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Abstract: Gram-negative bacteria are intrinsically resistant to many commercialized antibiotics. The
outer membrane (OM) of Gram-negative bacteria prevents the entry of such antibiotics. Outer
membrane vesicles (OMV) are naturally released from the OM of Gram-negative bacteria for a range
of purposes, including competition with other bacteria. OMV may carry, as part of the membrane
or lumen, molecules with antibacterial activity. Such OMV can be exposed to and can fuse with the
cell surface of different bacterial species. In this review we consider how OMV can be used as tools
to deliver antimicrobial agents. This includes the characteristics of OMV production and how this
process can be used to create the desired antibacterial activity of OMV.

Keywords: outer membrane vesicles; antimicrobial activity; Gram-negative bacteria; Gram-positive
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1. Introduction

Membrane vesicles (MV) are formed and released by a broad range of cells, from
bacteria to human cells, with different nomenclature attributed according to the budding
cell [1–3]. These MV are mostly spheres from the membrane of the cells with a large size
range from 20 nm to 10 µm, depending on the donor cell [4,5]. The formation of vesicles
occurs by vesiculation from living cells as a result of a disruption of the membrane caused
by internal mechanisms or induced by an external signal. Depending on the donor, the
bacterial MV have different functions, and the same cell can also produce MV with different
functions. The main function of MV is the transport of different molecules, such as lipids,
proteins, and nucleic acids. The molecules that constitute the cargo of the MV as well as
their target will differ depending on the stimuli [6–9]. The MV show diverse functions from
secretion of toxins and virulence factors to the modulation of the target cell, acquisition of
nutrients and even resistance to stress [8,10–12].

Depending on their constitution and biogenesis, MV secreted by Gram-negative bacte-
ria can be classified as outer membrane vesicles (OMV), outer-inner membrane vesicles,
explosive outer membrane vesicles or tube-shaped membranous structures [13]. The most
common MV from Gram-negative bacteria are the OMV, also named membrane blebs or
outer membrane blebs [6,14]. MV released by Gram-positive bacteria include the cytoplas-
mic membrane vesicles and the tube-shaped membranous structures [13].

Antibiotic resistance is due to the bacteria’s ability of adaptation to the action of
antimicrobial molecules as well as to prevent them reaching the target site [15,16]. OMV
have a natural role in antimicrobial resistance since they can act as a decoy or remove
antibiotics that cross the cell wall, allowing bacteria to survive [6,16]. New approaches have
been developed to understand whether OMV may be used as a tool to deliver antibiotics
against bacteria. Due to the composition similarity of OMV and the outer membrane (OM)
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of the cell wall of Gram-negative bacteria, delivery of OMV content into Gram-negative
bacterial cells is more efficient; nonetheless, an antimicrobial effect can also be seen against
Gram-positive bacteria. Additional advantages of OMV as antibiotic delivery tools include
their stability, the cargo protection against enzymatic degradation, the ability to incorporate
both hydrophilic and hydrophobic molecules and the capacity to selectively target other
bacterial cells [17]. Several challenges have been reported including the need to optimize
the loading of different antibiotics, as well as the binding of OMV with the desired target
cell and resulting toxicity.

Although different types of MV are secreted by bacteria, here we focus on OMV, the
archetypal vesicles of Gram-negative bacteria. We discuss key aspects of bacterial OMV
and their potential role as a delivery tool of molecules with antibacterial activity. Emphasis
will be given to the biogenesis and the antimicrobial activity of OMV. Different studies have
shown OMV activity against different bacterial species due to the carriage of antibiotic
molecules, or due to some molecules that are naturally present in OMV such as lysins,
which behave as an antibacterial molecule when exposed to recipient bacteria [12].

2. OMV Biogenesis in Gram-Negative Bacteria

Gram-negative bacteria have an envelope comprising an OM and an inner membrane
(IM) with a periplasmic space in between, which contains a layer of peptidoglycan (PG). In
the OM there are lipopolysaccharides (LPS) linked covalently by the lipidic moiety and
proteins bound as β-barrels, while in the IM the proteins are bound as α-helical [18].

