body
mass index; eGFR = mean estimated glomerular filtration rate calculated using the chronic kidney
disease epidemiology collaboration equation; OPN = osteopontin (first sampling point). Mean values
of selected parameters are the average of all measurements of each parameter during long-term
follow-up for each patient.

We compared the importance of the variables marked as significant by the algorithm in
correctly classifying a patient to a GN class (Table 3). A higher value indicates a higher error
in patient placement when the variable is removed from the dataset. Each entry corresponds
to an average decrease in the accuracy of decision trees for objects of a particular class when
information concerning a given variable is withdrawn from the classifier. The last column
is the average value regardless of class. Rows are sorted in descending order based on
mean importance. OPN is most responsible for correct patient placement in the IgAN class.
Mean eGFR is the most important variable for correct classification of healthy participants,
and Hb and WBC are the most important for LN. The quality of prediction is worst for
the MN class, with no variable being relevant for that class. Table 4 shows the accuracy
of the algorithm based on results from 10 runs of the classifier. The algorithm was not
able to correctly classify the control participants (probably because too few samples were
available), but the prediction was correct most of the time for patients with IgAN (class
error 0.31).
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Table 3. Importance of variables that were not rejected by the Boruta algorithm for a Random Forest
classifier that predicts the class of the patient.

Variable
Class

Mean
Control IgAN LN MN

OPN 0.036 0.102 0.016 −0.013 0.042
WBC 0.067 0.028 0.051 0.010 0.033
eGFR 0.125 0.024 −0.009 −0.001 0.025

Hb 0.030 0.035 0.048 −0.031 0.019
CR 0.019 0.022 0.026 −0.017 0.012

IgAN = immunoglobulin A nephropathy; LN = lupus nephritis; MN = membranous nephropathy; OPN = osteo-
pontin; WBC = white blood cells; eGFR = estimated glomerular filtration rate; Hb = hemoglobin; CR = creatinine.

Table 4. Average confusion matrix from 10 runs of a Random Forest classifier that predicts a patient’s
glomerulopathy class using variables identified as relevant by Boruta.

Control IgAN LN MN Class Error

T Control 4.3 1.8 5.7 1.2 0.67
R IgAN 2.1 19.9 2.6 4.4 0.31
U LN 1.9 3.0 8.2 4.9 0.54
E MN 2.8 6.3 6.6 4.3 0.78

IgAN = immunoglobulin A nephropathy; LN = lupus nephritis; MN = membranous nephropathy.

3.2. Analysis for IgAN Compared with Other Groups

Using the previously selected variables (OPN, WBC, Hb, eGFR, and CR), we tested our
algorithm by finding patients with IgAN from among other non-IgAN samples. In Table 5,
a strong confirmation of the relevance of OPN for correctly placing a patient into the IgAN
class is evident (the highest number in the column). Each entry corresponds to an average
decrease in the accuracy of decision trees for objects of a particular class when information
about a given variable is withdrawn from the classifier. The last column is average value
regardless of class. Rows appear in descending order based on mean importance. Four
other variables are relevant as well.

Table 5. Importance of variables that were not rejected by the Boruta algorithm for a Random Forest
classifier that discerns IgAN from all other classes.

Variable Non-IgAN IgAN Mean

OPN 0.065 0.130 0.087
WBC 0.029 0.019 0.025
eGFR 0.015 0.023 0.018

CR 0.016 0.022 0.017
Hb 0.005 0.038 0.017

IgAN = immunoglobulin A nephropathy; OPN = osteopontin; WBC = white blood cells; eGFR = estimated
glomerular filtration rate; Hb = hemoglobin; CR = creatinine.

Ten runs of the Random Forest classifier were performed. The results are nonrandom,
as shown in Table 6. OPN had the strongest prediction value for IgAN, with a low error
margin: class error 0.13, which means that the algorithm was 87% correct. OPN had no
predictive value for LN or MN. (Hb and WBC did but are not shown. Data available on
request). Figure 2 shows the results in pictorial form.

Table 6. Predicted average confusion matrix from 10 runs of a Random Forest classifier that discerns
IgAN from other glomerulopathy classes using variables identified as relevant by Boruta.

Non-IgAN IgAN Class Error

Non-IgAN 44.2 6.8 0.13
IgAN 12.5 16.5 0.43

IgAN = immunoglobulin A nephropathy.
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Figure 2. Relevance of variables in correctly enrolling a sample to an IgAN class created by the Boruta
algorithm.

