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Abstract: A new chemosensor UiO-66-N-Py (Py = 2-methinepyridine, N = imine nitrogen)
based on isoreticular UiO-66 (University of Oslo) Metal–Organic Framework (MOF) containing
2-methinepyridine functionalized organic linker was solvothermally synthesized and characterized.
This UiO-66-N-Py was very selective and sensitive for detecting the Fe3+ ion and sequential detection
of the pyrophosphate (PPi) anion. The limits of detection for the Fe3+ ion and PPi were calculated to
be 10 ppb (0.19 µM) and 50 ppb (0.3 µM), respectively. The quenching constant Ksv for Fe3+ and the
binding constant for PPi were 1.4 × 105 M−1 and 1.7 × 105 M−1, respectively. The functionalization of
UiO-66-NH2 with 2-methinepyridine enhanced its fluorescence emission properties and introduced
more binding sites for the analytes. We additionally studied the interaction of the sensor and the
analytes with Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS),
and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). This chemosensor also demonstrated
a regenerative emission property without loss in the detection ability for six consecutive cycles.
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1. Introduction

The selective sensing of heavy and transitional metals has attracted immense interest due to
their considerably important structural, regulatory, and catalytic role in different biological systems.
Among them, iron is vital, as it plays a very significant role in biological systems such as oxygen
transport, synthesis of DNA and RNA, hemoglobin formation, and brain and muscle function [1–3].
A deficiency of iron can lead to various biological disorders such as skin alignment, insomnia,
anemia, and endotoxemia [4,5]. Moreover, due to the acceleration in industrialization, a lot of iron
ion has been emitted in the environment, which is consumed by the human body through edible
materials. Thus, iron overload can lead to hepatic cirrhosis, hereditary hemochromatosis leading
to neuroinflammation, diabetes, heart failure, and Alzheimer’s disease progression [6–8]. This has
prompted the development of different methods for detecting Fe3+ ion, such as inductively coupled
plasma atomic emission spectrometry, spectrophotometry, atomic absorption spectrophotometry,
and electrochemical methods [9]. However, these traditional methods are expensive, less selective,
complicated, time consuming, and less sensitive.

Pyrophosphate (PPi) is the dimeric form of the inorganic phosphate and an essential by-product
of ATP’s cellular hydrolysis. The concentration of PPi in the cellular system helps us to detect a large
number of diseases [10]. The amount of PPi in the cell acts as an indicator of cancer research [11].
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A high concentration of PPi is detected in patients with calcium pyrophosphate dihydrate crystal
deposition disease (CPPD) [12]. Detection of the PPi has additionally been used for the real-time DNA
sequencing. Thus, the detection and imaging of PPi are of vital importance in the case of human beings.
Compared to the conventional detection methods for both the ions, fluorescence chemosensors offer a
more straightforward and economical method with immense accuracy, sensitivity, and selectivity for
the ions’ online monitoring.

Metal–Organic Frameworks (MOFs) are extended crystalline structures with high, tunable porosity
and surface area that have been widely used for the capture and storage of different gases such as
hydrogen, carbon dioxide, and methane [13,14]. Fluorescent chemosensors based on luminescent MOFs
have been extensively used for the highly sensitive detection of analytes. The extensive surface area and
open avenues in the MOFs allow the fast diffusion of specific analytes for highly sensitive fluorescence
detection. These pore environments can be easily tuned using functionalized linkers that provide
highly accessible interactional sites and enclosed environments for the highly selective recognition
of specific analytes [15,16]. Moreover, the MOF’s profound crystalline nature helps understand the
host–guest interaction within the MOF and the mechanism of fluorescence [17]. The high oxidation
state of Zirconium (IV) leads to enhanced charge density and bond polarization. That results in a
robust metal–ligand bond in all the Zirconium-based MOFs leading to high thermal and chemical
stability [18,19]. Moreover, the organic linker (benzene ring) of the UiO-66 can be readily derivatized
without disturbing the crystalline structure, the thermal property, or the chemical property of the
MOF. This particular characteristic of UiO-66 makes it appropriate for different post and pre synthetic
modifications. The primary fluorescence in the UiO-66-NH2 arises from the linker, but due to the
zirconium clusters’ presence, the emission of the linker is quenched. So, the amino group can be
derivatized with different heteroaromatic groups to produce strong emission and strong binding
moieties [20,21].