The destabilization of ligations in a bacterium’s cell wall can lead to the detachment of
the OM from the cell membrane. Consequently, the natural stabilization of the molecular
charges allows the formation of the OMV [18,19]. OMV are nanostructures with size
range between 20 and 250 nm that are secreted from the bacteria’s OM, being composed of
phospholipids, LPS and outer membrane proteins (OMP) [19]. During formation, molecules
such as nucleic acids and proteins from the periplasm and cytoplasm of the cells can be
localized to the lumen of the vesicle, making it a vehicle for antibiotic resistance and
virulence dissemination [18,20]. Some bacteria can also incorporate external antibiotics into
vesicles, allowing isolation of antibiotics inside OMV and cell membrane stabilization [6].

The first step to the formation of OMV is the disruption of the connection OM-PG-IM
without damage or loss of membrane integrity [18]. To explain the formation of OMV,
three models have been created (Figure 1), which are not mutually exclusive: deficiency of
lipoprotein (LPP) or its links in OM; increase of PG or other lipids residues; repulsion of
negatively charged LPS [19].

1. LPP links deficiency (Figure 1a): the presence of LPP in the unbound form has been
found in OMV, indicating that the covalent links were broken, or their distribution
was not homogenous, since the conversion of free-form LPP into bound form is
reversible [21]. These characteristics seems to be induced by the non-proportional
growth of the OM compared with the PG layer [22]. The relation of the lack of link
between OmpA and PG has been proven to be essential to the production of OMV in
Salmonella spp. [23].

2. Increase of misfolded PG (Figure 1b): Autolysins have a role in cleaving the covalent
links of PG, resulting in cell wall remodeling. The lack of these enzymes increases
the amount of peptides in periplasmatic space and other components leading to
turgor pressure and therefore to OMV formation. Several studies explore the lack of
autolysins to increase the concentration of proteins in the periplasmatic space and
therefore converge to this model [24,25].

3. Repulsion of negatively charged LPS (Figure 1c): A study suggested that the repulsion
of negatively charge B-band LPS in cells exposed to gentamicin, with great affinity to
LPS, induce the release of OMV as a way of antibiotic resistance in which gentamicin
was incorporated into OMV. That repulsion increased the production of vesicles in P.
aeruginosa [6].
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Figure 1. Models of OMV biogenesis (a) Vesiculation caused by the absence of lipoprotein links.
(b) Vesiculation caused by accumulation of misfolded peptidoglycan. (c) Vesiculation caused by
negatively charged lipopolysaccharide.

Several molecules are important components and regulators of OMV, including as
a regulator of OMV protein composition, such as OmpA from A. baumannii [26]. Cells
have several mechanisms of response to the disruptions of the connection OM-PG-IM that
can be different between species. In E. coli, if mutations lead to the absence of LPP, Omp
may substitute it [19]. σE, a transcriptional factor and a modulator of OMV formation, is
activated to respond to the increase of misfolded OMP and consequently downregulates
OmpA and LPP by MicA and Reg26, respectively [18]. Other molecules such as DegP,
which behaves as a periplasmatic chaperone at high temperature and a protease at low
temperature, seems to prevent the accumulation of proteinaceous waste in periplasmatic
space [18]. However, for some perturbations such as LPS with highly charged O-antigen in
OM, those molecules are enriched in P. aeruginosa OMV. OMV seem to be a bacterium’s own
mechanism of defense for the stabilization of the OM charges and therefore cell survival [2].

In general, in the biogenesis of OMV, an increase of the space between the connection
OM-PG-IM is necessary. However, its complex formation allows the presence of multiple
molecules in OMV that are involved in some essential survival mechanisms of the cell.

To produce higher levels of OMV, growth conditions may be manipulated, including
change or addition of parameters such as temperature, antibiotics, serum, active oxygen
species mimic molecules, EDTA and lack of amino acids [6,27–31]. The increase of tem-
perature may precipitate proteins increasing the space between OM and IM and leading
to the disruption of the LPP links [32,33]. In addition, the use of other physical methods
such as electroporation, extrusion and sonication are used to increase the production of
OMV, but also to load non-natural molecules inside, once they cause high damage to the
cell wall [34–39].

