Supporting Information

A rationally designed, spiropyran-based chemosensor for magnesium

Georgina M. Sylvia ¹, Adrian M. Mak ², Sabrina Heng ^{1,*}, Akash Bachhuka ¹, Heike Ebendorff-Heidepriem ¹ and Andrew D. Abell ^{1,*}

- ¹ ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, Department of Chemistry, The University of Adelaide, Adelaide SA 5005, Australia
- ² Institute of High Performance Computing, 1 Fusionopolous Way, No. 16-16 Connexis, 138632, Singapore.

Figure S1. ¹H NMR spectrum of chemosensor 4 recorded in DMSO-D₆ at 500 MHz.

Figure S2. ¹³C NMR spectrum of chemosensor 4 recorded in DMSO-D₆ at 500 MHz.

Figure S3. ¹H NMR spectrum of chemosensor 3 recorded in DMSO-D₆ at 500 MHz.

Figure S4. ¹³C NMR spectrum of chemosensor **3** recorded in DMSO-D₆ at 500 MHz.

Figure S5. ¹H NMR spectrum of chemosensor **2** recorded in CD₃CN and d_6 -DMSO at 500 MHz. The sensor is present in both the merocyanine and spiropyran forms in the spectrum. H₂O signal at δ 3.1 ppm supressed.

Figure S6. ¹H NMR spectrum of chemosensor 1 recorded in CD₃CN at 500 MHz.

Figure S7. ¹³C NMR spectrum of chemosensor 1 recorded in CD₃CN at 500 MHz.

Figure S8. ESI-HRMS spectra of chemosensors (a) 4, (b) 3, (c) 2 and (d) 1.

DFT Calculations

Reaction energies were calculated based on the following equation, where 'M' denotes Mg^{2+} or Ca^{2+} , and 'MC' denotes the merocyanine form of chemosensor 1 or 2.

$$2(MC) + M [(H_2O)_6]^{2+} \rightarrow M [MC_2(H_2O)_2] + 4(H_2O)$$

Figure S9. B3LYP/6-311G^{**} optimized structure of chemosensor **2** bound to (A) Mg²⁺ (yellow) and (B) Ca²⁺ (gold), respectively, in a 2:1 ratio, showing oxygen atoms (red) chelating to the metal ion. Hydrogen atoms are omitted for clarity. The Mg²⁺...O distances are between 2.08 and 2.12 Å, and Ca²⁺...O distances are between 2.36 and 2.45 Å. Reaction energies for the formation of the M[**2**(MC)₂(H₂O)₂] species were calculated to be - 315.7 kJ/mol and -151.2 kJ/mol for Mg²⁺ and Ca²⁺, respectively.

 $Mg[(1MC)_2(OH_2)_2]^{2+}$ structural coordinates

С	-9.7382	-2.39273	-0.54798	С	-2.66296	-3.36218	-1.43183
С	-8.87202	-3.2718	-1.20323	С	-1.66747	-2.19761	-1.52686
С	-7.52126	-2.95646	-1.38327	0	-1.34872	-1.66068	-0.41583
С	-7.08145	-1.73431	-0.88255	0	-1.28239	-1.83632	-2.66599
С	-7.93223	-0.84443	-0.22548	С	9.18571	2.88535	-1.41215
С	-9.27104	-1.16691	-0.0557	С	8.14126	3.7884	-1.62533
Ν	-5.78434	-1.17661	-0.93401	С	6.80687	3.40416	-1.45829
С	-5.73025	0.02647	-0.31428	С	6.56533	2.08803	-1.07215
С	-7.14816	0.39615	0.16917	С	7.59713	1.17238	-0.85884
0	-1.66707	1.19762	0.03309	С	8.91722	1.56536	-1.02702
С	-1.93797	2.42205	0.21574	Ν	5.32412	1.44881	-0.84912
С	-3.31945	2.87881	0.42033	С	5.49117	0.1486	-0.49843
С	-4.45858	2.0476	0.29223	С	6.99965	-0.16796	-0.46795
С	-4.52934	0.73487	-0.15626	0	1.668	-1.45168	-0.06084
С	-0.90636	3.43212	0.24791	С	2.04201	-2.5826	0.36824
С	-1.18322	4.74063	0.52665	С	3.46534	-2.93974	0.43283
С	-2.52098	5.14616	0.78367	С	4.51382	-2.0384	0.12753
С	-3.55454	4.24287	0.73063	С	4.40953	-0.69916	-0.23026
С	-7.19331	0.61189	1.69913	С	1.09185	-3.5766	0.80721
С	-7.71777	1.6217	-0.59249	С	1.48887	-4.81801	1.21652
С	-4.67018	-1.84589	-1.61489	С	2.87038	-5.15644	1.22841
Mg	-0.00768	-0.13283	-0.00115	С	3.82739	-4.24498	0.85261
С	-3.95854	-2.89702	-0.75039	С	7.38235	-1.24429	-1.51364

