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Abstract: The fabrication of low-cost, flexible, and recyclable electronic devices has been the focus
of many research groups, particularly for integration in wearable technology and the Internet
of Things (IoT). In this work, porous zinc oxide (ZnO) nanostructures are incorporated as a UV
sensing material into the composition of a sustainable water-based screen-printable ink composed
of carboxymethyl cellulose (CMC). The formulated ink is used to fabricate flexible and foldable UV
sensors on ubiquitous office paper. The screen-printed CMC/ZnO UV sensors operate under low
voltage (≤2 V) and reveal a stable response over several on/off cycles of UV light exposure. The
devices reach a response current of 1.34 ± 0.15 mA and a rise and fall time of 8.2 ± 1.0 and 22.0 ± 2.3 s,
respectively. The responsivity of the sensor is 432 ± 48 mA W−1, which is the highest value reported
in the literature for ZnO-based UV sensors on paper substrates. The UV-responsive devices display
impressive mechanical endurance under folding, showing a decrease in responsivity of only 21%
after being folded 1000 times. Their low-voltage operation and extreme folding stability indicate
a bright future for low-cost and sustainable flexible electronics, showing potential for low-power
wearable applications and smart packaging.

Keywords: ZnO nanostructures; porous ZnO; paper substrates; microwave synthesis; UV sensing;
sustainable electronics; foldable electronics

1. Introduction

Paper is a renewable raw material that has been used by humankind for thousands
of years to share and store information. Over the last few decades, many researchers and
industries have not been looking at paper for its conventional application of transmitting
information, but as a substrate for the development of low-cost, flexible, and recyclable
electronic devices that will in a close future find their place in our daily life, thus leading to
a revolutionary and sustainable era of electronics [1–5].

Cellulose, known as the most abundant and renewable biopolymer on Earth, is
the building block of paper, and therefore responsible for its beneficial features, such as
lightweight, low thermal expansion, flexibility/foldability, biodegradability, and recyclabil-
ity [5]. Paper is also compatible with roll-to-roll (R2R) manufacturing processes, and it is
available in several textures, compositions, and coatings [4,6,7].

The idea of using ubiquitous paper substrates as a low-cost, flexible, and robust
support for printed electronic applications has already been demonstrated on memory
devices [8], chromogenic displays [9–11], photovoltaics cells [12], paper-based microfluidic
devices [13], and transistors and integrated circuits [14–21]. Inspired by the pioneer work
introduced in our research group by Fortunato et al. [22] in 2008, Grey et al. [21] also
successfully explored the intrinsic dielectric/electrolytic properties of paper, which was
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used not only as a substrate but also as an active electronic material to work as the gate
dielectric layer in printed/handwritten ZnO transistors.

Paper electronics relies on the development of stable, low-cost, non-toxic, and en-
vironmentally friendly printable inks to deposit and pattern functional materials onto
paper [23]. Printable inks consist of a combination of functional materials, binders, addi-
tives, and solvents, each one impacting the inks’ viscosity, rheology, evaporation rate, and
surface tension [23,24]. There is an increasing interest in the development of water-based
inks, since water is a cheap and eco-friendly solvent [25]. Cellulose derivatives, such
as carboxymethyl cellulose (CMC), have been applied as a biopolymeric binder in the
formulation of water-based printable inks [26–28].

However, the large surface roughness, high absorption capacity, and porosity in
conventional paper speed up lateral spreading of the inks, leading to low-resolution and
irregular/deformed printed features, thus compromising their functionality [16,29,30].
These adverse effects can be overcome with the use of inks with a “honey-like” viscosity
(0.03–50 Pa s), such as the ones compatible with the screen-printing technique, since they
enable the deposition of thicker films while preventing the excessive bleeding and swelling
of the cellulose fibers [31]. This printing technique is widely used in printed electronics due
to its simple operation, ease of prototyping, no need of complex equipment, fast printing
speed (150 m min−1), compatibility with substrates with tailored textures, and versatility
of pattern designs (resolution around 30–100 µm) [32–34].