3. OMV Functions

OMV have several functions that are related with their diverse molecular composition
(Table 1), which can be different for each bacterium but also differs with different envi-
ronmental inducers. Due to its complex composition, one OMV can have more than one
function. OMV are used by Gram-negative bacteria to secrete toxins and other virulence
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factors that can induce cytotoxicity activity, but also other molecules that are important
for modulation and invasion of the host that are capable to induce responses from host
organisms. In addition, the OMV can also carry molecules responsible for improving
the bacterial survival such as those associated with signaling, biofilm production or gene
transfer. Beyond the capability to survive, OMV also have an ability to attach to other
bacteria, and deliver enzymes known to have antibacterial effect [40].

Table 1. Functions of OMV according to their composition.

Function Species
Active
Factor/Molecular
Structure

How Host/Target Effect Reference

Secretion of Toxins
and Other
Virulence Factors

A. baumannii Outer membrane
protein A (OMPA)

Regulating the induction of
cell death in host

Mitochondria and
nucleus from host
cells

Cytotoxicity activity [41–43]

P. aeruginosa

Hemolytic
phospholipase C
(Cif virulence
factor)

Released directly into
cytoplasm

Airway epithelial
cells Cytotoxicity activity [44]

Helicobacter pylori Vacuolating toxin
(VacA)

OMV enter the gastric
mucosa and binds to MKN28
cells

MKN28 cells Cytotoxicity activity [2]

E. coli Shiga toxin 1 and 2 − − − [45]

E. coli
Peptidoglycan-
associated
LPP

Release of
peptidoglycan-associated
LPP from OMV, enhanced by
ampicillin

− − [10]

Adhesion and
Biofilms A. baumannii AbFhaB/FhaC

system

FhaC protein transports
AbFhaB exoprotein to the
bacterial surface

A. baumannii − [46,47]

Invasion of Host P. aeruginosa Small RNA (sRNA) Attenuation of IL–8 secretion
and neutrophil infiltration

Host immune
system

Reduction of host
innate immune
response

[48]

Modulation A. baumannii LPS

Mediation of toll like
receptors (TLRs) like TLR4
and TLR2 in macrophages
that release chemokines and
cytokines to recruit
neutrophils

Mice macrophages

Induction of
pulmonary
inflammatory
reaction

[11]

Mechanism of
Resistance

Moraxella catarrhalis OMV membrane
Trapping azoles even in the
presence of other antibiotic
that increase its action

Bacteria and fungus
like Candida albicans

Defence against
combined
antibiotics

[49]

A. baumannii
Salmonella Typhi OMV membrane Act as a decoy for antibiotics,

Polymixin B − Protection of
bacterial cells [3,16]

Gene Transfer

E. coli eae, stx1 and stx2,
and uidA genes − Non-competent E.

coli
Resistance to
β-galactams [45]

K. pneumoniae
Plasmid with
resistant gene to
β-lactams

−
Burkholderia cepacia,
E. coli, P. aeruginosa
and Salmonella
enterica

Resistance to
β-lactams [50]

Salmonella Typhi Resistance gene to
Polymixin B − −

Resistance to
Polymixin B, OMV
as a decoy in
cocultures

[3]

E. coli blaCTX-M-15 gene on
pESBL plasmid − Enterobacteriaceae − [51]

A. baumannii blaNDM-1 gene on
plasmid − A. baumannii and E.

coli − [7]

Acquisition of
Nutrients

P. aeruginosa

T6SS substrate TseF
(Type VI secretion
system effector for
Fe uptake)

Incorporation of T6SS
substrate TseF into OMV by
reacting with iron binding
PQS molecule

− Iron acquisition [8]

Bordetella pertussis
Iron receptors and
iron binding
proteins

− − Iron acquisition [52]

Signalling Xylella fastidiosa Diffuse signalling
factor 2 (DSF2)

Regulation of expression of
virulence and pathogenic
determinants

Xylella fastidiosa Virulence and
pathogenicity [53]

Bacterial Mortal-
ity/Competition

P. aeruginosa
Peptidoglycan
hydrolases
(autolysins)

−
P. aeruginosa
resistant to
gentamicin

Antibacterial effect [12]

P. aeruginosa and E.
coli Hemolysins Co-regulation of protein

secretion − Antibacterial effect [6,54]

P. aeruginosa Quinolines − Staphylococcus
epidermidis Antibacterial effect [55]



Biomedicines 2022, 10, 2399 5 of 14

4. Optimization of OMV Production

Several vesiculation-stimulating agents, such as antibiotics and other stimulating
factors, such as the presence of serum or limitation of amino acids, can be used to destabilize
the cell wall of Gram-negative bacteria and hence increase formation of vesicles [6,27–30].

