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Abstract: Consumers are increasingly interested in the characteristics of the products they consume,
including aroma, taste, and appearance, and hence, scientific research was conducted in order
to develop electronic senses devices that mimic the human senses. Thanks to the utilization of
electroanalytical techniques that used various sensors modified with different electroactive materials
coupled with pattern recognition methods, artificial senses such as electronic tongues (ETs) are
widely applied in food analysis for quality and authenticity approaches. This paper summarizes the
applications of electrochemical sensors (voltammetric, amperometric, and potentiometric) coupled
with unsupervised and supervised pattern recognition methods (principal components analysis
(PCA), linear discriminant analysis (LDA), partial least square (PLS) regression, artificial neural
network (ANN)) for wine authenticity assessments including the discrimination of varietal and
geographical origins, monitoring the ageing processes, vintage year discrimination, and detection of
frauds and adulterations. Different wine electrochemical authentication methodologies covering the
electrochemical techniques, electrodes types, functionalization sensitive materials and multivariate
statistical analysis are emphasized and the main advantages and disadvantages of using the proposed
methodologies for real applications were concluded.
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1. Introduction

Wine is one of the products most often subject to adultery all over the world, even if there are
specific and strict regulations that protect its authenticity. Due to the fact that wine adulteration
is occurring more and more often and to protect the health of consumers and avoid dishonest
competition, which could create an unstable market, there is a need for appropriate analytical
approaches that are capable of identifying some changes in the composition of wines induced by
adulteration. The determination of wine authenticity through analytical laboratory investigations aims
at confirming the inscriptions on the label and is of particular interest to consumers and authorities [1,2].

False declaration of wine geographical origin, variety, and year of production and the addition of
exogenous substances represents the common adulteration practices in the wine industry. In order
to protect the regional name and varietal labeling of wines, Commission Delegated Regulation
(EU) 2019/33 indicated the geographical origins and varieties specific for the major wine-producing
countries [3]. Wine marketing strategies associate the image of the product and the perception of quality
with a particular region or variety, increasing the importance of regional and varietal characteristics [4].
There is an increasing interest for developing promising analytical methods for controlling wine
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geographical and varietal origins and vintage year, and therefore, the research studies addressing these
issues are encouraged.

Generally, numerous research papers address the wine authenticity aspects by targeted and
nontargeted approaches using different instrumental techniques, including: elemental profile by
Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma (ICP) techniques [5,6],
isotopic fingerprints by Isotope Ratio Mass Spectrometry (IRMS) [7,8], and different classes of organic
compounds (phenolic and volatile compounds, amino acids, organic acids) by different chromatographic
techniques alone or coupled with mass spectrometry such as HPLC, HPLC-MS/MS, GC-MS [9–11],
nuclear magnetic resonance (1H-NMR) [12,13], and DNA-based methods [14,15]. These techniques are
very selective; therefore the instrumentation is very expensive, and the analytical investigations are
time consuming and difficult to automate and implement in routine and on-site applications.

In search of simplicity, simple screening techniques such as UV-Vis spectroscopy [16],
FT-IR spectrometry [17], and “electronic tongues” employing electrochemical devices based on
different sensors/biosensors designs [18,19], combined with multivariate statistical data analysis (MVA),
are used with admissible results to characterize wine produced in specific regions. In this context,
electrochemical devices based on sensors and microsensors play an important role assuring fast and
reproducible quantitative and qualitative measurement and offering the possibility to be implemented
in portable systems [20]. MVA, called chemometrics, is required for the interpretation of screening
data by extracting the information about wine quality attributes. The development of qualitative and
quantitative MVA models such as PCA, cluster analysis (CA), linear discriminant analysis (LDA),
soft independent modeling of class analogy (SIMCA), partial least squares (PLS) regression, etc. in
combination with different pre-processing methods permits the discrimination of wines based on
specific fingerprints.

In recent years, for the multicomponent qualitative and quantitative analysis of food, more and
more attention has been paid to the use of electronic tongue (ET) devices that consist of non-specific
cross-selectivity chemical sensor networks coupled to recognition software [21,22]. The principle is
based on the construction of databases through the measurement of particular characteristics for a
large number of samples and data processing by the use of multivariate analysis. The capability of
ET to analyze and discriminate beverages has been reported for mineral waters, milks, teas, wines,
or beers [23,24].

Voltammetry, amperometry, and potentiometry are the most used electrochemical techniques in
ET devices, representing commonly used electrochemical techniques in analytical chemistry due to
their high versatility, simplicity, and robustness [25,26]. Potentiometric measurements consist of the
measurement of the oxidation–reduction potentials difference under static conditions, without any
external excitation, using a working or indicator electrode and a reference electrode [27]. The most
representative working electrodes are the ion-selective electrodes (ISEs) and membrane electrodes [20].
These sensors have good selectivity and sensitivity in particular for the charged chemical species [28].

In voltammetric and amperometric measurements, a potential is applied and depending on the
working electrode, the wine electroactive compounds are either oxidized or reduced [29]. The resulted
signal represents an overlap of the responses of all wine electroactive compounds that respond at
potentials below the applied potential, which leads to a relative low selectivity of these techniques [22].