From a broad list of functional materials, ZnO is an n-type semiconductor with a
wide bandgap of 3.37 eV and high exciton binding energy of 60 meV at room temperature
that crystalizes in a hexagonal wurtzite structure [35]. The simple synthesis methods
that exist to produce ZnO nanostructures with tailored sizes and morphologies, along
with low-temperature processability (<300 ◦C), chemical and thermal stability, abundant
availability, and non-toxic nature, among several other features, makes ZnO one of the
most investigated metal semiconductor oxides in a wide range of applications [36–45].
Among all the existing synthesis methods to obtain ZnO nanostructures, microwave
hydrothermal/solvothermal synthesis is particularly interesting due to the high reaction
rates that result from the absorption of microwave radiation by the materials. As a result, a
homogeneous and fast volumetric heating is obtained during synthesis, which allows the
production of ZnO nanostructures in minutes [46–52].

ZnO nanostructures have been employed before in the development of screen-printable
inks for paper electronic applications. In our group, several works have been published
reporting the fabrication of screen-printable inks based on cellulose derivatives and com-
mercial ZnO nanoparticles for a variety of applications, such as UV sensors [53,54], field
effect transistors [21], and electrolyte-gated transistors [20]. Besides paper electronics,
ZnO-based pastes and inks have also been developed for a wide range of applications, in-
cluding solar cells [55], photoelectrochemical cells [56], gas sensors [57], and light-emitting
diodes [58].

ZnO nanostructures with a porous morphology are advantageous for sensing applica-
tions, as a high number of pores result in high specific surface areas for the adsorption of
molecules, thus enhancing their sensing responsivity [59,60]. Although there are several
reports that demonstrate the superior performance of porous ZnO nanostructures in gas
sensors [60–64], dye-sensitized solar cells [65], batteries [66], photocatalysis [67–69], and
biosensing [70], their performance in paper-based UV sensors has not yet been exploited.

Porous ZnO nanostructures can be produced by calcination of layered zinc hydroxide
(LZH) materials [68], particularly LZHs intercalated by carbonate ions (LZHC) [66,68,71–73].
LZHC nanomaterials can be obtained by hydrothermal synthesis with a plate-like mor-
phology assembled in 3D hierarchical structures and then be converted into porous ZnO
nanostructures by calcination at high temperatures while maintaining a similar morphol-
ogy, as demonstrated in our previous works [67,74].

Within this context, this work reports the fabrication of porous ZnO nanostructures
with a plate-like morphology by microwave hydrothermal synthesis of LZHC and its sub-



Chemosensors 2021, 9, 192 3 of 14

sequent calcination at 700 ◦C. The synthesized porous ZnO nanostructures were employed
in the formulation of a water-based screen-printable CMC/ZnO composite ink. To the best
of our knowledge, this is the first work reporting the incorporation of ZnO nanostructures
with a porous morphology in a water-based screen-printable ink. The fabricated ink was
integrated into UV sensors built onto office paper. The photonic devices were tested under
different applied voltages and UV light intensities, and their mechanical endurance was
also investigated. Their UV responsiveness far exceeds the ones reported in the literature
when using ZnO nanostructures together with cellulosic materials/substrates, reaching
response currents in the mA range when operating under low voltage (2 V).

2. Materials and Methods
2.1. Synthesis and Characterization of Porous ZnO Nanostructures

Following the procedure reported in our previous work [67], porous ZnO nanos-
tructures were synthesized by hydrothermal method assisted by microwave irradiation.
Briefly, 0.05 M of zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 98% from Sigma-Aldrich,
St. Louis, MO, USA) was first dissolved in deionized water, followed by the addition of
urea (CH4N2O, 99.0–100.5% from Sigma-Aldrich, St. Louis, MO, USA) to the aqueous
solution in a molar ratio of zinc to urea of 1:5. The synthesis was carried out in a Discovery
SP microwave (CEM, Matthews, NC, USA) at 140 ◦C for 15 min under a power of 100 W.
After the synthesis, the resulting white precipitates were washed with deionized water
followed by isopropanol and centrifuged at 4000 rpm for 5 min each. This washing process
was repeated three times. The powders were dried in air at room temperature and then
calcinated in a muffle furnace (Nabertherm GmbH, Lilienthal, Germany) at 700 ◦C for 2 h
in air at a heating rate of 250 ◦C h−1.