This paper reports the synthesis and characterization of a pyridinyl imine appended UiO-66-NH2

MOF (UiO-66-N-Py) (Figure 1) and its application in the sequential detection of cation and anion
in the aqueous media. A pyridine-imine appended 2-aminoterephthalic acid linker (H2L) was used
to prepare UiO-66-N-Py by the hydrothermal method. Then, the newly synthesized MOF was
characterized with powdered XRD, surface area analysis (BET), FTIR, SEM, thermogravimetric analysis
(TGA), and the digestion NMR. The fluorescence emission studies with different cations showed
that the MOF was highly selective for Fe3+, leading to the complete quenching of the fluorescence.
Then, this Fe3+-incorporated UiO-66-N-Py was used in the same aqueous media for the sequential
detection of pyrophosphate anion.
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2. Experimental

2.1. Materials and General Methods

2.1.1. Chemicals Used in this Work

First, 2 aminoterephthalic acid (98% purity), 2-pyridinecarboxaldehyde (99% purity), methanol
(99.9% purity), ethanol (97.2% purity), N,N-dimethylformamide (DMF; 99.8% purity), dichloromethane
(99.8% extra dry grade), all other nitrates or chlorides of the metal salts, and the tetrabutylammonium or
potassium salts of the anions were purchased from Sigma Aldrich (USA) Corporation. NMR solvents:
dimethyl sulfoxide-d6 (DMSO-d6; 99.9% purity) were purchased from Cambridge Isotope. All chemicals
were used without further purification. Water used in this work was double distilled and filtered
through a Millipore membrane. The solutions of metal ions were prepared from their nitrate, and
chloride salts and anions were prepared from their tetrabutylammonium or potassium salts (analytical
grade) followed by subsequent dilution of the working solutions.

2.1.2. Instrumentation

1H and 13C NMR spectra were recorded on a Bruker AM-400 spectrometer (Billerica, MA,
USA) using Me4Si as the internal standard. Elemental microanalyses (EA) were performed using a
PerkinElmer-EA 2400 elemental analyzer (Waltham, MA, USA). Powdered X-ray diffraction patterns of
the samples were recorded using a Rigaku MiniFlex diffractometer (Tokyo, Japan), which was equipped
with Cu-Kα radiation. The data were acquired over the 2θ range of 5◦ and 30◦. The FTIR spectra of
UiO-66-N-Py were obtained using a Nicolet 6700 Thermo Scientific instrument (Waltham, MA, USA)
in the range of 400–4000 cm−1, using KBr. Thermogravimetric analysis (TGA) of the samples were
performed using a TA Q500. In this study, an activated UiO-66-N-Py (10 mg) sample was heated
in an alumina pan under airflow (60 mL min−1) with a gradient of 10 ◦C min−1 in the temperature
range of 30–800 ◦C. The BET surface areas of the MOFs were calculated by using Micromeritics ASAP
2020 instrument (Norcross, GA, USA). These materials’ surface morphology was discerned using a
field emission scanning electron microscope (FESEM, LYRA 3 Dual Beam, Tescan), which operated
at 30 kV. The FESEM samples were prepared from suspension in ethanol. The surface chemical
analyses were performed using an XPS equipped with an Al-Kα micro-focusing X-ray monochromator
(ESCALAB 250Xi XPS Microprobe, Thermo Scientific, Waltham, MA, USA). Inductively Coupled
Plasma Mass Spectrometry (ICP-MS) of the iron ion-treated samples of UiO-66-N-Py were carried
in Thermo Scientific X Series 2 ICP-MS. The absorption spectra of the MOF were studied using a
Jasco V-670 spectrophotometer (Tokyo, Japan). Fluorescence spectra were measured using a Jasco,
FP-8500ST fluorescence spectrophotometer, which was equipped with a xenon discharge lamp and
1 cm quartz cells with slit width 2 nm for both the source and the detector. The quantum yield and
chromaticity studies were done using an integration sphere (Jasco FP-8500ST) by using a liquid sample
holder at room temperature. The excitation wavelength used in the absolute emission quantum yield
measurement is 340 nm, which does not interfere with the emission spectrum, and the concentration is
adjusted so that the optical density is 0.1 at the excitation wavelength.