Exposure to some antibiotics increases the production of OMV, such as in P. aeruginosa,
where OMV secretion is enhanced by ciprofloxacin [33,56], or in Stenotrophomonas maltophilia,
where ciprofloxacin and imipenem increased secretion of OMV but with different composi-
tions and through different mechanisms of formation [57].

Increased temperatures cause the misfolding of proteins and consequently lead to an
accumulation of proteins in the periplasmatic space. The accumulation will lead to the
formation of OMV through the created pressure [32,33]. However, for some Gram-negative
bacteria, OMV formation is regulated by temperature, where low temperature allows
vesiculation and a high temperature decreases production or has no effect [58,59]. The
effects of temperature changes with the bacterial species may be related with the presence
of enzymes with the ability to change their function at higher temperatures, such as heat
shock protein DegP (HtrA) in E. coli that can change from chaperones to protease [60] or
MucD in P. aeruginosa that can acquire protease functions [61].

The presence of serum can have some antibacterial effects on bacteria, related with their
own components, namely antibodies [31]. However, the hyperproduction of OMV seems to
be a resistance mechanism in Neisseria gonorrhoeae and Haemophilus influenzae [27,28]. Reac-
tive oxygen species mimic molecules, such as hydrogen peroxidase, that have an impact on
OMV overproduction in P. aeruginosa [59]. The chelating agent ethylenediaminetetra-acetic
acid (EDTA) has been proven to be effective in the stimulation of the production of OMV
from Neisseria meningitidis by capturing the calcium ions from the medium that allows
the stabilization of the membrane [62,63]. There are also reports that show that limitation
of amino acids induces and regulates the production of OMV in E. coli and in Francisella
spp. [29,30].

5. Antimicrobial Activity of OMV

The OMV antimicrobial activity is appealing for treatment purposes, especially against
Gram-negative bacteria since it allows bridging with its cell wall. During OMV biogenesis,
some molecules with antibacterial activity will be naturally included in the vesicle lumen
(Table 1). At the same time, several environmental inductors can enhance or contribute
to the inclusion of those molecules into the OMV. In both cases, OMV can act as an
antimicrobial agent.

5.1. OMV with Natural Antimicrobial Activity Cargo

The functions and roles of autolysin, also known as murein hydrolase [64,65], have
being explored in Bacillus spp. [66]. Autolysins are usually PG-hydrolyzing endogenous
enzymes that naturally lyse the peptide bridges in the PG layer [67], although there are
some exceptions where it can have glycosidic activity [68]. There are several types of
autolysins related with different mechanisms, such as protein and toxin secretion [69],
flagellar formation [70,71], cell separation [72] and antibacterial activity associated to
bacterial competition [12,73]. Its relation with vesicles and antimicrobial activity was
observed for the first time in P. aeruginosa [6]. The presence of autolysins in OMV seem
to be related with its normal location at the PG layer, being included in the cargo of the
OMV during the bleb of the OM [6,64]. However, a recent study in Lysobacter spp. found
that the distribution of the L5 enzyme, a bacteriolytic peptidase, may not be random,
because it is only present in bacteria when this is exposed to a 30% sucrose medium. This
study demonstrated that this autolysin is unevenly placed through the periplasmatic space,
specifically where the vesiculation occurred and therefore L5 seems to be a factor in OMV
biogenesis [74].

There are a few studies that show the antibacterial activity of vesicles with autolysins,
such as peptidoglycan hydrolases, from P. aeruginosa PAO1 against different species of
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Gram-negative bacteria, such as E. coli DH5α and P. aeruginosa PAO1, and Gram-positive
bacteria such as Brachybacterium conglomeratum CCM2134, Bacillus spp., Lactococcus lactis
ATCC 7962 and Staphylococcus aureus D2C [6,12,75,76]. The antibacterial activity of pepti-
doglycan hydrolases from OMV from several Gram-negative bacteria have some affinity
to some chemotypes of peptidoglycan from target bacteria, such as the A1Υ chemotype,
making it more susceptible to cell lysis [66].