The morphology of the ZnO nanostructures was evaluated via scanning electron
microscopy (SEM) using a Carl Zeiss AURIGA CrossBeam FIB-SEM workstation with an
Oxford X-ray energy dispersive spectrometer (Carl Zeiss Microscopy GmbH, Oberkochen,
Germany). The powder was spread on aluminum stubs using a double-sided carbon tape
and coated with a thin iridium layer (<20 nm) using a Q300T D Quorum sputter coater
(Quorum Technologies, East Sussex, UK).

2.2. Formulation of the CMC/ZnO Composite Ink

The produced porous ZnO nanostructures were blended with a concentration of
10 wt% into a previously prepared solution of 3 wt% of CMC (Mw ≈ 250,000, Sigma-
Aldrich, St. Louis, MO, USA) dissolved in deionized water. The mixture was slowly stirred
at 200 rpm for 4 h to obtain a well dispersed and homogeneous white viscous solution. The
ink was stored in a refrigerator at 3 ◦C until being used.

2.3. Fabrication and Characterization of the CMC/ZnO UV Sensors on Office Paper

As illustrated in Figure 1, carbon electrodes were screen-printed on office paper
(80 g m−2, The Navigator Company, Portugal) using a conductive carbon paste (CRSN2644
C INK, Sun Chemical, USA), and a screen mold made of polyester with the following
conditions: mesh model, 120–34; mesh count, 305 mesh/inch; aperture, 45 µm; thread
diameter, 34 µm; opening, 30.5%; fabric thickness, 52–57 µm. The planar electrodes were
screen-printed with an interdigital architecture composed of seven pairs of interdigital
fingers with a width of 200 µm and length of 7.5 mm spaced from each other with a gap of
200 µm. The carbon electrodes were dried at 100 ◦C for 15 min in air.

The formulated CMC/ZnO ink was then screen-printed in a square shape (6 × 6 mm2)
between the planar carbon electrodes with a different polyester screen (mesh model, 77–55;
mesh count, 190 mesh/inch; aperture, 81 µm; thread diameter, 55 µm; opening, 30%;
thickness, 88–97 µm) and dried at room temperature. Morphological characterization of
the screen-printed CMC/ZnO layers was performed via SEM.
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Figure 1. (a) Schematic of the fabrication process of the screen-printed CMC/ZnO UV sensor on
office paper. (b) Optical image of a single screen-printed UV sensor on office paper.

2.4. Electrical Characterization of the Screen-Printed UV Sensors on Office Paper

The sensor devices were electrically analyzed in air at room temperature using a
microprobe station (Everbeing Int’l Corp., Taiwan) connected to a semiconductor parameter
analyzer (Agilent 4155C, Keysight Technologies, Santa Rosa, CA, USA).

Chronoamperometry measurements were carried out with a constant applied bias
voltage of 2 V. The screen-printed devices were irradiated with UV light at 365 nm using a
fiber-coupled UV LED (4.1 mW, M365F1, Thorlabs Inc., Newton, NJ, USA) controlled by
a DC4100 Controller from Thorlabs (Thorlabs Inc., New Jersey, USA) with a pulse train
generator (Pulse Pal, Sanworks LLC, Rochester, NY, USA) programmed to turn on and
off the UV LED at different intervals of time. The sensors were placed 2 cm from the light
source and they were tested under a UV intensity of 8.66 mW cm−2. The sensors were
exposed to 60 s of UV light followed by 90 s in the dark during several on/off cycles.
The UV sensors were also tested under different applied bias voltages (0.25, 0.5, 1, and
2 V), and different UV light intensities (0.30, 0.91, 2.02, 4.27, and 8.66 mW cm−2). The UV
light intensity was measured by a Suss MicroTec UV-Optometer (SÜSS MICROTEC SE,
Garching, Germany).