The performance of electrochemical multisensor systems can be improved by using electrodes
chemically modified with electroactive materials, the peaks associated to the oxidation–reduction
processes being associated with the analytes present in the test solution and the electroactive material [30].
In order to obtain a variety of electrodes with significant cross-selectivity and complementary
electroactive properties that allow obtaining rich information to enhance the modeling capabilities of
the signals, a series of modifiers/catalysts were used, including carbonaceous materials (multi- and
single-walled carbon nanotubes, carbon microspheres, graphene, etc.) [31], conducting polymers [32,33],
nanocomposites [34], metallophthalocyanines [35], and enzymes [36]. Screen-printed electrodes
(SPEs) are widely used in various analytical chemistry applications such as biochemistry, medicine,
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pharmacy, environmental protection, and food science due to their low cost, ease of use, size
reduction, lack of contamination, allowing at the same time the development of sensitive, accurate,
and high-reproducibility sensors [21,31,37,38]. One of the main challenges in ET is to find the
appropriate sensing materials for each particular application, and for that, different complex molecular
architectures or improved designs were adopted.

Wines contains numerous redox-active compounds (phenolic antioxidants) that can be oxidized
and reduced at the electrode surface, and the resulted electrochemical profiles can be associated to
specific wine types by using MVA techniques [18,39]. This review summarizes the main applications
of electrochemical techniques for wine authentication assessments in term of varietal and geographical
traceability, monitoring the wine aging process, vintage year prediction, and detection of adulteration.
Relevant examples of different electrochemical techniques and different sensors functionalized with
electroactive materials with enhanced properties coupled with qualitative and quantitative multivariate
statistical tools were presented in order to configure a global view about the addressed issues.

2. General Consideration Regarding Application of Electrochemical Methodologies in
Wine Authentication

Most often, electroanalytical techniques in wine analysis are used for: (1) the direct evaluation
of antioxidant activity and total polyphenol content of wines [40–43]; (2) the detection and the
quantification of individual polyphenols in wines [40,44,45]; and (3) the monitoring of alcoholic and
malolactic fermentation [42], as well as monitoring grape ripening [46,47].

This review focus on the application of electroanalytical techniques for wine authentication in
terms of geographical and varietal origins identification, monitoring the wine aging process and vintage
year discrimination and detection of frauds and adulteration. Figure 1 indicates the main application
of electroanalytical techniques in wine analysis, highlighting with blue color the applications related to
wine authentication process, which are discussed in this review.
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One of the most used electrochemical techniques in wine analysis is voltammetry, including cyclic
voltammetry (CV) [19,48], differential pulse voltammetry (DPV) [49,50], linear sweep voltammetry
(LSV) [51], and square wave voltammetry (SWV) [52,53], but potentiometry is used also [54–56].

Some studies indicate that SWV has some advantages versus CV such as the lower time per analysis
and simplicity of the data treatment by providing single curves instead of bi-valuated curves [53].
Generally, in practical applications, multiparametric systems known as hybrid ETs consisting of an
array of modified electrochemical sensors are preferred for wine discrimination [39,57,58]. Often,
the electrochemical responses of ETs is associated with electronic nose (EN) and an e-eye (based on
CIE Lab coordinates—CIE is the Commission Internationale de l’Eclairage, L is the luminance, a is the
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red-green axis, and b is the blue-yellow axis.) [57], opto-fluidic system [59,60], and chromatographic
information [56].

An ET device has the ability to obtain global information about the wine composition (fingerprint),
due to their overall selectivity conferred by the utilization of non-specific modified chemical sensors with
enhanced cross-sensitivity to numerous wine constituents [61]. Thus, the modification of an electrode
surface with sensitive materials with different chemical properties, such as conducting polymers or
molecularly imprinted polymers, nanomaterials (nanoparticles (NP) and carbon nanotubes (CNTs)),
mediators (phthalocyanines, ferrocene), and biocatalysts (enzymes) allows obtaining complementary
information that enhances the capability to discriminate among different wine categories [62,63]

Introducing biosensors in in the array can be advantageous, as they can show selectivity toward
specific compounds such as phenols or sugars [64]. The specificity toward phenols can be assured by
enzymes such as tyrosinase or laccase, while glucose oxidase or fructose dehydrogenase are specific for
sugars [47]. The electroactive modifiers can be immobilized in graphite–epoxy electrodes [39], carbon
paste electrodes (CPEs) [57,62], glassy carbon (GC) [58,65], thin films [64], or screen-printed carbon
electrodes (SPCE) [47,51].

CV is generally used as a first approach to the electrochemical study of wines, giving indications
about the redox behavior of the sample by locating the redox potentials of the electroactive species [65]
In the case of voltammetric ET, responses reflect the electrochemical processes that occur at the
electrode surfaces, including (1) oxidation–reduction of redox-active molecules (wine antioxidants
such as flavanols, flavanol derivatives, phenolic acids, SO2, and ascorbic acid) [51], (2) redox processes
associated to the oxidation–reduction of the electroactive materials, and (3) diffusion of the counterions
between the solution and the bulk material [52]. When no interferences occurs, the information
of the anodic and the cathodic waves is complementary in reversible redox processes, the anodic
wave being preferred as a data source, providing enhanced performances [53]. Due to the high
number of individual oxidizable compounds having close oxidation potentials present in wines,
the voltammograms are characterized by broad anodic waves [51]. The intensity and the positions of
the redox processes registered in voltammetric experiments depend on the type of analyzed wines,
thus making the discrimination of wines with different characteristics possible [57].

