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Abstract: This work deals with the development of screen-printed carbon electrodes modified with 
L-glutamic acid via two different approaches: electropolymerization (SPCE/PGA) and aryl 
diazonium electrochemical grafting (SPCE/EGA). SPCE/PGA and SPCE/EGA were analytically 
compared in the determination of hydrochlorothiazide (HCTZ) by differential pulse voltammetry. 
Both electrochemical characterization and analytical performance indicate that SPCE/EGA is a much 
better sensor for HCTZ. The detection and quantification limits were at the level of μmol L−1 with a 
very good linearity in the studied concentration range. In addition, the proposed SPCE/EGA was 
successfully applied for the determination of HCTZ in an anti-hypertensive drug with high 
reproducibility and good trueness. 

Keywords: glutamic acid-modified screen-printed electrode; voltammetry; electropolymerization; 
electrografting; hydrochlorothiazide determination. 

 

1. Introduction 

Hydrochlorothiazide (HCTZ), 6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 
1,1-dioxide, is a drug widely used around the world for hypertension treatment, either alone or in 
combination with other anti-hypertensive drugs. HCTZ acts on the kidneys inhibiting sodium and 
chloride ions reabsorption into nephron-contoured tubules, and also preventing water reabsorption, 
which results in a decrease in blood pressure. Moreover, HCTZ is also used in the treatment of renal 
tubular acidosis, diabetes insipidus, edema, and the prevention of kidney stones [1,2]. 

The determination of HCTZ in different matrices is currently carried out by means of different 
analytical techniques. Prominent among them is the high performance liquid chromatography 
(HPLC) with UV-VIS detection [3–5], which is the analytical technique recommended by the United 
States Pharmacopeia [6]. Although HPLC/tandem MS [7] or capillary electrophoresis [8,9] are also 
considered. Methods for the individual determination of HCTZ are also described. Thus, Youssef [10] 
describes the use of an optical sensor for the fluorimetric determination of this compound. In [11,12] 
chemiluminescence was considered. Nevertheless, these techniques have some disadvantages, such 
as high initial investment (equipment), the need for sample pre-treatments, time-consuming 
procedures, required expertise, and the high cost of consumables. In this sense, electroanalytical 
methods play a fundamental role and are stated as a very notable alternative for the determination 
of this anti-hypertensive drug [13–18]. In particular, voltammetric techniques provide excellent 
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detection and quantification limits, high sensitivity and selectivity, with relatively low economic cost. 
Taking into account that the performance of voltammetry is strongly influenced by the working 
electrode used, the design of this electrode is an area of major concern. 

In the last decade, electrode modification through the immobilization of different species on the 
electrode surface has caused great interest in the development of new electrochemical sensors for the 
detection and quantification of different analytes in solution [19–21]. Thus, an essential aspect in the 
design of these new sensors is the molecule immobilization procedure. In this sense, one of the widely 
used electrode modification approaches is the electropolymerization, where through consecutive 
voltammetry sweeps it is possible to generate a polymer layer on the electrode surface, which also 
enables to study the charge transfer kinetics [22]. However, another suitable strategy for molecule 
immobilization that has aroused interest in recent years is based on aryl diazonioum salt monolayers 
anchored on the electrode surface [23–25]. This approach allows the incorporation of a wide range of 
functional groups to the electrode surface [26] and leads to the development of a recognition device 
with high repeatability, reproducibility, and stability in the measurements reported [27–31]. 

Glutamic acid is one of the 20 most common amino acids that can be easily immobilized on the 
electrode surface, linked through an amino bond between α-amino and β-carboxylic acid groups 
[32,33]. In the literature there are many works based on the application of electrochemical sensors 
modified with glutamic acid by electropolymerization for the determination of different analytes, 
including caffeic acid [34], hydrazine [35], ascorbic acid [36,37], and hydrochlorotiazide [38] among 
others, which provide good detection and quantification limits. Nevertheless, from the best of our 
knowledge studies on the application of glutamic acid modified electrodes via electrografting have 
not yet been attempted. 

Regardless of the modification approach, it can be applied to different types of carbon surfaces 
such as graphite, glassy carbon, diamond, carbon nanomaterials and screen-printed carbon ink, 
among others. In this sense, in the last years, screen-printed carbon electrodes (SPCE) have generated 
great interest as a support for electrode modification. The screen-printing technology allows the mass 
production of reproducible, disposable, and relatively economical devices that usually include a 
three-electrode configuration printed on the same strip. Other important characteristics of these 
screen-printed electrodes (SPEs) are related with their miniaturized size and their capability to be 
connected to portable instrumentation, which makes them especially suitable for on-site analysis [39–41]. 