Hemolysin is another type of enzyme that is present in OMV from Gram-negative
bacteria, such as P. aeruginosa and E. coli [6,54]. One hemolysin from P. aeruginosa has
been shown to be responsible for co-regulation of protein secretion but also injection of
toxin proteins into other Gram-negative bacteria, including E. coli [77], by type VI secretion
system (T6SS) [78]. In addition, T6SS has been shown to be incorporated in OMV from P.
aeruginosa [8]. The T6SS system allows the bacteria to compete through the delivery of
toxins, that are capable of killing other bacteria [78].

Antimicrobial quinolines, 4-hydroxy-2-heptylquinoline (HHQ) and 4-hydroxy-2-
nonylquinoline (HNQ), are synthetized by P. aeruginosa and incorporated into OMV, which
acted as an antimicrobial molecule against Staphylococcus epidermidis successfully [55].

Alkaline phosphatase is an enzyme that has been found active in P. aeruginosa and in
Myxococcus xanthus OMV, where the active packaging of this enzyme is suggested [6,44,65].
Alkaline phosphatase from E. coli was shown to have antimicrobial activity against Gram-
negative bacteria, namely P. aeruginosa [79], however the search for a match between OMV
and its antibacterial activity has not yet been proven.

Other groups of enzymes, such as phospholipases and proteases, are present in OMV
and may have antibacterial effect, however the need for more studies about their presence
and action is necessary [6].

5.2. OMV with Loaded Antimicrobial Cargo

Several studies have reported the use of OMV as a delivery system to transport
antibiotics into Gram-negative bacteria. There are two main ways to incorporate antibiotics
into OMV: the passive loading, where the addition of the antibiotics during bacterial growth
is enough to produce antibiotic-carrying OMV (aOMV), and the active loading approach,
where the antibiotics are forced to enter or coat the OMV or OM of bacteria, so it can be
part of the produced OMV.

5.2.1. Passive Loading

Passive loading methods use diffusion by osmotic gradient but only for hydrophobic
positively charged small molecules. These molecules may pass through the lipophilic
membrane because of their opposite charges and their similar affinity to water [80]. In
these methods, only the components of the medium or environmental characteristics are
changed to destabilise the membrane and allow the entrance of antibiotics and other
molecules [80,81].

Up to now, only antibiotics that have been demonstrated to pass through the cell
wall of Gram-negative bacteria have been inserted into the OMV. Addition of gentamicin
to P. aeruginosa cells showed the production of OMV-carrying gentamicin [6], which had
antibacterial effects against both Gram-negative and Gram-positive bacteria species [12].
These gentamicin-carrying OMV showed antibacterial activity against P. aeruginosa 8803,
which has a permeability-type resistance to gentamicin [12], highlighting the potential of
OMV antimicrobial delivery to overcome resistance. More recently, different antibiotics,
such as ceftriaxone, amikacin, azithromycin, ampicillin and levofloxacin, were loaded
into A. baumannii OMV, which showed antibacterial effects against enterotoxigenic E. coli,
Klebsiella pneumoniae and P. aeruginosa without toxic activity in mice [82].

Further studies are necessary to determine the capability of other medium components
or environmental changes to affect the cell wall in ways that allow the intentional entrance
of antimicrobials.
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5.2.2. Active Loading

The active loading methods consist of forcing the entrance of the molecules into the
vesicles, normally by physically damaging the cells or the vesicles. There are three main
methods for active loading: electroporation, sonication, and extrusion, and they are already
commonly used to produce vesicles from animal cells such as exosomes.