For CV measurements, the electrochemical cell consists of a standard three-electrode system
including a voltammetric array, a reference double junction Ag/AgCl reference electrode, and a
commercial platinum wire counter electrode. Wine samples were measured immediately after opening
a bottle and a simple preparation step consisting of filtration and appropriate dilution with electrolytes
(1 mM KCl) or synthetic wine is required before the electrochemical measurements of wine samples.
Using some electrodes, the measurement procedure can be performed without sample pre-treatment.

In order to obtain stable voltammetric responses and to ensure reproducible ET signals,
a conditioning step of the electrodes consisting of the application of several cycles in saline solution (i.e.,
10 mM KCl) is required before performing the CV measurements for wine samples [39]. By performing
multiple measurements using the same working electrode, some impurities can be adsorbed onto the
working electrode surface, which can be removed by electrochemical cleaning or a simple wash with
distillate water between each measurement, followed by the equilibration of the electrode in electrolyte
solution so as to reach the initial response [39,53]. When glassy carbon, gold electrodes, and platinum
electrodes were used, the active surface of the working electrodes must be regenerated by polishing
with alumina slurry, followed by sonication in 1 M hydrochloric solution, ethanol, and water, in order
to remove the residues [65]. In most cases, when using the SPE for wine analysis, a new sensor must
be used for each sample [51].

A schematic illustration of the main steps required for the wine authentication process based on
CV measurements with screen-printed electrodes modified with electroactive materials, including wine
sampling, multiplexed electrochemical measurements, signal processing, and chemometric analysis is
presented in Figure 2.
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Figure 2. Schematic illustration of the methodology used for wine authentication in the case of ET
based on screen-printed electrodes modified with electroactive materials.

The responses generated by the sensor array are not specific for certain wine compounds,
but through the use of multivariate analysis, they can be associated with certain characteristics of
wines. The electrochemical data that resulted from the ET devices is treated with supervised and
unsupervised multivariate advanced tools for either the discrimination or quantification of some
parameters [42,66].

As a red wine is a very complex media with many active compounds, the information comprised
in the voltammograms is also very complex, and it is difficult to select the best input variables that
will be further used for multivariate statistical analysis [53,67]. Thus, for the interpretation of the
electrochemical responses, four sequential steps are required: signal pre-processing, dimensionality
reduction, prediction, and validation [68].

The signal pre-processing procedures performed before pattern recognition techniques include
drift compensation, scaling, and importing the registered currents [39], the extraction of representative
parameters by derivatization of the raw signal [51], “bell-shaped-windowing” curves called
“kernels” [53,69], and the Fast Fourier Transform (FFT) algorithm [39]. Derivatization of the raw signal
greatly enhanced the differences existing across wines, providing representative fingerprints that can be
used to discriminate among wine categories [51]. The pre-processing of voltammograms by autoscaling
for the normalization of the units and ranges of the variables was followed by “bell-shaped-windowing”
curves called the “kernels” technique, which allows capturing the information from the global response
to obtain 10 representative values that are used as the input variable for multivariate statistical
analysis [50,52,69]. The use of discrete wavelet transform also compresses the original information
while keeping the relevant information of the original signals [70].

The dimensionality reduction step is mostly performed by PCA analysis, which projects significant
information from multivariate input patterns onto a lower dimensional space (2D or 3D coordinates)
consisting of a smaller number of variables called principal components (PCs). The resulted dimensional
vectors were further used for the construction of classification and regression models. PCA represents
a linear unsupervised exploratory technique that provides a visualization of the variability of the
data, being used for checking the interrelationships between the different wine samples based on
their chemical characteristics, detecting and interpreting sample patterns, groupings, similarities,
or differences [50]. PCA analysis can be performed on raw (untreated) voltammograms or to
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pre-processed voltammograms [51,53]. In addition, cluster analysis (CA) represents an unsupervised
statistical tool used to establish a set of clusters containing similar objects and objects that are different
from those located in another clusters. The resulted information is presented as a two-dimensional
plot named a dendrogram [65].

By using classification models, such as LDA, SIMCA, artificial neural networks (ANN), K-nearest
neighbors (KNN), and support vector machines (SVM), it is possible to develop a calibration model
based on qualitative or quantitative data, which will be used for the identification and classification
of unknown wine samples to previously categorized samples [25,70]. LDA analysis is used for the
qualitative analysis of the data resulted from linear sensor response, while ANN permits the qualitative
and quantitative modeling of the data resulted from non-linear sensor responses and is similar to
human pattern recognition [39,49,71]. In order to construct and validate the LDA classification models,
the investigated samples were divided randomly into two subsets, namely, a calibration set (containing
2/3 of the samples of each class) used to establish the model and a prediction set (containing 1/3
of samples for each class) used to verify the classification model [65]. Full cross-validation by the
“leave-one-out” method is required for the LDA classification models. For ANN analysis, the data
must be divided in three sets: a training set, an internal validation set, and an external validation set,
which is used for the validation of the proposed model [65]. In SIMCA analysis, PCA models are
constructed for each class from the calibration set, which is followed by the definition of the critical
distance for classification at the 95% confidence level. Classification of an unknown sample in a certain
class is performed by projecting the measurement vector into the proposed model. The KNN algorithm
is a linear supervised pattern recognition method in which the samples from the prediction set are
classified according to the K-nearest neighbors from the training set.