In this work, both electropolymerization and electrografting modification approaches have been 
considered for the first time in the development of a glutamic acid modified electrode using a screen-
printed carbon electrode as a support. Glutamic acid screen-printed carbon electrodes modified by 
both approaches electropolymerization (SPCE/PGA) and electrochemical grafting (SPCE/EGA) will 
be compared in terms of their electrochemical characterization and their analytical performance in 
the determination of hydrochlorothiazide. Moreover, the applicability of SPCE/EGA as a better 
sensor will be tested through its determination in a commercial anti-hypertensive drug. 

2. Materials and Methods 

2.1. Chemicals 

L-glutamic acid (≥ 99%), 4-aminobenzoic acid (ABA), N-hydroxysulfosuccinimide (sulfo-NHS), 
N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC), potassium dihydrogen 
phosphate, sodium monophosphate, ethanol and sodium nitrite were provided from Sigma-Aldrich 
(St. Louis, MO, USA). Potassium ferrocyanide K4[Fe(CN)6]·3H2O, hydrochloride acid, 2-(N-
morpholino)-ethanesulfonic acid (MES) and sodium hydroxide were supplied by Merck (Darmstadt, 
Germany). Potassium ferricyanide K3[Fe(CN)6] was purchased from Panreac (Barcelona, Spain). All 
reagents were of analytical grade. Hydrochlorothiazide (Pure) was provided by Laboratorio Chile® 
(Lab Chile®, Santiago, Chile). Commercial capsules of HCTZ (Hidroronol) from ITF-Labomed® 
(Santiago, Chile, capsules declared 50 mg hydrochlorothiazide per tablet) were commercially 
obtained. 
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Deionized and ultrapure water (Milli-Q plus 185 system, Millipore, Billerica, MA, USA) was 
used in all experiments. 

2.2. Instrumentation 

Cyclic voltammetric (CV) and differential pulse voltammetric (DPV) measurements were 
performed using an Autolab System PGSTAT12 (Eco Chemie BV, Utrecht, The Netherlands) attached 
to a Metrohm 663 VA Stand (Metrohm, Herisau, Switzerland). The acquisition and treatment of data 
were carried out by means of a personal computer with GPES software, version 4.9 (Eco Chemie). 

A traditional electrochemical cell based on a three-electrode system was used in all the 
experiments: (i) an Ag/AgCl in saturated KCl (Ag/AgCl/KClsat, CH-Instruments, Austin, TX, USA) 
electrode was used in aqueous media as a reference electrode; (ii) a platinum wire (CH-Instruments, 
USA) was used as a counter electrode; and (iii) the working electrode was a screen-printed carbon 
electrode modified with L-glutamic acid via both electropolymerization (SPCE/PGA) and 
electrografting (SPCE/EGA) procedures. SPCE/PGA and SPCE/EGA were prepared using a 
commercial screen-printed carbon disk electrode of 4 mm of diameter (reference DRP-110, DS SPE) 
supplied by DropSens (Oviedo, Spain). SPEs were connected to the Autolab System by means of a 
flexible cable (reference CAC, DropSens). 

For pH measurements, a Crison micro pH 2000 pH-meter was used, and all electrochemical 
measurements were carried out in a glass cell at room temperature (20 °C) without oxygen removal. 

2.3. Procedures 

2.3.1. Preparation of Modified SPCEs by Electropolymerization with L-Glutamic Acid (SPCE/PGA) 

Before starting the preparation of the L-glutamic acid modified screen-printed carbon electrode, 
the main parameters affecting the electropolymerization approach were optimized. Thus, both the 
number of voltammetric cycles and the scan rate applied between −0.2 to +2.8 V vs. Ag/AgCl/KClsat 
were studied. The optimization was performed considering the oxidation current peak response of 
100.0 μmol L−1 HCTZ in 0.01 mol L−1 HCl by DPV. Figure 1 shows the results of a two-factor central 
composite design (9 experiments) for the screening of a wide range of cycles (1–60) and scan rates (1–
200 mV s−1). The fitting of a quadratic second order polynomial model allowed us to draw a rough 
estimate of the response surface (the mesh in Figure 1), which exhibits the highest peak currents in 
the region corresponding to a small number of voltammetric cycles (between 0 and 10) and high scan 
rates (between 150 and 200 mV s−1). A new set of measurements carried out inside this restricted area 
(not shown) produced the optimum response for the combination of five cycles and 180 mV s−1. 
Therefore, according to these results, the unmodified SPCEs were immersed in L-glutamic acid 0.02 
mol L−1 prepared in hydrochloric acid 0.04 mol L−1 solution, and five voltammetric cycles were 
applied between −0.2 and +2.8 V with a scan rate of 180 mV s−1. The obtained SPCE/PGA was rinsed 
with ultrapure water and dried at room temperature. 