2.1.3. Sample Preparation for Photophysical Studies

In a typical luminescence-sensing experimental setup, 1 mg of UiO-66-N-Py powder was dispersed
in 1 mL of water. In a 1 cm quartz cuvette, 3 mL of dispersed aqueous solution of UiO-66-N-Py was
placed, and the absorption and emission responses were measured in situ after an incremental addition
of freshly prepared analyte solutions. The mixtures were sonicated for 5 min after each incremental
addition of the analytes for uniform dispersion during the luminescent measurements. All of the
measurements were performed at 298 K. All the optical sensing experiments were carried out using
10−2 M aqueous solution of the analyte salt.



Chemosensors 2020, 8, 122 4 of 14

2.2. Synthesis

2.2.1. Synthesis of the Linker

The synthesis of the Linker is shown in Scheme 1.
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2.2.2. Synthesis of Compound H2L

To a solution of 2-aminoterephthalic acid (500 mg, 2.8 mmol) in ethanol (10 mL),
2-pyridinecarboxaldehyde (450 mg, 4.2 mmol) was added and refluxed for 6 h. The reaction mixture
was cooled down, and the precipitate was filtered and washed with ethanol to give H2L as yellow
solid in 91% yield. 1H NMR (DMSO-d6) δ7.22–7.31 (m, 3H), 7.51 (s, 1H), 7.65 (d, J = 7.6 Hz, 1H),
7.76 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 3.2 Hz, 1H), 8.82 (s, 1H); 13C NMR (DMSO-d6) δ108.35, 110.44,
113.03, 113.39, 115.30, 118.09, 125.07, 127.28, 130.99, 132.26, 147.04, 156.57, 162.96, 164.94; Anal. Calcd
for C14H10N2O4: C, 62.22; H, 3.73; N, 10.37; Found: C, 62.18; H, 3.66; N, 10.30 (Figures S1 and S2,
in Supplementary Materials).

2.2.3. UiO-66-NH2

UiO-66-NH2 was synthesized by dissolving ZrCl4 (250 mg, 1.08 mmol) and
2-amino-1,4-benzenedicarboxylic acid (268 mg, 1.5 mmol) in DMF (40 mL) with ultrasonic vibration
for 30 min; then, 0.3 mL of acetic acid was added. The as-obtained mixture was transferred to a
50 mL vial and heated at 393 K for 24 h. Then, the vial was cooled in the air to room temperature.
The resulting UiO-66-NH2 was washed three times with DMF (5–10 mL) using a centrifuge (10,000 rpm
for 30 min), and then sequentially immersed in methanol (5–10 mL three times per day) for three 24 h
periods. Finally, UiO-66-NH2 was activated by removing the solvent under vacuum for 24 h at 100 ◦C.
FTIR (KBr, cm−1): 3429, 1663, 1569, 1437, 1382, 1258, and 1094 (Figure S3, Supplementary Materials).
Anal. Calcd for C54H52N8O36Zr6 (Zr6O4(OH)4(2-NH2BDC)6(DMF)2(H2O)2): C, 33.49; H, 2.71; N, 5.79;
Zr, 28.27; Found: C, 33.61; H, 2.99; N, 6.05; Zr, 28.54.

2.2.4. UiO-66-N-Py

UiO-66-N-Py was synthesized in a similar way as above by dissolving ZrCl4 (250 mg, 1.08 mmol)
and H2L (405 mg, 1.5 mmol) in DMF (20 mL) with ultrasonic vibration for 30 min; then, 0.3 mL of acetic
acid was added. The as-obtained mixture was transferred to a 50 mL vial and heated at 393 K for 24 h.
Then, the vial was cooled in the air to room temperature. The resulting UiO-66-N-Py was washed in the
same way as the previous method by three times with DMF (5–10 mL) using a centrifuge (10,000 rpm
for 30 min) and then sequentially immersed in methanol (5–10 mL three times per day) for three 24 h
periods. Finally, UiO-66-N-Py was activated by removing the solvent under vacuum for 24 h at 110 ◦C.
FTIR (KBr, cm−1): 3093, 1671, 1596, 1521, 1408, 1295, 1227, 1160, and 851 (Figure S3, Supplementary
Materials). Anal. Calcd for C90H70N14O36Zr6 (Zr6O4(OH)4(2-N-Py-BDC)6(DMF)2(H2O)2): C, 43.75; H,
2.86; N, 7.94; Zr, 22.15; Found: C, 43.91; H, 2.56; N, 8.17; Zr, 22.55.
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3. Results and Discussion