PLS regression models represent predictive models based on sensor responses and some
quantitative parameters determined by another acceptable method [68]. The resulted PLS calibration
equation can be applied for the quantification of several chemical and optical parameters of interest
in wine quality. PLS regression analysis is mostly coupled with DA analysis resulting in the
partial least squares-discriminant analysis (PLS-DA) pattern recognition technique, which is used
for the construction and validation of classification models [50,59]. The performance of the PLS-DA
classification models is estimated by sensitivity (SENS) and specificity (SPEC).

Different commercial software packages were used for multivariate statistical analysis of the
electrochemical data, and the most used are Unscrambler (CAMO, Norway), MATLAB (MathWorks,
USA), XLSTAT (Addinsoft, New York, USA), and SPSS (SPSS Inc., Chicago, IL, USA). There are
also available commercial ETs such as Taste Sensing Systems commercialized by the company
Intelligent Sensor Technology (INSENT) (Kanagawa, Japan), which is used in food analysis, and Astree
manufactured by AlphaMOS, which includes ion-selective field effect transistors (ISFETs) that are used
in the pharmaceutical industry and less for food analysis [20,72].

3. Applications of Electroanalytical Techniques for Wine Authentication

The use of electrochemical techniques for wine authentication in terms of varietal and geographical
origins, monitoring the wine aging processes, vintage year discrimination, and detection of adulteration
represent research topics mostly addressed in countries such as Spain, Italy, and China, while some
studies were performed in Hungary and Russia. The papers reviewed in this manuscript were those
published in the last 15 years in the field of electronic tongues based on electrochemical sensors used
for the authenticity of wines.

3.1. Discrimination of Wine Varietal and Geographical Origins

Most studies that address the discrimination of wine varietal and geographical origins were
performed using ET devices containing different electrodes types (Pt disk, graphite–epoxy, gold, CPE,
ion-sensitive field effect transistors (ISFETs) modified with electroactive materials, thus obtaining
a complex wine fingerprint. Thanks to the different redox catalytic properties of the modifiers
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(conducting polymers, phthalocyanine complexes, composite materials, nanoparticles, enzymes, etc.),
different oxidation and reduction peaks were obtained at the electrode surface, giving information of
the different compounds present on the cava wine. A detailed description of the most representative
studies is presented in Table 1.

Different types of Italian red wines of four different varieties (Sangiovese, Lambrusco,
Montepulciano, and Primitivo) were classified by the chemometric analysis of voltammetric signals
from a Pt disk electrode modified with poly (3,4-ethylenedioxythiophene) (PEDOT) using both DPV
and CV techniques. Good classification capabilities were obtained when signals are recorded using
DPV as the electrochemical technique. However, accumulating both DPV and CV data does not
evidence significant classification improvement due to the large number of variables, making it difficult
to extract the useful information [49]. Additionally, a Pt disk electrode modified with a PEDOT
conducting polymer, Au and Pt composite materials incorporated in a PEDOT layer, showed excellent
classification capabilities for the varietal discrimination of white wines. The modified electrodes were
tested separately and coupled to each other in order to check the possible complementarity of the
information brought by the different electrodes. Among the used electrodes, the PEDOT-modified
electrode leads to the best classification models, giving results, in terms of SENS and SPEC, that are
always equal to 100%. Thus, a PEDOT-modified electrode constitutes a convincing candidate as a
sensing unit in ETs [50].

Similarly, an ET device consisting of glassy carbon (GC) potentiometric sensors modified with
polyvinyl chloride (PVC) membranes doped with Co and Pt porphyrins demonstrate good capabilities
for the discrimination of Italian Verdicchio appellation wines produced by different producers in
different years. In addition, the proposed ET system has proven the capability to predict wine alcoholic
content, volatile acidity, SO2, malic and lactic acids, and total polyphenols, which are parameters that
were previously determined by classical methods [54].

Different hybrid voltammetric ETs were used for the discrimination of Spanish wines according
to geographical and varietal origins or vintage year. The performances of the ET devices for the
discrimination and classification of wines is assigned to the use of different sensitive materials
deposited on working electrodes, which confer cross-selectivity and reproducibility of the response.
Thus, graphite–epoxy electrodes modified with polyaniline, polypyrrole, and metallic nanoparticles
in conjunction with chemometrics were used to discriminate different Cava wines [70], and an array
of gold voltammetric electrodes modified with conducting polymers, phthalocyanins, and perylenes
was used for the discrimination of red wines [69], while CPE sensors modified with rare-earth
bisphthalocyanines and in combination with perylenes were used in voltammetric ET devices for the
discrimination of Spanish white and red wines [52,53]. The sensor responses measured by CV or SWV
were processed by PCA analysis in order to identify different wine categories.

A hybrid ET consisting of an array of different types of sensors: ion-sensitive field effect
transistors (ISFETs) modified with polymeric membranes (for pH and Na+, K+, Ca2+, Cl−, NO3

– ions
measurements), Pt sensors (for conductivity and redox potential), and amperometric microelectrodes
has demonstrated the capability for the discrimination and classification of white and red wines
according to the varietal and geographical origins and to differentiate bi- or trivarietal wine blends
containing more than 75% of the main grape variety [20,59]. The monovarietal wines (100%) are
discriminated from those containing 85% or 75% of the original grapes and from the bi- and trivarietal
blends, which are located between the original groups in the PCA score plan (Figure 3).
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Furthermore, this ET system can predict some wine quality control parameters such as total
acidity, alcoholic content, and pH, being a useful tool for the winemaking process [60].