To test the mechanical stability, a sensor was manually folded several times (100, 200,
500, and 1000 times) and flattened again before measuring its photoresponse to UV light
under an applied voltage of 1 V and UV light intensity of 8.66 mW cm−2.

3. Results and Discussion
3.1. Characterization of Porous ZnO Nanostructures and CMC/ZnO Screen-Printed Films

As reported in our previous work [67], porous ZnO nanostructures were synthesized
through a facile and fast hydrothermal method assisted by microwave irradiation, followed
by a washing step to remove remnants of reagents from the synthesis and a calcination step
in a furnace to thermally convert the resulting LZHC precursor into ZnO. As demonstrated
in that work [67], a calcination process at 700 ◦C yields porous ZnO nanostructures with
high crystallinity and larger pore size when compared to lower calcination temperatures,
while ensuring a complete conversion of LZHC into ZnO. Therefore, this calcination
temperature was selected to prepare the ZnO nanostructures in this work.

Figure 2a shows the SEM images of the produced ZnO powders for different magnifi-
cations. The porous ZnO nanostructures consist of many serrate-like porous nanoplates,
which are tightly arranged into flower-like 3D hierarchical microstructures. The porous
nanoplates are thin (<100 nm thickness), elongated (maximum length: <3.5 µm), and
exhibit a highly porous surface with a pore size in the range of tens of nanometers which is
formed during the calcination step.
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Figure 2. SEM images of (a) the porous ZnO structures assembled into 3D flower-like hierarchical
structures obtained by hydrothermal method assisted by microwave irradiation, and (b) the screen-
printed CMC/porous ZnO nanostructures composite ink on office paper.

On the other hand, the flower-like morphology is no longer visible on the screen-
printed CMC/ZnO films (Figure 2b). The mechanical stress induced during the preparation
of the inks and the screen-printing process promotes the disassembling of the 2D nanostruc-
tures, thus destroying their arrangement in the form of flowers. Despite all the challenges
related to office paper surface roughness and absorption, a continuous CMC/ZnO compos-
ite film with good adhesion to the hydrogen-bonded cellulose fiber network is formed with
a single screen-printing step at room temperature, showing no signs of cracks nor peeling.
Higher magnifications of the screen-printed films reveal a dense and compact network of
stacked and randomly oriented porous ZnO nanoplates. The elongated size of the porous
ZnO nanostructures promotes a percolation network at low particle loading (10 wt%),
thus reducing the amount of functional material needed to fabricate the semiconducting
ink. Still, some micro-sized voids and agglomerates are visible, which contribute to their
rough surface.

3.2. Characterization of Porous ZnO Nanostructures as UV Sensors

As depicted in Figure 3a, the UV sensing mechanism is based on the adsorption
and desorption of oxygen-rich molecules on the surface of ZnO, and has been previously
explained in several works [48,54,75,76]. In the dark, oxygen-rich molecules adsorb on
the porous ZnO nanostructures due to the oxygen vacancies that exist in the ZnO surface,
which are known to influence ZnO electrical conductivity [77]. By adsorbing on the surface
of ZnO, the oxygen-rich molecules capture an electron from the conduction band, creating
a depletion region on the nanostructures’ surface that results in an increase of the electrical
resistance of the device. Electron-hole pairs are created when the ZnO layer is exposed to
UV light with energy higher than the ZnO bandgap. The photogenerated holes migrate
to the nanostructures’ surface, recombining with the previously captured electrons and,
therefore, releasing the adsorbed oxygen molecules from the surface. The generated
electrons from the absorption of UV light are now unpaired and available for conduction,
leading to a decrease of the depletion region and a subsequent increase of the photocurrent
in the UV sensor.
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Figure 3. (a) Schematic of the UV sensing mechanism of the screen-printed CMC/ZnO UV sensor
on office paper. (b) Average photoresponse of the UV sensor during several on/off UV cycles
under a bias voltage of 2 V for a UV wavelength of 365 nm and an intensity of 8.66 mW cm−2.
(c) Magnification of one on/off UV cycle indicating the respective rise (trise) and fall (tfall) times.