Electroporation is an electro-physical method that uses electron impulses to rearrange
the OM of the cell with the consequent creation of pores [34,83]. This method is typically
used to make cell transfections of DNA, RNA and proteins, however its ability to translocate
large molecules leads to an instable cell wall and therefore more cell death by lysis and less
efficacy [34]. This method has been successfully used to insert small interference RNA into
OMV from E. coli [35]. Another study showed the possibility to insert any nanoparticles
under 10 nm, such as nanoparticles of gold, into OMV from P. aeruginosa through this
method, a first step to deliver nanoparticles with antibacterial activity through OMV [84].

Sonication uses ultrasound to compress and decompress cells in order to compromise
membrane stability, followed by a second sonication to assemble the membrane fragments
and allow the incorporation of external molecules [36]. Mild sonication has been used
successfully to induce paclitaxel loading into exosomes from macrophages to treat cancer
cells and also to load small RNA into extracellular vesicles from different cell lines [37,85].
This method has already been used in Haemophilus parasuis to induce OMV production,
however the protein content changed when compared to the natural OMV [86]. As far as
we know, the use of sonication in bacterial studies is mostly used to induce cell lysis, and
for detection of biofilms; studies related to OMV loading with sonication have not yet been
performed [86–89].

Extrusion involves the mixture of cells and antibiotics added to a syringe extruder
and then forced to pass through a porous membrane, under controlled temperature. The
hydrostatic fluid pressure will disrupt the membrane, by increasing the axial tension, and
allow the drug entrance at the same time that vesicles are formed; however, variation of
size and zeta potential can occur [9,38]. Despite the yield in loading and forming vesicles
with this method is high, the vesicles may not be homogenous and its impact in protein
membrane structures is not clear, though higher pressures may lead to protein damage and
cell death [38,39]. Extrusion has been proven to be efficient to coat OMV from E. coli with
gold nanoparticles as well as to load 5-fluorouracil into OMV from E. coli [90,91]. It has
also been found in E. coli that this method disrupts the CusCBA, an efflux pump associated
with toxic metals that belongs to the same family related to antibiotic resistance [92]. As far
as we know, this methodology has not been used for active loading of antibiotics, however
it seems a promising technique to produce OMV with antibacterial activity.

Other methods of active loading include a drastic change of temperature, and uti-
lization of saponin. Severe change of temperature in exosomes has proven to be effective
in inducing the incorporation of proteins through the compression and decompression
of water molecules in cells that lead to the formation of pores and allow the entrance of
molecules into vesicles [36,93]. Incubation with saponin, a surfactant molecule that reacts
with cholesterol in cell membranes, has been effective in increasing the loading of molecules
into extracellular vesicles without altering the size or even the zeta potential [9]. Although
there is no cholesterol in Gram-negative bacteria, an analogue called hopanoid has been
discovered [94]. Further studies are necessary to understand the possibility of this method
in the production of OMV in Gram-negative bacteria.

6. Merging of Vesicles with Target Cells and Delivery of OMV Cargo

The merging of vesicles with Gram-negative target cells occurs in three steps. The
first is the membrane contact, followed by the mixing of lipids and fusion of the external
layer of the membrane and finally the reorganization of the inner lipidic layer through
pore formation and finally mixing of content [95]. The first step requires a high amount
of energy that can be given by fusogenic agents. These agents can disrupt the lipidic
membrane through the influence of transition from lamellar bilayer-phase lipids into
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inverted hexagonal-phase lipids; lipid quality is crucial for the membrane rearrangement
and content mixing [96,97]. Some of these agents are positive ions, small organic molecules
or physical damage to the membrane, such as temperature, in which the difference between
them is the energy harnessing process [95].

Attachment of some vesicles can be explained by the charges of Mg2+ and Ca2+ at
the bacterial membrane. These ions can form salt-bridges between the vesicles and the
membrane of exposed cells, that are rich in those ions [12]. Increasing the composition
and concentration of ions in the medium reduces the repulsive electrostatic force, allowing
particle aggregation. A recent study demonstrated that acidic pH enhances the merging
of OMV-OMV from E. coli [98]. More recently, a fusogenic enzyme, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), has been discovered alongside OMV from M. xanthus
and it seems to modulate the fusion with E. coli cells (Figure 2) [65].
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Vesicles from several Gram-negative bacterial species can promote the lysis of other
bacteria, despite the specific interactions related with different PG chemotypes mentioned
above [73]. For instance, P. aeruginosa vesicles do not merge with the cell wall of S. aureus,
but rather tend to attach and release their content, such as gentamicin and autolysins, into
the extracellular matrix, allowing enzyme activity and therefore antibacterial activity [12].
Although the antibacterial effect is similar to the antibiotic free effect, the antibiotic is
delivered near the target, which may increase the success of Gram-positive infection
treatments. S-layered species, such as Aneurinibacillus thermoaerophilus and Bacillus spp.,
prevent the passage of vesicles through the cell wall but not the attachment of the vesicles
from P. aeruginosa [69].