3.3. Analysis for OPN Compared with PRDX

In previous research, our team studied PRDXs as potential biomarkers of oxidative
stress in IgAN, MN, and LN [5]. We observed that the concentration of PRDXs 1–5 differed
in patients with various GNs. For the present study, we added PRDXs to a whole-group
analysis similar to the one described in Section 3.2. The previously used variables and
PRDXs 1–5 were tested for their prediction strength in placing a patient into the correct
class (Table 7). Only two PRDXs are shown because the others failed to achieve the required
accuracy (importance was measured on the reduced dataset consisting of the 53 patients
for whom the additional measurements of PRDX protein levels were available).

Table 7. Importance of variables that were not rejected by the Boruta algorithm for a Random Forest
classifier that predicts the glomerulopathy class of the patient.

Control IgAN LN MN Mean

OPN −0.006 0.132 −0.001 −0.008 0.028
T WBC 0.003 0.039 0.051 −0.014 0.016
R Px3 −0.018 9.1 × 10−5 0.056 0.020 0.016
U Hb −0.010 0.008 0.037 −0.037 0.015
E eGFR 0.068 0.018 −0.008 0.010 0.015

Px1 0.007 0.018 −0.004 −0.002 0.005
Px4 −0.049 4.8 × 10−4 0.054 −0.005 0.004

IgAN = immunoglobulin A nephropathy; LN = lupus nephritis; MN = membranous nephropathy; OPN = osteo-
pontin; eGFR = estimated glomerular filtration rate; WBC = white blood cells; Hb = hemoglobin; Px = peroxire-
doxin.

OPN was again the key variable for correctly enrolling patients into the IgAN class.
Mean eGFR was the most important variable for healthy participants, and WBC and Hb
were important for predicting the LN class. However, PRDX3 was now equally as strong
as WBC for the LN class, and it also appears to be relevant for the MN class (together with
eGFR in the latter case). In contrast to the results presented in Table 3, two variables are
now relevant for predicting the MN class. Interestingly, PRDX4 remained classified as
“tentative” (uncertain) by Boruta and it seems to contribute some information to LN class
prediction. Furthermore, the classification error for MN prediction improved significantly,
as shown in Table 8. On the other hand, the predictions for healthy participants are now
wrong. Figure 3 shows those results in pictorial form.

Table 8. Average confusion matrix from 10 runs of a Random Forest classifier built on the reduced
data set consisting of 53 patients.

Control IgAN LN MN Class Error

T Ctrl 0.0 0.0 3.0 4.0 1.0
R IgAN 1.0 9.8 1.0 4.2 0.38
U LN 0.1 1.0 6.9 4.0 0.42
E MN 2.8 3.9 4.3 7.0 0.61

IgAN = immunoglobulin A nephropathy; LN = lupus nephritis; MN = membranous nephropathy.
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3 performs best but is weaker than osteopontin (OPN): eGFR = estimated glomerular filtration rate;
WBC = white blood cells; Hb = hemoglobin.

3.4. Comparison of Various GNs: Standard Modelling

As mentioned in Section 2.2, OPN was measured at two time points: shortly after
diagnosis and after a mean follow-up of 27.8 months. Table 1 presents that 100% of GN
patients received ACEi or angiotensin receptor blocker at both time points. There was a
difference in immunosuppression treatment that was received by 71–75% of MN, 91–94%
of LN, and 28–34% of IgAN patients. Figure 4 shows the values at both time points. OPN
is clearly no longer a differentiating factor.
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Figure 4. Levels of osteopontin (OPN) in 80 patients at baseline and 48 patients at follow-up are
significantly different in the immunoglobulin A nephropathy (IgAN) class. Values are presented as
a scatter-dot plot with median (middle line), lower (25%), and upper (75%) quartile (as whiskers).
The p-value was calculated with the nonparametric Mann–Whitney U Test; LN = lupus nephritis;
MN = membranous nephropathy, n.s.—not significant.

The Spearmann correlation analysis summarized in Table 9 shows some level of
association between OPN in patients with IgAN at follow-up and with PLTs. (The remaining
correlations are available in Supplement, Table S1).