3.1. Characterization of H2L

In a covalent post-synthetic modification (PSM), there are chances that all the linkers are not
completely functionalized within the MOF framework; hence, in this paper, we presynthetically
modified the linker 2 amino-terephthalic acid with 2-pyridinylcarboxyaldehyde to give the imine
conjugate H2L (Scheme 1). The structure of H2L was confirmed with 1H NMR, 13C NMR, (Figures
S1 and S2, in Supplementary Materials), and elemental analysis data. The 1H NMR spectra of H2L
exhibited a singlet peak at 8.82 ppm, which corresponds to the imine (–CH=) proton, and another
doublet peak was noticed at 7.93 ppm that is assigned to the proton adjacent to the nitrogen of the
pyridine ring.

3.2. Characterization of UiO-66-N-Py and UiO-66-NH2

The powdered XRD of UiO-66-NH2 was consistent with that reported in the literature (Figure 2) [18].
The high crystalline nature and the peaks of UiO-66-N-Py at 2θ = 7.78◦, 8.92◦ (Figure 2) were found
to be consistent with the characteristic peaks of UiO-66-NH2. This establishes that appending
2-aminoterephthalic acid with 2-pyridinylcarboxyaldehyde does not disrupt the framework and
connectivity present in UiO-66-NH2.
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Figure 2. Powered XRD patterns of UiO-66-NH2 obtained from cif file, UiO-66-NH2 as synthesized,
UiO-66-N-Py as synthesized, UiO-66-N-Py after addition of iron, and UiO-66-N-Py + Fe3+ after addition
of pyrophosphate (PPi).

In the IR spectrum of UiO-66-N-Py, the peaks at 1408 cm−1 and 1295 cm−1 correspond to the
carbon–nitrogen bond’s vibration in the 2-aminoterephthalate. Similarly, the peaks at 1671 cm−1 and
1521 cm−1 are assigned to the −COO asymmetrical and symmetrical stretching. The presence of the
imine bond in UiO-66-N-Py exhibits a sharp enhanced peak at 1596 cm−1 with the disappearance of
the N-H stretching peak, which is found in UiO-66-NH2 at the 3429 cm−1 (Figure S3, in Supplementary
Materials).

The alkaline digestion 1H NMR of UiO-66-N-Py confirmed the presence of the linker H2L in the
framework. The 1H NMR spectrum obtained after the digestion of UiO-66-N-Py has peaks at the
chemical shifts analogous to H2L (Figure S1, in Supplementary Materials).
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The N2 adsorption isotherm of UiO-66-N-Py indicated Type I behavior with a sharp uptake at
a very low relative pressure (P/P0) of 0 to 0.05, which signifies its microporous nature similar to the
UiO-66-NH2. From the isotherm of UiO-66-N-Py, the BET surface area and pore volume were found
to be 573 m2g−1 and 0.381 cm3g−1, respectively, which is diminished significantly from the pristine
UiO-66-NH2 (BET surface area = 1032 m2g−1 pore volume = 0.517 cm3g−1) due to the presence of the
functionalized pyridine moieties (Figure 3). Furthermore, the DFT adsorption pore-size distribution
affirmed a pore diameter of 10.2 Å for UiO-66-N-Py, which is much more reduced than the UiO-66-NH2

(11.5 Å), indicating the presence of conjugated pyridine groups (Figure S4, in Supplementary Materials).
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The thermogravimetric analysis (TGA) was used to study the thermal stability of UiO-66-N-Py
and UiO-66-NH2 materials under an airflow with a heating rate of 5 ◦C min−1 (Figure 4).
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Both the materials show analogous thermal behavior with an initial mass loss of 5.0% between
200 and 250 ◦C due to the removal of the trapped solvents molecules from the framework’s pores.
The maximum weight loss in UiO-66-N-Py is 64.5% at a temperature of 375 ◦C, indicating the
decomposition of the framework. In UiO-66-NH2, the maximum weight loss of 56.4% occurs at a
temperature of 410 ◦C. It signifies that UiO-66-NH2 and UiO-66-N-Py are stable up to 375 ◦C and
410 ◦C, respectively. The remaining residue of 30.5% for UiO-66-N-Py and 38.6% for UiO-66-NH2

corresponds to zirconium oxide. Thus, the TGA of the materials illustrates that functionalization with
2-pyridinecarboxaldehyde does not affect the stability of the MOF. The thermal stability of UiO-66-N-Py
has also been confirmed by powdered XRD (Figure S5, in Supplementary Materials).