2.3.2. Preparation of Modified SPCEs by Electrografting with L-Glutamic Acid (SPCE/EGA) 

SPCE/EGA electrodes were prepared according to a two-step procedure previously described in 
the literature [29,30] with minor changes. 

Diazonium Salt Electrografting 

The aryl diazonium salt was obtained in-situ by adding 2 mmol L−1 of sodium nitrite to a cooled 
acidic solution (1 mol L−1 aqueous HCl) of 73 mmol L−1 4-aminobenzoic acid. The resulting solution 
was stirred for 30 minutes in an ice bath before the electrochemical grafting process [42] was 
performed. Then, the SPCE was immersed in 20 mL of the diazonium salt solution and 15 CV cycles 
between 0 V and −1 V at scan rate of 0.2 V s−1 were performed. Finally, the functionalized SPCE were 
carefully rinsed with Milli-Q water and methanol to remove any physisorbed compounds on the 
electrode surface. 
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Covalent Immobilization of L-Glutamic Acid via Carbodiimide Coupling 
Carboxyl groups generated during the electrografting process on SPCE surface were activated 

by dropping 10 μL of 26 mmol L−1 N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride 
(EDC) and 35 mmol L−1 of N-hydroxysulfosuccinimide (sulfo-NHS) in 100 mmol L−1 MES buffer (pH 
4.5) onto the electrode surface for about one hour, then the electrodes were rinsed with Milli-Q water 
and dried at room temperature. The activated carboxyl groups reacted overnight at 4 °C with amine 
groups of L-glutamic acid by placing 10 μL of 2.9 mg/100 μL of L-glutamic acid solution prepared in 
90:10 of 0.1 mol L−1 MES buffer (pH 4.5) and ethanol, respectively.  

 

Figure 1. Effect of the number of voltammetric cycles and scan rate on the peak height of HCTZ on 
SPCE/PGA. Conditions: 100.0 μmol L−1 of HCTZ in 0.01 mol L−1 HCl by DPV. Black points indicate 
experimental values according to a central composite design, whereas the mesh surface has been 
obtained by the fitting of a quadratic second order polynomial model to the experimental values. 

2.3.3. Voltammetric Measurements 

For differential pulse voltammetric measurements of hydrochlorothiazide using both 
SPCE/PGA and SPCE/EGA, the experimental conditions were a pulse amplitude of 5 mV, a pulse 
width of 0.0050 s, a scan rate of 5 mV s−1 scanning the potential from 0.70 to 1.60 V vs. Ag/AgCl/KClsat. 

Linear calibration plots were obtained by increasing HCTZ concentration in hydrochloric acid 
0.01 mol L−1 solution, according to previous studies [38,43]. 

The assay of HCTZ tablets was performed according to the Razak protocol [44]: three tablets 
were crushed and homogenized, and the amount equivalent to one tablet was dissolved in 50 mL 
0.02 mol L−1 NaOH and sonicated for 10 minutes. Then, a volume of the sample in 0.01 mol L−1 
hydrochloric acid solution was placed in the cell and the scan was recorded. Calibration was 
performed by the standard addition method: four aliquots of HCTZ standard solutions were further 
added and the respective curves were recorded. 