Figure 3b shows the photoelectrical response of the fabricated UV sensors over time
for several UV on/off cycles under a bias voltage of 2 V. The photoresponse curve in this
figure corresponds to the average response of three tested sensors. The tested sensors were
exposed to UV light at 365 nm with a light intensity of 8.66 mW cm−2 for 60 s followed
by 90 s in the dark. The sensors show a stable photoresponse after successive on/off UV
cycles, reaching a maximum average photocurrent (Iph) of 1.45 ± 0.23 mA under UV light
and an average dark current (Idark) of 0.11 ± 0.10 mA. This results in an average response
current (∆I = Iph−Idark) [78] around 1.34 ± 0.15 mA.

The responsivity (R) of the sensors can be determined by the following expression:

R =
Iph − Idark

PUV
(1)

where PUV is the output power of the UV LED (3.1 mW for a UV light intensity of
8.66 mW cm−2 and an irradiated area of 36 mm2). The average responsivity of the tested
sensors was found to be 432 ± 48 mA W−1. As displayed in Figure 3c, the switching
response of the UV sensors was also determined to evaluate how fast they respond during
(on-state) and after (off-state) exposure to UV light. Therefore, the rise time (trise) was deter-
mined by the time required to shift from 10 to 90% of the maximum photocurrent, while
the fall time (tfall) corresponds to the time that it takes to decrease from 90 to 10% when the
UV light is turned off [76,78,79]. These parameters were determined to be 8.2 ± 1.0 and
22.0 ± 2.3 s for trise and tfall, respectively.

The promising results obtained for the produced ZnO UV sensors can be attributed to
the enhanced adsorption capacity for oxygen-rich molecules on the surface of the porous
ZnO nanostructures due to their large specific surface area as well as the improvement
of electron transport properties in ZnO as a result of both its high crystallinity [67] and
plane contacts between the porous nanoplates [63]. Overall, the resistance of the sensing



Chemosensors 2021, 9, 192 7 of 14

layer is strongly affected by the inter-nanostructure barrier at the contacts, meaning that
the photoresponse of the sensor is mainly determined by the contacts between the ZnO
nanostructures. In this case, the elongated nanoplate-shape of the porous ZnO nanostruc-
tures results not only in a more direct percolation path for electron transport due to the
reduced nanoplates’ thickness (<100 nm) but also in plane-to-plane contacts between the
particles. This means that the area of the contact plane is much larger when compared to
other nanostructures’ morphologies (such as nanowires [80] for example) thus leading to
enhanced sensing properties.

Table 1 shows a comparison between our results and the current state-of-the-art values
in the field of UV sensors based either on ZnO nanostructures grown/deposited on paper
substrates or ZnO/cellulose composites. Although these types of ZnO UV sensors have
only been reported since the beginning of the last decade, most of the first published works
do not provide a detailed characterization of the sensors. From Table 1, it is clear that the
CMC/ZnO UV sensors fabricated in this work show the highest response current and
responsivity. For instance, Figueira et al. [54] fabricated screen-printed ZnO UV sensors
on cork substrates using an ethyl cellulose/ZnO commercial nanoparticles composite ink.
Despite the similar methods involved in the fabrication process, these devices could only
reach 20 µA under UV light, which is 100 times smaller than the response current obtained
in this work. Besides, contrary to our work, a high loading content of small-sized (<100 nm)
commercial ZnO nanoparticles (40 wt%) were needed to form a continuous and functional
composite matrix on the irregular and punctually defective cork surface. Beyond the
listed works displayed in Table 1, the screen-printed CMC/ZnO sensors on office paper
also exhibit a comparable or even superior performance than some of recently published
ZnO-based UV sensors comprising expensive materials and/or complex, time-consuming
and energy-intensive processing methods [75,76,81–85].