С	7.47021	-0.56908	0.95209	Н	-3.96826	-1.07835	-1.94341
С	4.049	2.16693	-1.01577	Н	-3.7004	-2.45748	0.21735
С	3.69056	3.08214	0.1667	Н	-4.62917	-3.74349	-0.56478
С	3.36822	2.36982	1.48434	Н	-2.2121	-4.16048	-0.83273
С	2.0898	1.51788	1.51054	Н	-2.85514	-3.75541	-2.43453
0	1.48707	1.31391	0.40186	Н	10.21294	3.20848	-1.54642
0	1.7455	1.07584	2.63151	Н	8.36413	4.80774	-1.92435
0	-0.25121	-0.43107	2.05714	Н	6.00277	4.11153	-1.62327
0	0.38039	0.06833	-2.07103	Н	9.73269	0.86611	-0.86603
Ν	-2.80268	6.53712	1.09163	Н	5.50574	-2.4728	0.2134
0	-3.97486	6.86179	1.31297	Н	3.40959	-0.29102	-0.27361
0	-1.85117	7.32484	1.11584	Н	0.04723	-3.28823	0.78121
Ν	3.27817	-6.48402	1.65388	Н	0.77391	-5.56636	1.53669
0	4.48501	-6.75262	1.65833	Н	4.87089	-4.53752	0.89295
0	2.39298	-7.27843	1.98845	Н	8.47102	-1.34598	-1.54852
Н	-10.7815	-2.6619	-0.4184	Н	6.95961	-2.22076	-1.26935
Н	-9.24854	-4.2183	-1.57794	Н	7.03676	-0.96245	-2.51177
Н	-6.85268	-3.64574	-1.88619	Н	7.19826	0.19427	1.6858
Н	-9.94991	-0.48622	0.44998	Н	7.03738	-1.5186	1.27269
Н	-5.39081	2.55043	0.53222	Н	8.55925	-0.67261	0.95833
Н	-3.59577	0.25168	-0.41625	Н	3.24799	1.44841	-1.17057
Н	0.10517	3.09023	0.06301	Н	4.14659	2.75791	-1.93191
Н	-0.40251	5.49099	0.56291	Н	2.82243	3.66794	-0.154
Н	-4.56365	4.59575	0.91291	Н	4.50609	3.79565	0.3349
Н	-8.22856	0.76645	2.01721	Н	3.27753	3.1074	2.28874
Н	-6.61073	1.48444	2.00218	Н	4.19427	1.71531	1.7903
Н	-6.80215	-0.26012	2.2298	Н	-1.07838	-0.03345	2.35485
Н	-7.65258	1.47701	-1.67406	Н	0.50159	0.14396	2.42784
Н	-8.77235	1.74866	-0.33133	Н	-0.26919	-0.61842	-2.43856
Н	-7.19645	2.54631	-0.33883	Н	1.24239	-0.36552	-2.13824
Н	-5.07873	-2.30317	-2.5216				
Mg[(2 MC	$(OH_2)_2 (OH_2)_2^{2+} st_2^{2+}$	ructural coor	rdinates				
С	-9.77165	-1.76887	-0.99545	С	-0.73946	3.5606	0.65698
С	-8.90115	-2.73158	-1.51186	С	-0.98841	4.85751	1.01967
С	-7.51948	-2.51549	-1.54449	С	-2.32198	5.30478	1.1868
С	-7.05048	-1.30377	-1.04304	С	-3.38027	4.47459	0.9806
С	-7.90645	-0.332	-0.52084	С	-7.29231	1.12271	1.44017

С

Ν

С

С

0

С

С

С

С

-9.27506

-5.72242

-5.6494

-7.0855

-1.55253

-1.8045

-3.17562

-4.32794

-4.43349

-0.55709

-0.83857

0.38907

0.86601

1.39633

2.60961

3.10914

2.33839

1.02766

-0.49608

-0.96665

-0.3825

-0.07059

0.14366

0.44184

0.58729

0.34198

-0.12845

-2.52111	6.59387
0.07669	-0.05726
-4.03918	-2.62708
-2.72079	-3.23894
-1.66679	-2.13397
-1.3448	-1.53856
-1.25855	-1.85761