In both linear calibration plots and analysis of the tablet samples, to improve the repeatability of 
both electrodes SPCE/PGA and SPCE/EGA, a conditioning step was performed before each 
measurement by applying a conditioning potential (Econd) of 0.7 V for 30 s in the same measuring 
solution. In all cases, peak currents were calculated considering the background current. 
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3. Results and Discussion 

3.1. Electrochemical Characterization 

Electrochemical characterization of both SPCE/ PGA and SPCE/EGA was performed at each 
functionalization step by CV using 2 mmol L−1 K4[Fe(CN)6]·3H2O/K3[Fe(CN)6] as redox probe 
prepared in 100 mmol L−1 phosphate buffer at pH 7.4. The potential window was set between –0.4 
and 0.8 V at a 100 mV s−1 scan rate. As it can be seen in Figure 2, for SPCE/EGA after electrografting 
a current decrease, in comparison to bare SPCE, is observed, which can be attributed to the formation 
of a blocking layer [45]. For both SPCE/PGA and SPCE/EGA, the immobilization of L-glutamic acid 
via electropolymerization and covalent binding, respectively, resulted in both, higher current peaks 
in comparison with bare SPCE and a better reversibility of the couple Fe(II)/Fe(III), due to their 
enhanced surface area. This increase is more remarkable in the electrografting approach than in the 
electropolymerization one, resulting in a sensor with better chemical and mechanical stability. 

 
Figure 2. CVs plots recorded at each functionalization step for SPCE/PGA and SPCE/EGA. 
Measurements were performed in a 2 mmol L−1 ferrocyanide/ferricyanide solution in phosphate 
buffer at pH 7.4 by using a scan rate of 100 mV s−1. 

3.2. Repeatability and Reproducibility 

The proposed reaction mechanism for oxidation of HCTZ is shown in Scheme 1 [44,46]: 

 
Scheme 1. Proposed mechanism for oxidation of HCTZ. 

The electrochemical parameters applied for the detection of HCTZ (see Section 2.3.3) were 
optimized in a previous work [38]. 

Figure 3 shows a comparison of the analytical performance of SPCE/PGA (dotted line), 
SPCE/EGA (solid line), and bare SPCE (dashed line) for the determination of a solution containing 
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60.0 μmol L−1 HCTZ. A well-defined peak can be observed for HCTZ with all electrodes. However, a 
more intense peak is obtained using screen-printed electrodes modified with L-glutamic acid, 
particularly by electrografting modification procedure. 

 

Figure 3. DP voltammetric measurements of 60.0 μmol L−1 HCTZ in HCl 0.01 mol L−1 recorded on 
SPCE/PGA (dotted line), SPCE/EGA (solid line), and bare SPCE (dashed line). 

Repeatability and reproducibility of both SPCE/PGA and SPCE/EGA were determined by 
measuring a solution of 100.0 μmol L−1 HCTZ prepared in HCl 0.01 mol L−1. The estimated 
repeatability, which was calculated using each L-glutamic acid-modified electrode, using the same 
unit for five repetitive measurements, produced a relative standard deviation (RSD) of 3.3% and 3.2% 
for SPCE/PGA and SPCE/EGA, respectively. The reproducibility calculated from three different L-
glutamic acid-modified units for both electrodes within a series of five repetitive measurements 
yielded an RSD of 4.8% and 3.6% for SPCE/PGA and SPCE/EGA, accordingly. 

The reproducibility value achieved for SPCE/PGA is similar to that reported for a glassy carbon 
electrode modified also with L-glutamic acid via electropolymerization (3.61%) [38], whereas the 
obtained repeatability value is much better than that achieved using the L-glutamic acid glassy 
carbon electrode modified by electropolymerization (10.7%) [38]. Concerning the repeatability and 
reproducibility values attained for SPCE/EGA, these are of the same order of those reported for 
glutathione modified screen-printed carbon nanofiber electrode [30], glassy carbon modified with 
penicillamine [29] or epoxy graphite modified with crown ethers [28], which were modified using 
the same strategy (repeatability between 1.6% and 7.6%; and reproducibility between 2.1% and 8.9%). 

3.3. Calibration Data 

The analytical response of both SPCE/PGA and SPCE/EGA was compared under the above-
mentioned experimental conditions. For this reason, calibration plots of HCTZ by DPV ranging from 
10.0 to 500.0 μmol L−1 for SPCE/PGA and 1.0 to 500.0 μmol L−1 for SPCE/EGA were constructed. Table 
1 summarizes the analytical parameters obtained using a SPCE/PGA and a SPCE/EGA. The limit of 
detection (LOD) was evaluated as three times the standard deviation of the intercept over the slope 
of the calibration curve of the target ions. The limit of quantification (LOQ) was calculated by 
considering 10 times the previous relation and it was established as the lowest value of the linear 
calibration curves. The linearity was maintained up to a maximum concentration level of 300.0 and 
200.0 μmol L−1 for SPCE/PGA and SPCE/EGA, respectively. Figure 4 shows the evolution of DPV 
signals of HCTZ using both SPCE/PGA (Figure 4a) and SPCE/EGA (Figure 4b) when the 
concentration of HCTZ increases. In both cases, well-defined peaks close to 1.2 V can be observed 
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over the selected concentration range. The corresponding sensitivities (μA μmol−1 L) and the 
correlation coefficients for both SPCE/PGA and SPCE/EGA are presented in Table 1, being the 
SPCE/EGA more sensitive to the HCTZ determination than the SPCE/PGA. 