3.5. OPN in the Setting of the Cell Proteome

To investigate the potential relationship between the OPN and platelets [22,23], we
searched the Uniport database for all human proteins annotated with the term “platelets”
(PLT) receiving 1340 proteins. Using the STRING-database, we selected proteins that
interacted directly or indirectly with OPN. We adopted an increased value of data reliability
(term: “high confidence”). This way, we received 68 direct-interacting proteins and 500
that make up the second layer. A total of 500 proteins of the second interaction layer are
the maximum number of proteins that can be indicated by this algorithm. A comparison
of these two lists results in 74 proteins annotated with the term “platelets” and interact
with OPN directly or via maximum one mediating protein (Supplement, File S2). Out of
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74 proteins, eight are direct-interacting OPN-PLT proteins (process shown in Figure 5). To
interpret the results more broadly, we performed functional enrichment. We set the cut-off
point at FDR > 0.0001, or at the limit of the top 100 results for a given category [24,25].

Table 9. Spearman correlation analysis of clinical parameters and osteopontin levels at follow-up.

Parameter

IgAN LN MN Control

R R2 p
Value R R2 p

Value R R2 p
Value R R2 p

Value

Age (years) −0.096 0.009 0.705 0.346 0.120 0.297 −0.236 0.056 0.416 0.300 0.090 0.624
BMI (kg/m2) −0.282 0.079 0.257 0.582 0.339 0.060 −0.020 0.000 0.946 0.100 0.010 0.873
WBC (g/L) 0.007 1 × 10−4 0.977 −0.091 0.008 0.790 −0.051 0.003 0.864 0.300 0.090 0.624
Hb (g/dL) −0.088 0.008 0.729 0.014 0.000 0.968 0.106 0.011 0.719 0.900 0.810 0.037
PLT (g/L) 0.483 0.234 0.042 0.055 0.003 0.873 0.305 0.093 0.288 0.200 0.040 0.747

Serum CR (mg/dL) −0.358 0.128 0.145 −0.182 0.033 0.593 −0.248 0.062 0.392 1.000 1.000 n.a.
eGFR (mL/min × 1.73 m2) 0.377 0.142 0.123 0.000 0.000 1.000 0.385 0.148 0.175 −0.300 0.090 0.624

Proteinuria (g/24 h) 0.126 0.016 0.618 −0.355 0.126 0.284 −0.544 0.296 0.055 n.a. n.a. n.a.

IgAN = immunoglobulin A nephropathy; LN = lupus nephritis; MN = membranous nephropathy; BMI = body
mass index; WBC = white blood cells; Hb = hemoglobin; PLT = platelets; CR = creatinine; eGFR = estimated
glomerular filtration rate. n.a. = not available.
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Figure 5. Selection of proteins that interact with osteopontin (OPN) from the STRING-db database:
FDR = false discovery rate.

We also prepared a functional analysis of selected proteins to evaluate their role in
various biologic pathways, with eight proteins being functionally analyzed in gene ontology
terms (an adjusted p value < 0.0001 was considered significant). The Kyoto Encyclopedia of
Genes and Genomes was used to select the major biologic pathway–based target gene [26].
A path comprises a minimum of two genes. The p value obtained from each biologic route
was adjusted using the Benjamini–Hochberg false discovery rate procedure [27]. Biologic
pathways with a false discovery rate less than 0.0001 were considered significant. Table 10
summarizes the selected pathways and processes.
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Table 10. Functional analysis of selected genes linked to SPP1 (OPN) [24,25].

Category and Term 1
Gene Count

Strength False Discovery Rate 2 Term Identifier
Observed Background

Diseases (gene associations)
Disease of cellular proliferation 25 1012 0.82 1.12 × 10−10 DOID:14566

Cancer 23 895 0.83 3.58 × 10−10 DOID:162
Ischemia 5 23 1.76 5.31 × 10−5 DOID:326

Vascular disease 9 223 1.03 1.6 × 10−4 DOID:178
Gene ontology (molecular function)

Platelet-derived growth
factoreceptor binding 7 15 2.09 6.86 × 10−10 GO:0005161

Phosphatidylinositol 3–kinase
binding 6 30 1.72 1.08 × 10−6 GO:0043548

Growth factor activity 10 161 1.22 2.98 × 10−7 GO:0008083
Integrin binding 9 147 1.21 1.61 × 10−6 GO:0005178

Signaling receptor binding 44 1581 0.87 2.91 × 10−25 GO:0005102
Cell adhesion molecule binding 15 538 0.87 5.26 × 10−7 GO:0050839

Enzyme activator activity 12 520 0.79 8.58 × 10−5 GO:0008047
Gene ontology (biologic process)