The SEM study of UiO-66-N-Py confirmed that it has uniformly distributed bipyramidal
morphology with the particle size ranging from 130 to 150 nm (Figure S6, in Supplementary Materials).

3.3. Optical Properties of UiO-66-N-Py

The photophysical properties of UiO-66-N-Py were investigated as emulsion in an aqueous
medium. The comparative absorption spectroscopy of all the linkers, UiO-66-NH2, and UiO-66-N-Py,
indicates that conjugation with pyridine redshifts the absorption peak of UiO-66-NH2 from 360 to
370 nm in UiO-66-N-Py (Figure S7, in Supplementary Materials). In general, 2-aminoterphthalate is
luminescent, but in case of UiO-66-NH2 (λem = 449 nm), due to coordination with the Zr-O clusters,
ligand-to-metal charge transfer (LMCT) takes place, and the luminescence is abated [20]. However,
in case of UiO-66-N-Py, the emission peak appears at 485 nm on excitation at 341 nm wavelength
(Figure S8, in Supplementary Materials). Thus, an enhanced 36 nm redshift in the emission peak
of UiO-66-N-Py is produced due to the pyridine ring’s conjugation to the 2-aminobenzene ring of
the main framework of UiO-66-NH2. Furthermore, the pyridine group’s nitrogen and the imine
bond contribute selective binding sites for transitional metal ions. The absolute quantum yield of
UiO-66-N-Py, which was calculated from the integrated sphere, was found to be 0.43. The CIE
coordinates obtained from the chromaticity diagram were commensurate with the experimentally
derived emission peak values (Figure S9, in Supplementary Materials).

3.4. Cation Sensing Properties of UiO-66-N-Py

The cation sensing properties of UiO-66-N-Py were studied by screening with various cations,
and the transition in their photophysical properties was noted. It was observed that on the addition of
different cations to the aqueous solution of the UiO-66-N-Py, only the Fe3+ ion produce a change in
the absorbance of UiO-66-N-Py (Figure S10, in Supplementary Materials). On the gradual addition
of Fe3+ ion to a suspension of UiO-66-N-Py, the absorbance peak at 370 nm diminishes with the
formation of a new peak at 315 nm and isobestic point 341 nm (Figure S11, in Supplementary Materials).
This formation of a new peak at 315 nm indicates the coordination of the Fe3+ with the imine N and
the nitrogen of the pyridine. The stoichiometric ratio of binding between the Fe3+ and UiO-66-N-Py
was validated by Job’s plot, which indicated that the complexation between Fe3+ and UiO-66-N-Py has
a 1:1 stoichiometric ratio (Figure S12, in Supplementary Materials) [22,23].