Table 1. Calibration data for the determination of HCTZ by DPV on SPCE/PGA and SPCE/ EGA in 
the presence of 0.01 mol L−1 hydrochloric acid. 

Electrode 
Hydrochlorothiazide
Sensitivity
(μA μmol−1 L) (a) R2 Linear range

(μmol L−1) (b) 
LOD
(μmol L−1) 

SPCE/PGA 0.0306 (0.0005) 0.999  28.5–300.0  8.55  
SPCE/EGA 0.0395 (0.0003) 0.999  3.78–200.0  1.13  

(a) The standard deviations are denoted by parenthesis.  
(b) The lowest value of the linear range was considered from the LOQ. 

 
Figure 4. DP voltammetric measurements of increasing concentrations of HCTZ in HCl 0.01 mol L−1 
recorded on (a) SPCE/PGA (from 10.0 to 300.0 μmol L−1); and (b) SPCE/EGA (from 1.0 to 200.0 μmol 
L−1). 
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As summarized in Table 1, both LOD and LOQ were at the level of μmol L−1, being those 
achieved using SPCE/EGA lower than for SPCE/PGA. Table 2 presents a comparison of the results 
obtained from SPCE/PGA and SPCE/EGA and those from other electrodes used in the determination 
of HCTZ, e.g., glassy carbon electrode [47], boron-doped diamond electrode [18], modified graphene 
oxide sheet paste electrode [48], or modified carbon paste electrodes [49,50]. In comparison with the 
summarized results, the LOD and LOQ values reached in this work for HCTZ determination are 
similar or even slightly lower depending on both the electrode and method considered. Regarding 
the determination of HCTZ with other glutamic acid-modified electrodes, the LOD and LOQ values 
obtained in this work for both SPCE/PGA and SPCE/EGA are much better than earlier results 
achieved using a glassy carbon electrode modified by electropolymerization with L-glutamic acid 
(LOD and LOQ values of 19.6 μmol L−1 and 65.0 μmol L−1, respectively) [38]. This improvement could 
be attributed to the much larger effective surface area that present the SPCEs in comparison to the 
conventional glassy carbon electrode, which allows immobilizing more selective ligands. Moreover, 
it must be highlighted that unlike glassy carbon, SPEs do not require any polishing prior to glutamic 
acid immobilization that, together with the good reproducibility, the disposable character and the 
low-cost commercial availability of the SPEs (which are the basis of both SPCE/PGA and SPCE/EGA) 
ensures an accessible and cheap methodology. 

Table 2. Comparison of the analytical parameters of some electrodes used in the determination of 
HCTZ. 

Method Electrode 
Linear range

(μmol L−1) 
LOD

(μmol L−1) 
LOQ  

(μmol L−1) [Ref] 

SWV BDDE 1.97–88.1 0.639 2.13 [18] 
DPV GC 71.5–1000.0 21.4 71.5 [38] 
DPV GC/L-PAG 65.0–1000.0 19.6 65.0 [38] 
DPV GC/D-PAG 63.3–1000.0 19.0 63.3 [38] 
ASV GC 4.0–40.0 0.0043 - [47] 
SWV 2CBFGPE 0.05–200.0 0.02 - [48] 
CV NCPE 220.0–5820.0 21.2 70.6 [49] 

SWV NiO/CNTs/DPID/CPE 10.0–600.0 5.0 - [50] 
DPV SPCE/PGA 28.5–300.0 (a) 8.55 28.5 This work 
DPV SPCE/EGA 3.78–200.0 (a) 1.13 3.78 This work 