-7.48013

-4.5887

2.10511

-1.61738

-0.91417

-1.47021

1.5517

0.3008

-0.45173

-0.95203

-1.09937

-0.02139

-2.256

С

С

F

Mg

С

С

С

0

0

С	9.29145	2.00875	-1.88277	Н	-8.34656	1.34278	1.63386
С	8.31061	2.97953	-2.09674	Н	-6.69865	1.96751	1.79548
С	6.96531	2.72776	-1.80653	Н	-7.01662	0.24257	2.02696
С	6.64215	1.47162	-1.29642	Н	-7.31185	1.92311	-1.97894
С	7.61248	0.48929	-1.08011	Н	-8.54408	2.31647	-0.77143
С	8.94294	0.75104	-1.3714	Н	-6.91809	2.99598	-0.6274
Ν	5.37725	0.96602	-0.93767	Н	-4.92444	-2.12719	-2.37866
С	5.4636	-0.32182	-0.48874	Н	-3.80878	-0.92023	-1.7792
С	6.94132	-0.7607	-0.53662	Н	-3.84619	-2.11469	0.49553
0	1.60205	-1.46091	0.42988	Н	-4.78636	-3.40654	-0.26241
С	1.8897	-2.61714	0.86245	Н	-2.36784	-3.97494	-0.22251
С	3.26723	-3.12268	0.84155	Н	-2.85511	-3.74166	-1.91449
С	4.36075	-2.35962	0.39457	Н	10.32874	2.22859	-2.11433
С	4.34791	-1.04285	-0.07738	Н	8.59212	3.94988	-2.49419
С	0.87311	-3.49347	1.39664	Н	6.21231	3.48895	-1.9743
С	1.17549	-4.75032	1.84539	Н	9.70716	-0.00421	-1.21001
С	2.51248	-5.22192	1.79668	Н	5.31523	-2.87716	0.44552
С	3.52618	-4.45072	1.31814	Н	3.38087	-0.5615	-0.10373
С	7.15553	-1.9448	-1.51002	Н	-0.13909	-3.10613	1.41161
С	7.48653	-1.0865	0.87509	Н	0.40959	-5.40843	2.24534
С	4.15539	1.77355	-1.06934	Н	4.53865	-4.8431	1.30446
F	2.75838	-6.47618	2.24921	Н	8.22579	-2.15205	-1.60565
С	3.97062	2.80576	0.05653	Н	6.66275	-2.85376	-1.15948
С	3.67318	2.22683	1.44437	Н	6.76569	-1.7088	-2.5037
С	2.30599	1.54628	1.61274	Н	7.32999	-0.24663	1.55719
0	1.60007	1.37732	0.56131	Н	7.00422	-1.9666	1.30517
0	1.98954	1.20199	2.77612	Н	8.56206	-1.28076	0.81747
0	-0.22028	-0.06698	2.38103	Н	3.28891	1.11713	-1.1124
0	0.26235	0.19099	-1.79301	Н	4.22522	2.28524	-2.03509
Н	-10.8396	-1.96105	-0.97885	Н	3.14188	3.45238	-0.25143
Н	-9.29879	-3.66708	-1.89285	Н	4.86316	3.44054	0.115
Н	-6.8494	-3.27097	-1.93869	Н	3.73575	3.01827	2.19948
Н	-9.95623	0.18882	-0.09624	Н	4.43413	1.49214	1.73573
Н	-5.25399	2.87685	0.52023	Н	-0.96962	0.49362	2.61589
Н	-3.50819	0.49576	-0.31002	Н	0.61715	0.42847	2.67914
Н	0.2707	3.18939	0.52707	Н	-0.28036	-0.60563	-2.10915
Н	-0.17934	5.56237	1.18721	Н	-0.2928	0.96139	-1.97346
Н	-4.38976	4.85496	1.10446				
Ca[(1MC	$)_2(OH_2)_2]^{2+}$ str	ructural coor	rdinates				
C	9 92152	2 45964	-1 42888	С	5 96159	0 12296	-0 51419
č	8,97202	3.43805	-1.73433	C C	7.43346	-0.33259	-0.4231
C	7 60272	3 18143	-1 61054	0	1 96521	-1 08881	0 33915
C	7.22961	1.91356	-1.17272	C C	2.29089	-2.29233	0.56391
C	8.16453	0.9258	-0.86016	C C	3.68806	-2.74676	0.52855
C	9 52036	1 19149	-0.98861	C	4 78881	-1 9205	0.20014
N	5 92993	1 39687	-0 97254	C	4 79688	-0 58612	-0 18568
11	5.74775	1.57007	-0.77234	C	4.77000	-0.30012	-0.10000