In order to obtain the maximum sample information, the same proposed hybrid ET was coupled
with a miniaturized optofluidic system and tested for the discrimination of monovarietal and bi-
and trivarietal blends prepared from the Catalan white wines varieties and even the geographical
origin. PCA, SIMCA, and PLS chemometric tools were used to characterize, classify, and quantify
some parameters of interest. Good results are obtained both for discrimination and quantification
methodologies, confirming the viability of the multisensor system [73].

A bioelectronic tongue consisting of nanostructured biosensors [64] and an array of electrochemical
quartz crystal microbalances (EQCM) sensors functionalized with films containing iron, nickel,
and copper phthalocyanines [74] sensible to sugars and polyphenols were tested for the discrimination
of musts prepared from different varieties of grapes. Different statistical tools including PCA, PLS,
Parallel Factor Analysis (PARAFAC), and Multi-way partial least squares (N-PLS) were used for this
purpose. PLS analysis indicated good correlations with total polyphenol index and sugar concentration
determined by classical methods.

Even if SPEs are extensively used for the discrimination of different foods, including beer [30,75]
and olive oil [23], a few studies report the use of SPEs in the electrochemical experiments for
wine authentication. The potential of linear sweep voltammetry (LSV) coupled with disposable
screen-printed carbon paste electrochemical sensors for the analysis of the main white wine phenolic
compounds as well as for the rapid fingerprinting and classification of white wines from different
grape varieties was reported by Ugliano et al. [51].

A commercial device named Alpha ASTREE II (Toulouse, France) based on an IFSET ion-selective
sensor array was reported for the discrimination of geographical and varietal origins of Hungarian
wines [76]. Based on PLS regression models, some wine chemical parameters were predicted, including
total acidity, alcohol content, volatile acidity, and pH.
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3.2. Monitoring the Aging of Wines and Vintage Year Discrimination

The capability of the electrochemical sensors to predict the wine age is based on the modification
induced in the wine phenolic composition due to oxidation and the condensation reaction that
occurs during wine aging [56]. Wine polyphenols are labile substances subjected to various chemical
transformations during wine-making and wine aging, and therefore, the oxidative aging process is
more obvious at the beginning, and later, the process slows down as the body of the wine becomes
more and more harmonious [65]. In order to improve the organoleptic characteristics, red wines are
aged in oak barrels or using wood chips in micro-oxygenated stainless steel tanks, before bottling.
ETs were successfully used to monitor or recognize the method of aging, control the fermentation,
and discriminate between wines with different vintage years. The representative studies conducted in
this direction are listed in Table 2.

Thus, an electronic panel test composed by an ET, an EN, and an e-eye was used to monitor the
aging process of red wine matured by oak barrels or oak chips and micro-oxygenation. The voltammetric
ET system consisting of CPEs modified with phthalocyanines and ferrocene, an unmodified CPE, and a
platinum electrode demonstrated good discrimination capabilities, similar to those obtained by an EN
system [57]. A hybrid ET based on potentiometric and voltammetric sensors was tested to control
the wine fermentation process and to detect the wines altered by the improper storage conditions by
identifying specific chemical markers [55]. The bioelectronic tongue proposed by Medina-Plaza et
al. was used to monitor the ripening process of the grapes in order to identify the optimal date for
harvesting [64].

A potentiometric ET multisensor system consisting of 26 potentiometric chemical sensors—
plasticized PVC sensors displaying sensitivity to organic anions and phenols (9 sensors) and to organic
cations (5 sensors), 11 chalcogenide glass sensors displaying redox response, and a conventional
glass pH electrode tongue—has been able to predict the age of 160 Port wines of different ages (from
2 to 70 years) [77] and Madeira wines produced from different varieties of grape and lengths of
aging [56]. The results indicated that the ET can predict the age of wines with an accuracy of 5 years
for wines aged from 2 to 70 and with the accuracy of 1.8 years for the wines aged from 10 to 35. It is
important that the results of age prediction of Port wines using the ET system cannot be automatically
transferred to the other types of fortified wines such as Madeira, making it necessary to build new
models. For the prediction of age of 14 Madeira wines (3, 6, 10, and 17 years old), the proposed ET
multisensor system was associated with HPLC analysis of organic acids and phenolic compounds [56].
The ET device showed discrimination capabilities for the wine’s age, but not for the discrimination of
variety. PLS calibration models with respect to the wine age were capable of predicting wine age with
accuracy in cross-validation of 2.6 and 1.8 years using HPLC and ET data, respectively. The main input
to the discrimination of Madeira wines according to their age was from the anion-sensitive electrodes,
which display cross-sensitivity to a wide range of phenolic compounds with acidic character such as
phenolic acids [56].