The chemosensing behavior of UiO-66-N-Py was interpreted by studying the change in fluorescence
emission of this MOF with an increasing concentration of Fe3+ at an excitation wavelength of 341 nm.
The fluorescence emission was significantly quenched with the increasing concentration of Fe3+, and a
complete quenching was accomplished when the molar ratio of UiO-66-N-Py: Fe3+ was 1:1 (Figure 5).
This quenching of emission indicates that complete complexation has occurred between the Fe3+, imine
linkage, and the pyridine moiety. Fe3+ being paramagnetic impedes the intramolecular charge transfer
from the pyridine ring to the benzene ring of the main structural framework of UiO-66 (Scheme 2),
leading to the complete emission suppression. The quenching efficiency indicated by the Stern–Volmer
constant (Ksv), which is calculated from the fluorescence titration experiment shown in Figure 5,
was found to be 1.4 × 105 M−1 (Figure S13, in Supplementary Materials) [24].
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The sensitivity of UiO-66-N-Py for Fe3+ was established from the limit of detection, which was
calculated to be 10 ppb (0.19 µM) by the ratio of 3σ/k (Section S6, Table S1, and Figure S24,
in Supplementary Materials). The selectivity and the tolerance of UiO-66-N-Py for Fe3+ as compared
to other metal pollutants was examined by immersion of the MOF into aqueous solution of various
metal ions (e.g., Fe2+, Fe3+, Co2+, Cu2+, Ni2+, Zn2+, Cd2+, Hg2+, Ag+, Pd2+, Al3+, Ga3+, Pb2+ Na+,
K+, Ca2+, Mg2+, Sr2+, Rb2+, and Cs2+) (Figure 6, and Figure S14 in Supplementary Materials). It was
observed that complete emission suppression occurs only in the case of Fe3+ due to its paramagnetic
nature, and proximity of the pyridine nitrogen with the imine group helps in selective binding of
the Fe3+ as compared to the other cations [25]. PXRD of UiO-66-N-Py bounded with Fe3+ indicated
that the framework’s crystallinity is not disturbed (Figure 2). Competitive binding experiments
with 200 µL of various metal ions along with 200 µL of Fe3+ was performed, and it showed that
complete quenching of UiO-66-N-Py by Fe3+ was not hindered by any of the metal ions (Figure S15,
in Supplementary Materials).
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The complexation of Fe3+ with UiO-66-N-Py was further confirmed by ICP, FTIR, and the XPS
studies of the washed and dried samples. The ICP analysis of the sample confirmed Fe along with the
metal of the MOF framework. It was analyzed that 11.891 mg of Fe3+ was obtained per 100 mg of
the zirconium. The FTIR study of the UiO-66-N-Py samples collected after the sensing experiments
provided us essential insight into the nature of the complexation between the guest (Fe3+) and the
host framework. The Fe3+ ion’s complexation with the pyridine nitrogen of UiO-66-N-Py is depicted
by the change of the –C=N– stretching vibration from 1296 to 1282 cm−1. The Fe3+ ion also interacts
with the imine linkage of UiO-66-N-Py, which is mirrored by the change in –C=N– stretching vibration
from 1595 to 1583 cm−1 (Figure S16, in Supplementary Materials). In addition, the interaction with
Fe3+ changes the pyridine’s C-H vibration from 3100 to 3067 cm−1 (Figure S17, in Supplementary
Materials). The XPS of the pristine MOF sample and after complexation with the Fe3+ were also
analyzed. It was observed that both the MOF indicates the characteristic peaks for C, N, and Zr at
283, 398, and 181 eV, respectively. In UiO-66-N-Py and the Fe3+ complex, we can detect peaks for
iron at 712 and 726 eV, which emphasized the complexation of UiO-66-N-Py with Fe3+ (Figure S18,
in Supplementary Materials).

3.5. Anion Sensing Properties of UiO-66-N-Py

It has already been reported that many metal complexes have an affinity toward selective anions
such as Ni-CN, Al-F, or Cu-S [26–30]. Thus, we also tried to check the selectivity of different anions F−,
Cl−, Br−, I−, CH3COO−, NO3

−, SO4
2−, HSO4

−, PO4
3−, ATP, ADP, MnO4

−, CrO4
2−, Cr2O7

2−, and PPi
toward the complex of UiO-66-N-Py + Fe3+ (Figure 7). Upon the addition of aqueous solution (10−2 M)
of each anion, there was no change in the emission of UiO-66-N-Py + Fe3+ complex except in the case
of PPi, where the emission peak of the pristine UiO-66-N-Py was restored at the 485 nm at an excitation
wavelength of 341 nm (Figure S19, in Supplementary Materials). The absorbance study also shows
that the peak at 315 nm due to Fe3+ complexation gradually reduces, and the peak of UiO-66-N-Py is
restored at 370 nm (Figure S20, in Supplementary Materials).
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Figure 7. Change in the normalized fluorescence emission of UiO-66-N-Py + Fe3+ in water upon
addition of 200 µL of different anionic species (10−2 M).