С	1.29094	-3.29022	0.87452	Н	10.97825	2.68411	-1.53174
С	1.61776	-4.58796	1.14674	Н	9.29782	4.41685	-2.07183
С	2.979	-4.99667	1.12548	Н	6.87252	3.94792	-1.84359
С	3.97837	-4.10358	0.82639	Н	10.26273	0.43447	-0.75247
С	7.83296	-0.70947	1.02356	Н	5.74334	-2.43575	0.24571
С	7.74206	-1.48296	-1.41518	Н	3.83935	-0.08508	-0.23591
С	4.72374	2.19153	-1.23277	Н	0.25725	-2.9586	0.88501
Ca	0.01642	0.30535	0.53418	Н	0.86112	-5.32616	1.38412
С	4.30175	3.04453	-0.02647	Н	5.00352	-4.45716	0.81428
С	2.99343	3.80858	-0.30424	Н	8.90811	-0.90699	1.06429
С	1.86777	2.805	-0.58261	Н	7.311	-1.60259	1.37235
0	1.30667	2.28677	0.43396	Н	7.61209	0.10665	1.71648
0	1.65155	2.51031	-1.78819	Н	7.4411	-1.21531	-2.43147
С	-8.71098	-3.58511	-2.27919	Н	8.81879	-1.67588	-1.42083
С	-7.55369	-4.36578	-2.3392	Н	7.23501	-2.41033	-1.14247
С	-6.31191	-3.84992	-1.95505	Н	4.93543	2.82532	-2.09842
С	-6.27904	-2.52962	-1.51269	Н	3.92144	1.52073	-1.53855
С	-7.42424	-1.73511	-1.45264	Н	4.15756	2.39418	0.8433
С	-8.65158	-2.25819	-1.83448	Н	5.10542	3.74702	0.22351
Ν	-5.16413	-1.76993	-1.08589	Н	2.74284	4.4123	0.57232
С	-5.52145	-0.50482	-0.75837	Н	3.11407	4.46863	-1.16913
С	-7.04393	-0.35211	-0.95513	Н	-9.66303	-4.00948	-2.58107
0	-2.00353	1.58809	0.18238	Н	-7.61444	-5.39178	-2.688
С	-2.58925	2.67125	0.48257	Н	-5.41979	-4.46295	-2.00311
С	-4.04691	2.8135	0.3962	Н	-9.55301	-1.65346	-1.79481
С	-4.91733	1.7677	-0.00274	Н	-5.96261	2.06028	-0.03583
С	-4.59344	0.45932	-0.33636	Н	-3.55193	0.18171	-0.25354
С	-1.83971	3.82539	0.91992	Н	-0.76099	3.7115	0.9726
С	-2.45074	5.00731	1.23377	Н	-1.88412	5.87242	1.55686
С	-3.86346	5.12271	1.13309	Н	-5.70992	4.19164	0.66531
С	-4.63511	4.06006	0.72589	Н	-8.46008	0.68954	-2.23097
С	-7.3843	0.70608	-2.03338	Н	-7.11389	1.71553	-1.7186
С	-7.76403	-0.05205	0.38309	Н	-6.86514	0.49086	-2.97108
С	-3.8142	-2.35841	-1.04147	Н	-7.51698	-0.80366	1.13742
С	-3.5894	-3.2925	0.15943	Н	-7.49853	0.92924	0.78058
С	-3.55913	-2.60273	1.52623	Н	-8.84628	-0.07311	0.2254
С	-2.3574	-1.67688	1.77617	Н	-3.0726	-1.5639	-1.02442
0	-1.55241	-1.47828	0.80471	Н	-3.68793	-2.90932	-1.97888
0	-2.26621	-1.1823	2.92458	Н	-2.62791	-3.78559	-0.01589
0	-0.14661	0.30877	2.92943	Н	-4.35583	-4.07611	0.16221
0	-0.18056	0.61432	-1.89582	Н	-3.55525	-3.35661	2.32098
Ν	3.31827	-6.37836	1.41537	Н	-4.46846	-2.01292	1.69684
0	4.51052	-6.70533	1.39554	Н	-0.2327	1.06973	3.51344
0	2.39255	-7.1574	1.66596	Н	-0.97142	-0.26779	3.05865
Ν	-4.50408	6.38376	1.46465	Н	0.52633	1.32741	-1.97795
0	-5.73376	6.45944	1.36302	Н	-1.01214	1.11012	-1.8976
0	-3.78219	7.31665	1.83143				