In all these cases, the equilibrium of the membrane charges seems to be mandatory. It
is necessary that new studies determine if there is a difference between the merging of the
different vesicles with other species of bacteria and what cell signaling is associated with
the merging after the attachment to the cell wall [65,99,100].

7. Other Nano-Sized Techniques Used for Delivery of Antibiotics

Nowadays, new techniques are developed as a different approach to antibiotic delivery,
specifically the coating of nanoparticles with OMV membrane and nanotransformation of
antibiotics [101,102]. These techniques have been shown to reduce the toxicity associated
with OMV [103,104]. A recent study demonstrated that OMV and extracellular vesicles,
from E. coli and S. aureus, respectively, with an antibiotic coat have in vitro and in vivo
antibacterial efficacy against S. aureus. However, this study only considered the entrance
of the vesicles into the infected macrophages and not into the bacteria. Nonetheless, it
was proven that it is possible to use the OMV membrane as a coat for antibiotics such as
vancomycin and rifampicin with a diameter of approximately 90 nm [104]. A recent study
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explored the same principle by using extrusion to coat rifampicin-loaded mesoporous silica
nanoparticles with OMV from E. coli. Unlike the previous study, it was proven the entrance
of these vesicles into E. coli bacteria but not into S. aureus [103].

A novel mechanism of repurposing antibiotics is the sonochemistry that is capable of
nanotransforming vancomycin, an antibiotic used against Gram-positive bacteria, to pass
through and disrupt the OMs of Gram-negative bacteria. This technique has proven to be
effective against E. coli and P. aeruginosa bacteria [102].

Due to the similarity to the OM composition, natural OMV represent an advantage
relative to synthetic nanoparticles, which lack the intercellular interaction’s essential ability
to promote trafficking and delivery of antibiotics into bacterial cells [3]. However, the
combination of the new approaches is still in its beginning and further developments and
applied outcomes are expected.

8. Conclusions

OMV from Gram-negative bacteria have innate antibacterial activity due to the incor-
poration of several enzymes such as lysins. The incorporation of non-natural molecules
into OMV with additional antibacterial effect has been shown. This suggests that a delivery
system could be developed to overcome the OM barrier of the Gram-negative bacteria
and that bacterial OMV can be used to deliver antibiotics to targeted populations of Gram-
negative and -positive pathogenic bacteria. The OMV antimicrobial effect will depend on
their cargo and the bacterial species targeted, as well as the resistance mechanism present
in the target bacterial cells. The repurposing of antibiotics that are ineffective due to the
permeability barrier of the cell wall of bacteria may also be possible with the use of OMV.

The industrial production of OMV can be enhanced by changing the growth conditions
or through different techniques that force cell damage; an alternative to OMV production
with active lumen content is coating of the OMV with nanoparticles. However, several
technical challenges that hamper the use of OMV remain, such as the types of MV isolated,
the purification yield, and the optimal technique to produce vesicles with desired lumen
content, especially hydrophilic molecules which cannot enter by passive loading. The
reduction of the LPS toxicity is another point that needs to be optimized in order to reduce
the immunogenic potential of OMV; for instance, the engineering of strains with altered
LPS [105] might be a solution to produce OMV with reduced cytotoxicity. There is also
still the need to better understand the target populations, including the specifics of the
interaction between OMV and the target as well as subsequent host cell reactions.

Overall, despite the challenges that must still be overcome, OMV represent a cost-
effective and safe drug delivery tool, representing a promising alternative for the treatment
of bacterial infections caused by antibiotic-resistant bacteria and for the repurposing of
antibiotics that are not usually effective against Gram-negative bacteria.
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