Fluorescence titration of the UiO-66-N-Py + Fe3+ complex with the incremental addition of
PPi resulted in the enhancement of the emission at 485 nm (Figure 8), with a binding constant of
1.7 × 105 M−1 (Figure S21, in Supplementary Materials). The limit of detection for PPi calculated
from the ratio 3σ/k was estimated to be 50 ppb (0.3 µM) (Section S6, Table S1, and Figure S25 in
Supplementary Materials). Job’s method, obtained from the fluorescence emission, established that
the stoichiometry of binding of PPi with UiO-66-N-Py + Fe3+ is 1:1 (Figure S22, in Supplementary
Materials). To delve into the possibility of using UiO-66-N-Py + Fe3+ for the practical detection of PPi,
competitive binding experiments with different anions (10−2 M) in the presence of PPi were carried
out. This study showed that the fluorescence enhancement of UiO-66-N-Py + Fe3+ by PPi was not
interfered by any of the anions (Figure S23, in Supplementary Materials). The FTIR data also show that
the interaction of UiO-66-N-Py + Fe3+ with PPi shifts the peak of imine stretching and C-H vibration
of pyridine from 3067 to 3100 cm−1 (Figures S16 and S17, in Supplementary Materials). An efficient
chemosensor for successful practical applications should be effective in aqueous media within a broad
pH range. The fluorescence emission of UiO-66-N-Py remained impervious within a pH range of
4.0–8.0 (Figure S26, in Supplementary Materials), even after its regeneration with PPi. Beyond this
range, the fluorescence emission properties were lost, which was probably due to breaking the imine
linkage or destruction of the UiO-66-N-Py framework.
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The fluorescent enhancement mechanism was due to the release of Fe3+ from the UiO-66-N-Py +

Fe3+ complex by the metal–MOF displacement method by PPi (Scheme 2) [31–33]. This was confirmed
by the restoration of the emission peak of the pristine UiO-66-N-Py at 485 nm after interaction with PPi.
The PXRD data also confirmed that the crystallinity of the UiO-66-N-Py is intact after the interaction
with the PPi (Figure 2).

For this sensor’s practical application, a fluorescence test paper was prepared for the portable and
straightforward optical sensing of Fe3+. A filter paper of the size 4.0 × 2.0 cm2 was immersed in an
emulsion of UiO-66-N-Py and water and then dried to get the test paper. As shown in Figure 9, the test
paper containing UiO-66-N-Py produces a blue fluorescence that can be seen with the naked eye when
placed under UV light irradiation of 365 nm (Figure 9A).
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When this test paper is immersed in Fe3+ solution and then irradiated by UV light of 365 nm,
the fluorescence is completely quenched (Figure 9B). After further immersion of the same quenched
test paper into a PPi solution, the blue fluorescence emission is restored (Figure 9C).

3.6. Reusable Properties of UiO-66-N-Py

The recyclable sensing ability of UiO-66-N-Py was measured by repeating the fluorescence sensing
experiments with Fe3+ and PPi sequentially. The material obtained after the first experiment was
washed with water and methanol and then dried at 110 ◦C for 5 h. The recovered UiO-66-N-Py showed
an identical change in the emission intensities and sensitivities toward the detection of analytes for six
consecutive cycles (Figure 10).
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paper into a PPi solution, the blue fluorescence emission is restored (Figure 9C). 

3.6. Reusable Properties of UiO-66-N-Py 

The recyclable sensing ability of UiO-66-N-Py was measured by repeating the fluorescence 

sensing experiments with Fe3+ and PPi sequentially. The material obtained after the first experiment 

was washed with water and methanol and then dried at 110 °C for 5 h. The recovered UiO-66-N-Py 

showed an identical change in the emission intensities and sensitivities toward the detection of 

analytes for six consecutive cycles (Figure 10). 

 

Figure 10. Bar diagram depicting the recyclability of UiO-66-N-Py, fluorescence quenching with UiO-

66-N-Py + Fe3+, regeneration of fluorescence with UiO-66-N-Py + Fe3+ + PPi up to 6 cycles. 
Figure 10. Bar diagram depicting the recyclability of UiO-66-N-Py, fluorescence quenching with
UiO-66-N-Py + Fe3+, regeneration of fluorescence with UiO-66-N-Py + Fe3+ + PPi up to 6 cycles.
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4. Conclusions

In summary, we synthesized an isoreticular MOF UiO-66-N-Py by using a pyridine appended
new linker H2L. This presynthetic incorporation of pyridine moiety through imine linkage enhanced
the MOF’s intrinsic emission property and introduced additional coordinating sites for selective and
sensitive binding of Fe3+. All the experimental data highlight that UiO-66-N-Py can be used to detect
Fe3+ ion and the sequential detection of PPi with high efficiency, sensitivity, and selectivity. The detection
limits for Fe3+ ion and PPi were found to be 10 ppb and 50 ppb, respectively. We investigated the
nature of the interaction between the analytes and the functionalized linker of the framework. We also
discovered that UiO-66-N-Py has good recyclability for six consecutive cycles without decreasing its
sensing performance. Further work related to the sensing of Fe3+ in wastewater and the biological
application of this sensor is currently being carried out in our lab.
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