A voltammetric ET composed by six bulk-modified graphite–epoxy electrodes was tested for the
discrimination of cava wines according to the vintage year through the LDA qualitative classification
model [39]. Similarly, ET devices consisting of gold, silver, platinum, palladium, tungsten, and titanium
or glassy carbon, gold, and platinum operated by multi-frequency large amplitude pulse voltammetry
(MLAPV) and CV techniques were successfully used to discriminate between Chinese rice wines
with different marked ages: case 1 (wines with 1, 3, and 5 years) [78] and case 2 (wines with 3, 5,
8 and 10 years) [65]. PCA analysis allowed the discrimination of 5-year-old wines from the wines
aged 1 and 3 years [78], while a non-linear BPANN (back-propagation artificial neural network) model
was capable of distinguishing between young and older wines, but it was difficult to discriminate
between older wines (8 and 10 years) [65].
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Table 1. Discrimination of varietal and geographical origins.

Country Wine Samples/Experiment Type Electrochemical Technique Working Electrode Analyzed Parameters Multivariate
Statistical Analysis Reference

Italy
Discrimination of nine different types of

red wines: Sangiovese, Lambrusco,
Montepulciano, Primitivo

CV and DPV Pt disk electrode modified with PEDOT film Voltammetric fingerprint PCA
PLS-DA [49]

Italy Varietal origin of white wines DPV Pt disk electrodes modified with PEDOT film with
composite materials of Au and Pt nanoparticles Voltammetric signals PCA

PLD-DA [50]

Spain
21 sparkling wine (19 Spanish Cava DO

and 2 Champagne (French)) from
different regions

CV/ET
5 modified graphite–epoxy electrodes (modifiers:

nanoparticles of Co and Pt, and conducting
polymers (polyaniline and polypyrrole))

Cyclic voltammograms PCA
ANN [70]

Spain Denomination of origin, grape variety,
and vintage of 12 red wines

CV/hybrid array of
voltammetric sensors

voltammetric gold electrodes chemically modified
with electroactive materials (conducting polymers,

phthalocyanine complexes and perylenes)
Voltammetric fingerprint

PCA
PLS-DA
SIMCA

[69]

Spain 6 Tempranillo red wines with different
DO origins and ageing stages CV and SWV/sensor array

Carbon paste electrodes (CPEs) modified with
rare-earth bisphthalocyaninate compounds

(LnPc2): LuPc2, GdPc2 and PrPc2

Reproducible anodic and cathodic peaks;
Cyclic voltammograms; SWV signals PCA [53]

Spain
Varietal origin of white wines

(Tempranillo, Garnacha, Turruntes,
Viura, and Malvasia)

SWV
Array of carbon paste electrodes (CPE) modified

with three rare-earth bisphthalocyanines and
three perylenes

voltammetric signals PCA [52]

Italy Veridicchio white wines produced in
different locations Potentiometry

Glassy carbon with PVC solvent polymeric doped
with several metallo-porphyrins porphyrin-based

membranes

quantitative detection of total SO2, Total
Polyphenols, Malic and Acetic Acids

content
PCA [54]

Spain

Varietal origin of 11 white wines
(Macabeu, Parellada, Chardonnay,
Xarello, Picapol) and 12 red wines

(Trepat, Garnatxa, Cabernet Sauvignon,
and Merlot)

Hybrid electronic tongue based
on optical and electrochemical

microsensors

The array: six ISFETs potentiometric sensors, a
conductivity sensor, a redox potential (ORP)
sensor and two amperometric electrodes (Au

microelectrode and a microelectrode for sensing
electrochemical oxygen demand (EOD).

pH and Na+, K+, Ca2+, Cl−, and NO3
−

ions; conductivity and redox potential
(ORP)

PCA [59]

Spain

18 white wines: 5 Macabeu), 5 Parellada,
4 Chardonnay, and 4 Xarello and 12

wines: 4 Merlot, 3 Cabernet Sauvignon,
3 Grenache and 2 Trepat.

Analysis of monovarietal white wines
and bi- and trivarietal mixtures

Flow multiparametric system
consisting in a hybrid ET and a

miniaturized opto-fluidic
system

ISFET sensors modified with polymeric
membrane, Pt conductivity, and ORP sensors and

gold amperometric microelectrodes

pH and Na+, K+, Ca2+, Cl−, and NO3
−

ions; conductivity and redox potential
(ORP)

PCA
SIMCA [20,73]

Spain

Varietal origin of musts prepared from
Tempranillo, Garnacha,

Cabernet-Sauvignon, Prieto, Picudo, and
Mencía varieties

CV/Array of biosensors

4 voltammetric biosensors based on
Langmuir–Blodgett films containing glucose

oxidase, D-fructose dehydrogenase, tyrosinase,
and laccase, using LuPc2 as electron mediator and

arachidic acid as lipid

Polyphenols
Sugars PCA [64]
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Table 1. Cont.

Country Wine Samples/Experiment Type Electrochemical Technique Working Electrode Analyzed Parameters Multivariate
Statistical Analysis Reference

Italy
Varietal origin of commercial white

wines (Riesling, Chardonnay, Viognier,
Muscadet)

LSV Screen-printed carbon paste electrode Voltammetric fingerprint PCA [51]

Spain
Red musts: Juan García, Tempranillo,

Prieto Picudo, Mencía Regadío,
Cabernet, Garnacha

EQCM /Array of EQCM
sensors

Pt/quartz crystals modified with iron, nickel, and
copper phthalocyanines voltammetric responses PARAFAC [74]

Hungary Nine white wines with different varietal
and geographical origins

Commercial Alpha ASTREE II
(Alpha M.O.S., Toulouse,
France) potentiometric

electronic tongue

7 ISFET potentiometric sensors Potentiometric responses
PCA
LDA
PLS

[76]

Table 2. Monitoring of wine aging and vintage year discrimination.