Signal transduction 52 2741 0.7 2.93 × 10−24 HSA-162582
Immune system 40 1956 0.73 1.23 × 10−17 HSA-168256

Signaling by VEGF 16 106 1.6 1.54 × 10−17 HSA-194138
VEGFA–VEGFR2 pathway 15 97 1.61 1.81 × 10−16 HSA-4420097
Signaling by interleukins 20 440 1.08 2.90 × 10−13 HSA-449147
Innate immune system 27 1025 0.84 3.29 × 10−13 HSA-168249

Cytokine signaling in immune
system 22 681 0.93 6.08 × 10−12 HSA-1280215

Integrin signaling 8 27 1.89 3.46 × 10−10 HSA-354192
Platelet activation, signaling, and

aggregation 35 260 1.55 1.58 × 10−40 HSA-76002

Platelet degranulation 17 127 1.55 7.74 × 10−18 HSA-114608
Platelet aggregation (plug

formation) 9 39 1.79 8.88 × 10−11 HSA-76009

Signaling by PDGF 8 58 1.56 5.24 × 10−8 HSA-186797
Factors involved in

megakaryocyte development and
platelet production

10 154 1.23 1.97 × 10−7 HSA-983231

Infectious disease 25 826 0.9 2.80 × 10−13 HSA-5663205
Leishmania infection 14 249 1.17 5.10 × 10−10 HSA-9658195

Regulation of actin dynamics for
phagocytic cup formation 9 62 1.58 2.76 × 10−9 HSA-2029482

DOID = disease ontology identifier; GO = genetic ontology; HAS = molecular pathway identifier (Homo sapiens).
1 For each category, selected terms are shown. 2 Values less than 0.0001 are considered statistically significant.

4. Discussion

In our opinion, a major finding of this study is that the identification of biomarkers in
nephrology might be empowered by ML. ML has recently become widely used in numerous
biomedical applications ranging from the analysis of Parkinson’s disease [28], through the
prediction of COVID-19 patient health [29], to spectacularly accurate predictions of three-
dimensional protein structure [30]. ML methods complement the traditional statistical
analysis for problems that involve complex relationships between various parameters of
the studied phenomena and allow us to obtain predictive models in such situations. In
particular, ML methods are widely used for identification of biomarkers [31] for diseases
with complex and not-well understood mechanisms. The general idea is straightforward—
if a robust predictive model can be obtained for the process under scrutiny, the variables
that are used by the model are necessarily connected to this process, even if we currently
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do not understand why and how they are connected. Such variables can be then used as
biomarkers. Moreover, they also can foster understanding by focusing experimental effort.

Random Forest [31] was used in the present work as both a classifier and an engine for
the feature selection study goals. In the thorough review of 179 classifiers from 17 families,
performed on 121 data sets, classifiers from the Random Forest family have shown the best
and the most robust performance [31,32]. The all-relevant feature selection algorithm
Boruta [31], a wrapper using Random Forest, was used for identification of relevant
biomarkers. It was tested on a wide range of problems, and several recently published
real-world datasets showed that the algorithm is both sensitive and selective [33].

In nephrology, ML has been applied to the prediction of IgAN progression to end-
stage kidney disease, identification of diabetic and nondiabetic renal disorders, assessment
of acute kidney injury, and dialysis-associated death [34]. In the present study, we used
ML algorithms to select relevant variables from a clinical dataset, and we then applied
them to distinguish various GN classes. Even applied to small groups, the algorithm
correctly identified patients with IgAN, as confirmed by biopsy and a standard Mann–
Whitney U-test. Interestingly, OPN was observed to be more specific than PRDX in the
selected subgroup, though it is unlikely to be able to serve as a single biomarker, given that
heightened levels are seen in various conditions.

The data on OPN levels in various GNs are conflicting. In children, higher OPN levels
were found in patients with IgAN and focal segmental glomerulosclerosis than in those
with IgAN and minimal change disease [35]. In adults, OPN levels in those with MN
and minimal change disease were normal or even reduced in those with IgAN [36]. Gang
et al. [36] attributed their finding to the presence of thrombin-cleaved OPN fragments
undetectable in their measurements. Building on that hypothesis, Kitagori et al. compared
full and cleaved OPN (N fragments) in patients with LN, diabetic nephropathy, IgAN, and
minimal change disease, finding no difference in full uOPN levels between the groups and
increased levels of N fragments in patients with LN and diabetic nephropathy [37].