С	10.12629	1.6176	-1.01688	С	-4.1411	4.48082	1.19941
С	9.2791	2.63956	-1.45173	С	-7.54859	1.70212	-1.45465
С	7.88933	2.48087	-1.44437	С	-7.77761	0.76179	0.91309
С	7.38749	1.26461	-0.98748	С	-4.29757	-1.81862	-1.1652
С	8.22019	0.23466	-0.54556	F	-3.56664	6.62941	1.98073
С	9.59712	0.40303	-0.55982	С	-4.06518	-2.91886	-0.11629
Ν	6.04418	0.84824	-0.88829	С	-3.82533	-2.41748	1.31061
С	5.94186	-0.40576	-0.36995	С	-2.48827	-1.69691	1.54602
С	7.36644	-0.94832	-0.1184	0	-2.22314	-1.39588	2.73529
0	1.81452	-1.32633	0.11034	0	-1.75682	-1.45677	0.52804
С	2.04551	-2.53149	0.45677	0	-0.031	-0.01684	2.73986
С	3.40199	-3.06876	0.59455	0	0.30953	0.02931	-2.07947
С	4.57339	-2.33292	0.33203	Н	11.2013	1.76544	-1.0313
С	4.71167	-1.0211	-0.12575	Н	9.70186	3.57649	-1.80077
С	0.95483	-3.43568	0.73882	Н	7.2389	3.28123	-1.77792
С	1.16908	-4.72943	1.13398	Н	10.25985	-0.3892	-0.22298
С	2.49117	-5.21828	1.27316	Н	5.48532	-2.89643	0.50471
С	3.57081	-4.43051	1.01636	Н	3.79851	-0.46708	-0.29873
С	7.6075	-1.26372	1.37702	Н	-0.05081	-3.04203	0.62487
С	7.68693	-2.17085	-1.01429	Н	0.34133	-5.39921	1.34745
С	4.92703	1.70789	-1.29048	Н	4.56988	-4.84106	1.12802
F	2.65729	-6.50326	1.66778	Н	8.65866	-1.52586	1.53079
Ca	-0.06606	0.23258	0.33666	Н	6.99582	-2.09914	1.72328
С	4.46677	2.65655	-0.17213	Н	7.38112	-0.39486	2.00067
С	3.21928	3.45847	-0.58812	Н	7.50352	-1.94251	-2.06755
С	2.06603	2.48615	-0.86634	Н	8.74317	-2.43441	-0.90448
0	1.43771	2.05215	0.14852	Н	7.09121	-3.04558	-0.74664
0	1.89719	2.12814	-2.06298	Н	5.25362	2.27527	-2.16697
С	-9.41212	-2.35984	-1.92603	Н	4.10442	1.07856	-1.62897
С	-8.37112	-3.25087	-2.19575	Н	4.22935	2.0701	0.72217
С	-7.04168	-2.91953	-1.91309	Н	5.28631	3.33515	0.09252
С	-6.79695	-1.66695	-1.35269	Н	2.94475	4.1346	0.22628
С	-7.82695	-0.7621	-1.08604	Н	3.42554	4.04802	-1.48713
С	-9.14147	-1.10265	-1.36885	Н	-10.4358	-2.6409	-2.15155
Ν	-5.56287	-1.09148	-0.98836	Н	-8.59228	-4.22041	-2.63136
С	-5.72592	0.17428	-0.50037	Н	-6.24123	-3.61823	-2.12574
С	-7.2325	0.51333	-0.51415	Н	-9.95254	-0.40843	-1.16742
0	-1.91833	1.69596	0.31979	Н	-5.77661	2.69963	0.46846
С	-2.32902	2.8365	0.69344	Н	-3.6555	0.57098	-0.14199
С	-3.75509	3.17305	0.75162	Н	-0.33794	3.61634	1.01586
С	-4.7774	2.28311	0.37721	Н	-1.10625	5.87076	1.79147
С	-4.65871	0.97074	-0.09314	Н	-5.19279	4.74598	1.25293
С	-1.39234	3.86725	1.08005	Н	-8.63285	1.82988	-1.52962
С	-1.81316	5.09981	1.49937	Н	-7.12111	2.63804	-1.09049
С	-3.19937	5.3951	1.55771	Н	-7.15914	1.51878	-2.45954