Country Wine Samples Electrochemical
Technique Working Electrode Analyzed

Parameters
Multivariate

Statistical Analysis Reference

Spain
Tempranillo red wines aged by

different methods during the aging
process

CV/ET

6 voltammetric sensors: 4 carbon paste electrodes (CPE)
modified with electroactive materials

(bisphthalocyanine molecules with lutetium and
gadolinium central ions (LuPc2), (GdPc2), cobalt (II)

monophthalocyanine (CoPc) and ferrocene),
unmodified carbon paste, and platinum electrodes

Voltammetric
responses

PCA
PLS-DA [57]

Spain
Tempranillo musts collected from
grapes with different maturation

stage

CV/Array of
biosensors

4 voltammetric biosensors based on Langmuir–Blodgett
films containing glucose oxidase, D-fructose

dehydrogenase, tyrosinase and laccase, using LuPc2 as
an electron mediator and arachidic acid as lipid

Polyphenols
Sugars PCA [64]

Spain
160 Port wines of different ages

(from 2 to 70 years) Potentiometric ET
multisensor

14 plasticized PVC sensors, 11 chalcogenide glass
sensors, and a conventional glass pH electrode

phenols and organic
anions cations, redox

and pH responses

PCA, PLS [77]

40 Madeira mono-varietal wines
aged for 3, 6, 10, and 17 years

PCA,
ANOVA [56]

Spain 65 cava wine with different vintage
time CV/ET

6 graphite–epoxy voltammetric sensors made with
different modifiers/catalysts: nanoparticles of Co and

PT, conducting polymers (polyaniline and polypyrrole),
and cobalt(II) phtalocyanine

Cyclic
voltammograms

PCA,
LDA,
ANN

[39]

China 120 Chinese rice wine of different
marked ages (1, 3, and 5 years) VE-tongue/ MLAPV 6 metallic electrodes (gold, silver, platinum, palladium,

tungsten, and titanium)
Voltammetric

responses PCA, CA, PLS, ANN [78]

China 120 Danyang Chinese rice wine with
3, 5, 8, and 10 marked ages

CV/ portable
voltammetric ET

3 working electrodes: glassy carbon, gold, and
platinum

Cyclic
voltammograms

SIMCA, PLSDA,
KNN, BPANN, SVM [65]

China 200 Guyuelongshan rice wines of 3,
5, 8, 10, and 20 years old ET and EN GCE modified with conducting polymer

nanocomposites
Voltammetric

response PCA and LPP [58]
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Recently, ET and EN devices, and also a combination of these, were used for the discrimination
and classification of wines according to the vintage year. The ET system formed by GCE modified with
nanocomposites materials embedded in the conducting polymer matrix demonstrate discrimination
capabilities superior to those of EN. As observed in Figure 4, PCA and LPP (locality preserving
projections) analyses allowed the discrimination and qualitative classification of wines with different
ages, the clusters of each wine category being marked with different colors (3 years—3Y, 5 years—5Y,
8 years—8Y, 10 years—10Y, and 20 years—20Y).
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3.3. Detection of Wine Frauds and Adulterations

Wine production must be performed according to the regulations indicated by their appellations and
by national and international organisms. However, illegal practices such as dilution with water, the addition
of exogenous substances (alcohol, sugars, preservatives, colorants), the use of grapes from different regions,
or using forbidden aging methods are performed in order to minimize the costs and increase the profit [64].
In this regard, ETs can be a valuable tool in detecting wine adulteration. Some examples of the common
adulteration practices and the proposed strategies for their detection are presented in Table 3.

Thus, an ET composed by a hybrid array of voltammetric CPEs chemically modified with
phthalocyanines (3) and a conducting polymer (6), a bare CPE, and an Au disk electrode was used
to identify wine adulterations associated with the addition of exogenous substances such as ethanol, tartaric
and tannic acids, SO2, or sucrose. PCA analysis allowed the distinction between different categories of
adulterated wines, while PLS analysis allowed the estimation of wine alcoholic content and acidity [62].

A multisensor array consisting of four thin-film metal oxide sensors surface-activated by Pt, Au, Pd,
and Bi metal catalysts, combined to an ANN pattern recognition system has been used to recognize the white,
red, and rose wines adulterated with up to 10% methanol and ethanol (1%, 5% and 10%) or adulterated by
mixing wines with the same color [79]. The proposed multisensor array exhibits sensitivity for wine volatile
compounds, which were sampled by the static headspace technique. The cross-validation of the non-linear
pattern recognition system based on ANNs provides an overall accuracy of correct classification for the
wine class recognition of 93.3% for wines adulterated with methanol, 70% wines adulterated with ethanol,
and 83.3% and 100% for the mixed wines with the same color.

A miniaturized potentiometric ET based on an array of miniaturized potentiometric sensors was
evaluated to detect adulterated wines counterfeited with SO2, H2S, and acetic acid adulterants and to
predict the amount of each one [54]. Silicon-based potentiometric sensors prepared by depositing PVC
membranes based on metalloporphyrins, corroles, and their analogues on the platinum electrode surface
were introduced into a flow-injection cell and used to measure the wine samples. The sensors showed
a good stability of response signal and a good reproducibility during several days of measurement.
Based on constructed PLS regression models, the sensor array was able to predict low concentrations
of H2S and SO2 in adulterated wines, while for acetic acid, the correlation was satisfactory only at
higher concentrations.