Our study focused on full-length uOPN but included samples from adult patients
taken at two different time points. During their long follow-up, most patient received
treatment with angiotensin-converting enzyme inhibitors and/or immunosuppressants,
which might have influenced the results. Remission of disease, progressive fibrosis, or
variance in the site of damage (glomerular vs. interstitial) could be factors responsible for
discrepancies in OPN levels at baseline and follow-up [38]. However, given that control
(protocol) biopsies were not performed, that hypothesis cannot be proved. The other
explanation of this observation can be that uOPN is elevated only in the active form of
IgAN and normalized to the same level as in other GN such as MN or LN, after the
treatment. If it is true, OPN could become a very simple biomarker to be used, e.g., in an
outpatient clinic, confirming active IgAN to be treated. This finding of our study must be
validated.

OPN is involved in many metabolic pathways, as shown in Figure 6 and Table 10.
Because of the correlation with platelets, we have narrowed our variables to those two, and
we have selected several proteins that might be goals for further investigation. Some of
the functional pathways—for example, those connected to infectious diseases, particularly
leishmaniosis—were also noted in another study concerning risk loci for IgAN [39]. So far,
no single biomarker is likely to be diagnostic of a single GN, but in our opinion, a panel
might bring the sensitivity and specificity that have long been sought.
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Figure 6. Proteins interacting with both osteopontin and platelets: BCAR1 = breast cancer anti-
estrogen resistance protein 1; CDC42 = cell division control protein 42 homolog; IGF1 = insulin-like
growth factor 1; PDGF = platelet-derived growth factor; RHOA = Ras’s homolog family member A;
RAC1 = Ras-related C3 botulinum toxin substrate 1; SPP1 = signal peptide peptidase–osteopontin;
VEGFA = vascular endothelial growth factor A. Assessed from the STRING-db database: https:
//string-db.org/ (accessed on 31 January 2022).

Our study has several limitations. First, each GN was represented by a small sample.
As our patient database evolves, those numbers will increase. For now, this research can
be considered a preliminary study aimed at creating more interest in the topic. Second,
further studies should include more proteins/markers or even the whole serum/urinary
proteome. Third, OPN levels are likely to be linked to a histologic process and not to a
specific GN. Correlation between OPN and a proteomic tissue analysis would be a valuable
contribution and should be included in prospective studies. However, the need for the
protocol to obtain control biopsies in patients during remission might be problematic. We
did not correlate the OPN levels with kidney biopsy results for a few reasons: (1) each of
studied glomerulonephritis has their own and completely different classification; (2) so,
from this point of view the group was highly heterogenic, and (3) some biopsies were
performed and evaluated in other centers by other pathologists that could influence the
results. We summarized the biopsies result in Supplement, Tables S2–S4. We have not
correlated uOPN levels with serum OPN levels or other biochemical results because the
significance of OPN in other diseases is yet to be determined, and such a correlation effort
would have unnecessarily complicated the analysis. In many patients, we also did not have
access to certain data concerning previous history such as medications taken before study
inclusion. Therefore, we decided against including these data in the study.

5. Conclusions

Given a growing burden of CKD, biomarker identification and validation have become
an emerging issue. In our opinion, OPN should be included in further studies as a potential
biomarker in nephrology. Based on our results, we are sure that ML should become a
standard in biomarker research. As a supplement to ML, proteome databases can help
place results in the context of numerous biologic pathways, pointing toward proteins that
could be the next step in nephrology biomarker research.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/biomedicines10040734/s1, File S1: machine learning scripts applied
in the R software; File S2: list of selected proteins from the STRING database; Table S1: correlations
of OPN with clinical parameters and long-term clinical follow-up; Tables S2–S4: histopathological
classification of study participants.
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6. Moszczuk, B.; Kiryluk, K.; Pączek, L.; Mucha, K. Membranous Nephropathy: From Research Bench to Personalized Care. J. Clin.
Med. 2021, 10, 1205. [CrossRef]

7. Icer, M.A.; Gezmen-Karadag, M. The multiple functions and mechanisms of osteopontin. Clin. Biochem. 2018, 59, 17–24. [CrossRef]
8. Cheema, B.S.; Iyengar, S.; Sharma, R.; Kohli, H.S.; Bhansali, A.; Khullar, M. Association between Osteopontin Promoter Gene

Polymorphisms and Haplotypes with Risk of Diabetic Nephropathy. J. Clin. Med. 2015, 4, 1281–1292. [CrossRef]
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