Table 1. Comparison of typical measurement parameters (Vbias and UV light intensity) and respective UV sensor character-
istics (trise, tfall, ∆I, and R) obtained for devices based either on ZnO nanostructures grown/deposited on paper substrates or
ZnO/cellulose composites.

Materials UV Intensity
(mW cm−2)

Vbias
(V)

trise
(s)

tfall
(s)

∆I
(mA)

R
(mA W−1) Reference

CMC/ZnO composite on
office paper 8.66 2.0 8.2 ± 1.0 22.0 ± 2.3 1.34 ± 0.15 432 ± 48 This work

ZnO nanorods on paper N/A 5.0 N/A N/A 5.50 × 10−3 N/A Manekkathodi et al.
2010 [86]

ZnO powder on paper N/A 10.0 N/A N/A 7.00 × 10−3 N/A Gimenez et al.
2011 [87]

ZnO nanocrystals on paper N/A 1.0 N/A N/A 9.00 × 10−4 N/A Hasan et al.
2012 [88]

ZnO nanoparticles on paper 1.22 N/A 6.0 3.0 N/A N/A Kiasari et al.
2014 [89]

ZnO–cellulose
nanocomposite pellets N/A 5.0 15.0 10.0 7.76 × 10−3 N/A Sahoo et al.

2017 [90]
Direct writing of ZnO

nanoparticles on paper 3.10 1.0 33.19 18.13 2.20 × 10−4 N/A Veerla et al.
2017 [91]

Commercial ZnO
nanoparticles on paper N/A 5.0 14.7 7.5 N/A N/A Grey et al.

2017 [21]
ZnO nanorods grown on

Whatman paper N/A 10.0 57.0 65.0 9.60 × 10−3 1.19 × 10−3 Pimentel et al.
2017 [49]

ZnO nanorods grown on
cellulose film 2.60 N/A <1 N/A 1.34 × 10−3 N/A Mun et al.

2017 [92]
ZnO nanorods grown on

Whatman paper N/A 10.0 N/A 109.0 4.90 × 10−3 0.61 × 10−3 Matias et al.
2019 [50]

ZnO/ethylcellulose
composite on cork N/A 5.0 3.6 1.5 2.00 × 10−2 N/A Figueira et al.

2019 [54]
ZnO–cellulose

nanocomposite pellets 60.00 5.0 8.0 10.0 3.09 × 10−2 N/A Sahoo et al.
2020 [93]

Commercial ZnO
nanoparticles on paper 10 5.0 10.0 10.0 N/A N/A Dubourg et al.