Н	-7.55701	-0.085	1.56843	Н	-3.86905	-3.25597	2.01442
Н	-7.35034	1.65952	1.36414	Н	-4.62234	-1.73396	1.62883
Н	-8.86427	0.88512	0.87309	Н	0.66061	-0.48721	3.21814
Н	-3.46971	-1.11439	-1.14072	Н	-0.87994	-0.56414	2.85308
Н	-4.32641	-2.25646	-2.16897	Н	0.86595	0.86191	-2.19686
Н	-3.18888	-3.48377	-0.45122	Н	0.96159	-0.68592	-2.07069
Н	-4.91492	-3.61158	-0.12036				

Sensor 1(MC) structural coordinates

С	5.27391	-2.4027	-0.46016	0	1.61985	1.21483	2.80677
С	5.62874	-1.16485	-1.00067	Ν	-6.0465	-1.04299	0.64108
С	4.6906	-0.13544	-1.13021	0	-5.72276	-1.97821	1.39201
С	3.39042	-0.38943	-0.69761	0	-7.23036	-0.73717	0.41515
С	3.01521	-1.63123	-0.17694	Н	6.02032	-3.18583	-0.36529
С	3.95628	-2.64122	-0.04575	Н	6.65036	-0.99267	-1.3274
Ν	2.26593	0.45748	-0.73396	Н	4.9708	0.82138	-1.55261
С	1.13931	-0.20969	-0.367	Н	3.67806	-3.60745	0.36632
С	1.52982	-1.61182	0.13587	Н	-1.23349	-1.12223	0.5672
0	-2.11432	1.85488	-1.98539	Н	-0.2555	1.23287	-1.12414
С	-2.97096	1.2165	-1.34748	Н	-4.64149	2.30743	-2.19444
С	-2.64148	0.12406	-0.39614	Н	-6.42254	0.99849	-1.0296
С	-1.31277	-0.2709	-0.10378	Н	-3.45801	-1.39872	0.91313
С	-0.14187	0.31889	-0.55687	Н	1.19902	-3.71178	-0.30702
С	-4.39699	1.49527	-1.51684	Н	-0.261	-2.72671	-0.47401
С	-5.37014	0.78461	-0.88485	Н	0.99622	-2.65822	-1.71749
С	-5.01359	-0.28076	-0.00376	Н	1.64567	-0.83115	2.19359
С	-3.68676	-0.5886	0.22862	Н	0.22865	-1.84521	1.88829
С	0.81752	-2.74146	-0.64113	Н	1.81298	-2.61912	2.03952
С	1.29337	-1.72867	1.66815	Н	1.36671	2.31867	-0.7776
С	2.34917	1.90772	-0.9962	Н	2.59137	2.05823	-2.05583
С	3.33904	2.6548	-0.07371	Н	3.02408	3.70182	-0.12396
С	3.28493	2.19672	1.38841	Н	4.36348	2.60168	-0.46456
С	1.8216	2.11555	1.95165	Н	3.84863	2.91685	1.99734
0	1.02096	2.95906	1.4759	Н	3.78048	1.22911	1.52155

C C C C C C C

Sensor 2(MC) structural coordinates

С	4.89339	-2.27376	-0.35189
С	5.13107	-1.11982	-1.10065
С	4.12441	-0.17131	-1.3121
С	2.87322	-0.41403	-0.74556
С	2.61478	-1.58035	-0.01515
С	3.62313	-2.50762	0.19501
Ν	1.70321	0.3573	-0.82063

0.63545	-0.32058	-0.29162
1.15613	-1.58877	0.41121
-2.82145	1.19375	-2.0613
-3.59625	0.62389	-1.26534
-3.14832	-0.24615	-0.15231
-1.79527	-0.49089	0.12708
-0.67795	0.08343	-0.49027