Chemosensors 2020, 8, 59 13 of 19

Table 3. Detection of wine frauds and adulterations.

Country Wine Samples Electrochemical Technique Working Electrode Analyzed
Parameters

Multivariate
Statistical Analysis Reference

Spain
Red wines adulterated with ethanol,

tartaric and tannic acids, SO2, acetic acid,
sucrose, and acetaldehyde

CV/hybrid ET

Carbon paste (CPEs) voltammetric electrodes
chemically modified with phthalocyanines, and

conducting polypyrrole doped with a range
of counterions

Voltammetric
responses for pH and

antioxidants

PCA
PLS [62]

Italy Wines adulterated with SO2, H2S, and
CH3CO2H

ET system based on an array
of miniaturized

potentiometric sensors

Miniaturized potentiometric sensors based on
platinum electrode modified with PVC

membranes based on metalloporphyrins, corroles,
and their analogs

Potentiometric
responses

PCA
PLS [54]

Italy

White (2), red (4,) and rose (2) wines
intentionally adulterated with methanol

and ethanol or by mixing same-color
wines

Chemoresistive e-tongue
Multisensor array based on four metal oxide

semiconducting thin-film chemoresistive sensors
(Pt, Au, Pd, and Bi metal catalysts)

Electrical resistance of
each chemoresistive

sensor

PCA,
ANN [79]

Hungary Tokaj wines artificially adulterated with
grape must concentrate and sucrose Potentiometric e-tongue Chemically modified field-effect transistor sensors Potentiometric

responses PCA, LDA, and PLS [80]

Russia Italy

Detection of markers of wine
organoleptic faults: methionol, isoamyl
alcohol, benzaldehyde, and acetic acid in

a wide range of concentrations

Potentiometric ET
8 potentiometric chemical sensors obtained by the

electrodeposition of substituted porphyrin
polymeric coatings on flat Pt working electrodes

Potentiometric
responses

PLS
PCA

SIMCA
PLS-DA

[81]
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A commercial potentiometric ET (Alpha Astree, Toulouse, France) in conjunction with PCA,
LDA, and PLS regression chemometrics was tested for the rapid discrimination of lower grade
Tokaj wines, which were artificially adulterated with grape must concentrate (GMC) to reach the
sugar content of high-grade Tokaj [80]. The principle of measurement for the ET is based on the
difference in the potential changes of several working electrodes (chemically modified field-effect
transistor sensors from Alpha MOS (Toulouse, France)) against a reference electrode (Ag/AgCl) in
zero-current condition. PCA analysis allowed the separation of non-adulterated wines and wines
adulterated with GMC, although the wine sample adulterated with sugar before fermentation appeared
to be closer to the non-adulterated wines. Thus, Tokaj wines adulterated with various levels of
GMC were rapidly discriminated and classified with 100% accuracy using LDA analysis. However,
more studies are required to build stronger models with defined limits of detection that can be adopted
by regulatory authorities.

A potentiometric ET consisting of eight porphyrin electropolymers coatings was applied for the
quantitative detection of benzaldehyde and isoamyl alcohol adulteration markers associated with the
yeast activity and vinegar formation, respectively [81].

4. Conclusions and Perspectives

This paper presents a comprehensive literature review of the most representative papers addressing
the wine authenticity assessments in terms of varietal and geographical origins discrimination,
monitoring the wine aging processes, vintage years discrimination, and detection of adulteration based
on different electrochemical techniques coupled with appropriate pattern recognition methods.

Thanks to the use of different families of sensitive materials with enhanced cross-selectivity,
the capability of discrimination of the multisensory systems was considerably improved, making it
possible to detect small amounts of exogenous compounds and some chemical characteristics of the
wines underlying the discrimination of wine varietal and geographical origins or vintage year.

By handling electrochemical data with appropriate pattern recognition methods, it can be possible
to obtain qualitative and quantitative models for wine authentication and the prediction of some wine
quality parameters. In order to improve the reliability of the statistical models, it is essential to process
a high number of wines covering all the possible sources of variability (different varieties, origins,
vintage years, and storage time).

The ET devices could be considered as attractive alternative methods to the sensory panels
or classical methods, being suitable for screening purposes and the development of cost-effective
wine authentication methodologies, but nevertheless, the vast flexibility of choice among different
electrodes types in the electrochemical cell, different instrumental operational parameters, and sample
protocol preparation has prevented these methodologies from being used in practical applications
to date. In order to appear more convincing for wine authenticity assessment approaches, future
research should focus on demonstrating the practical applicability of the authentication electrochemical
methodologies for numerous samples, rather than on the development of new sensors and different
sensors combinations for wine analysis. Clear protocols should be first implemented, followed by the
development of large databases with the electrochemical behavior of different wine types.

Minimal sample preparation, rapidity, measurements in one step, and possibilities for the
development of portable equipment and in situ monitoring should be considered as advantages of the
electrochemical authentication methodologies, offering the possibility to be used by official organisms
to certify the authenticity of wines.
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