2021 [94]
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Figure 4a,b depict the average photocurrent of the UV sensors under different ap-
plied voltages (0.25, 0.5, 1, and 2 V) and the corresponding response current (∆I) and
responsivity. The bias voltage plays an important role in the electron–hole pair separa-
tion, recombination, and transportation processes and, therefore, it determines the overall
photoresponse of the UV sensor [78]. The response current of the sensor increased almost
linearly from 0.14 ± 0.02 to 1.34 ± 0.15 mA when the applied voltage is varied from 0.25
to 2 V, respectively. Typically, ZnO nanostructures present high recombination rates, low
carrier mobilities, and high resistivities [77,78], which means that applied voltages above
1 V are usually needed to obtain a good response to UV light [78]. In this work, the sen-
sors presented a very good responsivity even for low applied voltages (<2 V), reaching
a value of 43.9 ± 6.8 mA W−1 for 0.25 V. The low-voltage operation of the fabricated
screen-printed sensors is compatible with the emerging concept of IoT and demonstrates
that these devices can be powered by portable power supplies, such as thin-film batteries
or solar cells [5,12,18,95]. To the best of our knowledge, this is the first report showing
low-powered and low-cost ZnO-based UV sensors on paper substrates with a response
current in the mA range, as previously evidenced by Table 1.
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Figure 5a,b show the average photocurrent for different UV light intensities and the
calculated response current and responsivity for an applied voltage of 1 V. In Figure 5b, the
sensors’ response current increases with UV light intensity, shifting from 0.17 ± 0.02 mA
for an intensity of 0.30 mW cm−2 to 0.52 ± 0.08 mA for an intensity of 8.66 mW cm−2. The
UV light intensity is proportional to the number of photons irradiating the porous ZnO
nanostructures for a certain UV wavelength. As such, when the UV intensity increases, the
number of incident photons is higher and, consequently, more carriers are generated, and
the response current is increased. On the other hand, the sensor’s responsivity decreases
with increasing UV irradiance. This is expected since the response current remains in the
same order of magnitude (10−1 mA) while the incident UV light power increases from
0.30 to 8.66 mW cm−2. As a result, the calculated responsivity (mA W−1) decreases with
increasing UV light intensity. More importantly, the obtained results indicate that the
produced UV sensors can respond to much weaker UV light, making these sensors suitable
for the detection of low levels of UV light.

To evaluate the mechanical stability, a single CMC/ZnO UV sensor was manually
folded successive times and then flattened again prior to being subjected to a UV light
intensity of 8.66 mW cm−2 under an applied voltage of 1 V. The photoresponse was
recorded after folding the sensor 100, 200, 500, and 1000 consecutive times. Figure 6a shows
the normalized response current curves for the initial flat position and after being folded
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a different number of times. The response current reached by the sensor after 60 s of UV
exposure decreased with the number of folds and its responsivity decreased by 1.5, 9, 20,
and 21% after the sensor has been folded 100, 200, 500, and 1000 times, respectively, as
depicted in Figure 6b. As illustrated by the inset in Figure 6b, when the ZnO sensor was
folded in half, a folding crease appeared across the sensor’s layers and paper substrate,
which was intensified as the number of folds increased. An SEM image of the crease folding
area after the sensor had been folded 1000 times is shown in the left inset of Figure 6b.
Here, some cracks are visible in the CMC/ZnO layer deposited on paper. These cracks and
their length increased in both the electrodes and ZnO photoactive layer with the number
of folds, consequently leading to a decrease in the UV sensor’s responsivity, since the path
for the electrical carriers was broken in several places. Nonetheless, the produced ZnO
sensors are capable of detecting UV light with very good responsivity even after being
folded in half 1000 times, thus demonstrating their extremely high mechanical resistance.
These results are of great significance since they validate the robustness of the fabricated
ZnO UV sensors, therefore showing their potential to be used in wearable devices and
smart packaging.
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Figure 6. (a) Comparison of the normalized response current of a single screen-printed ZnO UV
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sensor after being folded 1000 consecutive times.
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4. Conclusions

In summary, we demonstrated for the first time the use of porous ZnO nanostruc-
tures synthesized by microwave hydrothermal method to fabricate a water-based screen-
printable ink where CMC was used as a binder. The CMC/ZnO composite ink was suc-
cessfully screen-printed on office paper to be used as the photoactive layer in UV sensors.

The fabricated ZnO UV sensors showed promising results for application in low-
power and flexible paper-based electronics. The tested sensors revealed a stable and
good responsivity of 432 ± 48 mA W−1 with a response current of 1.34 ± 0.15 mA for
an applied voltage of 2 V, which are the highest values reported in the literature for UV
sensors based either on ZnO nanostructures grown/deposited on paper or ZnO/cellulose
composites. Furthermore, the ZnO sensors showed good responsivities even under low UV
light intensity (0.30 mW cm−2) and ultra-low applied voltage (0.25 V). The produced UV
sensors were also tested after being folded up to 1000 consecutive times with a decrease
of only 21% in the final responsivity value, hence proving their potential for wearable
technologies and smart packaging.
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