С	-5.04467	0.77387	-1.40679	Н	-1.61787	-1.1913	0.93982
С	-5.93547	0.1381	-0.5908	Н	-0.88199	0.88327	-1.19026
С	-5.45984	-0.70325	0.45015	Н	-5.37728	1.42265	-2.21123
С	-4.13077	-0.89345	0.66859	Н	-7.00925	0.25627	-0.71212
С	0.47081	-2.87833	-0.08915	Н	-3.80999	-1.53651	1.4838
С	1.03932	-1.43586	1.95366	Н	0.93843	-3.75054	0.38029
С	1.66465	1.76589	-1.25466	Н	-0.59247	-2.8912	0.15761
F	-6.38742	-1.32282	1.23642	Н	0.56767	-2.98317	-1.17409
С	2.70648	2.67248	-0.56393	Н	1.37895	-0.44479	2.28465
С	2.83047	2.43316	0.94458	Н	0.0001	-1.55271	2.27523
С	1.44537	2.46059	1.68491	Н	1.63222	-2.22117	2.43708
0	0.60741	3.26861	1.21247	Н	0.69014	2.14977	-0.95852
0	1.33825	1.67678	2.66428	Н	1.75804	1.80842	-2.3479
Н	5.69118	-2.99431	-0.19664	Н	2.33173	3.68943	-0.71833
Н	6.11465	-0.94948	-1.53008	Н	3.6848	2.60351	-1.05756
Н	4.31605	0.71854	-1.89858	Н	3.4582	3.23017	1.36779
Н	3.43317	-3.40955	0.77116	Н	3.34337	1.49036	1.16104

Fluorescence Experiments

Job's Plots

Stock solutions of spiropyran chemosensor (SP, 100 μ M) and metal ion salts (M, 100 μ M) were prepared separately in HPLC-grade acetonitrile. Solutions were prepared (in triplicate) in the same clear-bottom microplate tray from varying volumes of the spiropyran stock solution and of the ion stock solutions, respectively, until the total volume of each replicate was 200 μ L. The concentration ratios of ([SP], [M]) in μ M were (100, 0), (95, 5), (80, 20), (70, 30), (50, 50), (40, 60), (30, 70), (20, 80), (5, 95) and (0, 100). As such, each solution contained a constant total combined concentration of spiropyran and metal ion ([SP]+ [M] = 100 μ M). Fluorescence emission spectra were recorded between 555 and 800 nm, respectively, at 25 °C using a BioTek Synergy H4 Hybrid Multi-Mode Microplate Reader. Fluorescence excitation was at 532 nm, with 100 gain setting and scanning resolution was 5nm, with band pass of 9 nm. Job's plots were derived by plotting the mean fluorescence at the maximum emission wavelength for each concentration ratio of (SP], [M]).

Dissociation Constants (Kd)

Stock solutions of metal ion salts (0.02-2 mM) were prepared separately in HPLC-grade acetonitrile. Replicate solutions were prepared (in triplicate) in the same clear-bottom microplate tray from 2 μ L of spiropyran stock (5 mM) and 10 μ L of the respective ion stock solutions. 188 μ L of HPLC grade acetonitrile was then added to dilute each replicate, such that the final concentrations of spiropyran and metal ions in each solution were 50 μ M and 1-100 μ M, respectively. Fluorescence emission spectra were recorded between 555 and 800 nm, at 25 °C using a BioTek Synergy H4 Hybrid Multi-Mode Microplate Reader. Fluorescence excitation was at 532 nm, with 100 gain setting and scanning resolution was 5nm, with band pass of 9 nm. Concentration curves were prepared from the fluorescence emission maxima for each ion concentration. The apparent dissociation constants (K_d) of spiropyrans for metal ions were then calculated by fitting an appropriate non-linear regression in GraphPad Prism version 7.02. The 'Hill Plot with Specific Binding' model was selected, as it represents a saturation binding experiment, where concentration of 'radioligand' (i.e. metal ion) is varied and binding to the 'recepter' (i.e. merocyanine isomer) is measured, in this case as a fluorescence emission. The model uses the following equation, $Y = Bmax^*X^h/(K_d^h + X^h)$

Where Y is the relative fluorescence intensity at any given concentration of metal ion, Bmax is the maximum specific binding in the same units as Y (i.e. in this case the fluorescence at sensor saturation), X is the concentration of metal ion and K_d is the metal ion concentration needed to achieve the half-maximum binding at equilibrium, expressed in the same units as X. The parameter h is the Hill slope, and h = 1.0 when a monomer binds with no cooperativity to one site. If h > 0, i.e. the 'receptor' (merocyanine) or 'radioligand' (metal ion) has multiple binding sites with positive cooperativity, and the graph will have a sigmoidal appearance [1].

Quantum Yield (Φ)

A stock solution containing spiropyran chemosensor (SP, 50 μ M) and metal ion salt (M, 100 μ M) was prepared in HPLC-grade acetonitrile. Solutions were prepared (in triplicate) on the same clear-bottom microplate tray from varying volumes of the combined spiropyran/metal ion stock solution and HPLC-grade acetonitrile, until the volume of each replicate was 200 μ L. The concentration ratios of ([SP], [M]) in μ M were (10, 20), (20, 40), (30, 60), (40, 80), (50, 100), (60, 120), (80, 160) and (100, 200). Absorbance (400-600 nm, 2nm band pass) and fluorescence emission spectra (535-800 nm, 5nm band pass, excitation 514 nm, 80 gain) were recorded at 25 °C using a BioTek Synergy H4 Plate Reader. These absorbance and fluorescence measurements was repeated for Rhodamine B (0, 1, 2, 3, 4, 5 μ M), and a graph of integrated fluorescence *vs* absorbance at 514 nm (up to an approximate absorbance value of 0.1) was obtained. Quantum yield was calculated using the following equation:

$\Phi_x = \Phi_{ST} (Grad_x/Grad_{ST})(\eta^2_x/\eta^2_{ST})$

Where subscripts ST and X denote standard (Rhodamine B) and the unknown (spiropyran), respectively. Φ is fluorescence quantum yield, Grad is the gradient from the plot of integrated fluorescence intensity vs absorbance and η is the refractive index of the solvent ($\eta_{(water)} = 1.330$, $\eta_{(acetonitrile)} = 1.344$). The fluorescence quantum yield of Rhodamine B in water at $\lambda_{ex} = 514$ nm is 0.31, as reported in the literature [2].

Figure S10. Absorbance spectra of (a) chemosensor **1** (50 μ M) and (b) chemosensor **2** (50 μ M) in the presence of an excess of biologically relevant metal ions (100 μ M). Experiments were performed under ambient light conditions in acetonitrile solvent.

Figure S11. Job's plot of chemosensor **1** (50 μ M) in the presence of Ca²⁺ ions (100 μ M). Fluorescence excitation was at 532 nm, with experiments performed under ambient light conditions in acetonitrile solvent.

Figure S12. Metal ion titration curves of chemosensor **1** (50 μ M) with (a) Mg²⁺ (Kd (Mg²⁺) = 6.0 \pm 0.3 μ M, h = 4.3 \pm 0.9) and (b) Ca²⁺ (Kd (Ca²⁺) = 18.7 \pm 0.6 μ M, h = 4.0 \pm 0.5) measured from their respective maximum emissions. Experiments were recorded in HPLC-grade acetonitrile, with excitation at 532 nm under ambient light conditions.

Figure S13. Integrated fluorescence spectra after excitation at 514 nm versus the absorbance at 514 nm for Rhodamine B (0 – 5 μ M, water); (1)MC-Mg²⁺ (0-100 μ M, acetonitrile) in the presence of a 2-fold excess of Mg²⁺; and (1)MC-Ca²⁺ (0-100 μ M, acetonitrile) in the presence of a 2-fold excess of Ca²⁺. Spectra were recorded under ambient light conditions, in acetonitrile solvent. The quantum yield of (1)MC-Mg²⁺ was calculated to be $\Phi = 0.20$, and the quantum yield of (1)MC-Ca²⁺ was calculated to be $\Phi = 0.06$.

Figure S14. Fluorescence emission spectra of chemosensor **2** (50 μ M) in the absence (black) and presence of excess Mg²⁺ (red, 100 μ M) and Ca²⁺ (blue, 100 μ M), respectively. Inset: Selectivity profile of chemosensor **2** in the presence of various biologically relevant metal ions (100 μ M), with λ_{max} at 560 nm. Excitation was at 532 nm, and all experiments were performed under ambient light conditions, in HPLC-grade acetonitrile solvent.

Figure S15. Job's plot of chemosensor **2** (50 μ M) in the presence of Mg²⁺ ions (100 μ M), with λ_{max} at 560 nm. Fluorescence excitation was at 532 nm, with experiments performed under ambient light conditions in acetonitrile solvent. The plot suggests a more complex binding stoichiometry for chemosensor **2**.

Figure S16. Selectivity profiles of (a) compound **3** (50 μ M) and (b) compound **4** (50 μ M) in the presence of an excess of biologically relevant metal ions (100 μ M) in HPLC-grade acetonitrile. Fluorescence excitation was at 532 nm.

References

- "Equation: Specific binding with Hill slope", GraphPad Curve Fitting Guide. Accessed 10 April 2018. <u>https://www.graphpad.com/guides/prism/7/curve-fitting/index.htm?reg_specific_hill.htm</u>.
- 2. Madge, D.; Rojas, G. E.; Seybold, P. Photochem. Photobiol. 1999, 70, 737.