(a) The lowest value of the linear range was considered from the LOQ.  
SWV: square wave voltammetry, DPV: differential pulse voltammetry; ASV: anodic stripping 
voltammetry; CV: cyclic voltammetry; BDDE: boron-doped diamond electrode; GC: glassy carbon; 
GC/L-PAG: GC modified by electropolymerization with L-glutamic acid; GC/D-PAG: GC modified 
by electropolymerization with D-glutamic acid; 2CBFGPE: 2-chlorobenzoyl ferrocene-modified 
graphene oxide sheet paste electrode; NCPE: carbon paste electrodes modified with nickel 
nanowrinkles; NiO/CNTs/DPID/CPE: carbon paste electrodes modified with NiO/CNTs and 2-(3,4-
dihydroxyphenethyl)isoindoline-1,3-dione; SPCE/PGA: screen-printed carbon electrodes modified 
with glutamic acid via electropolymerization; SPCE/EGA: screen-printed carbon electrodes modified 
with glutamic acid via aryl diazonium electrochemical grafting. 

Finally, if we compare the analytical performance of both developed electrodes SPCE/PGA and 
SPCE/EGA, from the reported calibration data (Table 1) coupled with the better repeatability and 
reproducibility previously observed, we can conclude that the immobilization of glutamic acid via 
electrochemical grafting is a much better approach for HCTZ determination. In addition, the 
durability of the glutamic acid immobilized via electrografting on each screen-printed device (about 
15 measurements without loss of sensitivity) is much higher than that shown for the glutamic acid 
screen-printed carbon electrodes modified by the electropolymerization approach (about seven 
measurements without loss of sensitivity). 
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3.4. Application to the Analysis of an Anti-Hypertensive Drug 

Considering the analytical performance and the reproducibility of both glutamic acid modified 
screen-printed electrodes, SPCE/EGA was considered for the determination of HCTZ in drugs and 
its applicability was tested by measuring a commercial anti-hypertensive drug (Hidroronol capsules, 
from ITF-Labomed®, which contain 50 mg HCTZ per tablet).  

HCTZ determination was performed by means of the standard addition method. DPV 
measurements were performed under the above-mentioned conditions, including four HCTZ 
additions. Representative voltammograms acquired in the analysis of the antihypertensive drug 
using SPCE/EGA are shown in Figure 5a. Well-defined peaks that behave equally to the calibration 
data were obtained and, as it is illustrated in Figure 5b, a good correlation of the representative DPV 
measurements carried out with SPCE/EGA was also obtained for HCTZ.  

Three replicates of the DPV determination of the anti-hypertensive drug using SPCE/EGA were 
performed. The obtained HCTZ concentration data are summarized in Table 3. Good agreement 
between the three replicates, as well as with the HCTZ value reported by ITF-LABOMED Laboratory 
was obtained.  

These successful results confirm the applicability of SPCE/EGA for the determination of HCTZ 
in drugs being, therefore, a valuable and interesting option to the most conventional electrodes for 
the determination of HCTZ. 

Table 3. Total concentration of HCTZ determined in three replicates of an anti-hypertensive drug by 
DPV on SPCE/EGA using standard addition calibration method in the presence of 0.01 mol L−1 
hydrochloric acid. Relative standard deviation (RSD) and relative error are also shown. 

CHCTZ (mg/tablet) RSD (%) Relative error (%) 
SPCE/EGA 52.1 5.6 4.3 

Reported value 50 - - 

 

Figure 5. DP voltammograms measured with SPCE/EGA in HCl 0.01 mol L−1 for an anti-hypertensive 
drug sample before and after four successive additions of a standard solution of HCTZ (a); and the 
corresponding HCTZ standard addition plot (b), including in parenthesis the standard deviations of 
the slope and the intercept. 

4. Conclusions 

The developed sensors for the determination of HCTZ are the first approach on glutamic acid-
based screen-printed electrodes. Two different modification approaches, electropolymerization and 
electrochemical grafting, were considered for the immobilization of the glutamic acid on the SPCE 
surface. Thus, in this work the analytical performance of both SPCE/PGA and SPCE/EGA were 
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compared, concluding that the SPCE/EGA has an enhanced chemical and mechanical stability with 
respect to SPCE/PGA and also performs much better for HCTZ determination. In comparison with 
the unique existing glutamic acid-based electrode for HCTZ determination, the repeatability, the 
reproducibility, as well as the calibration data obtained in this study for both developed sensors are 
much better than those achieved by the preceding glutamic acid glassy carbon electrode modified via 
electropolymerization [38]. Moreover, the developed sensors present all the addition advantages 
provided by the use of low-cost commercially available SPCE as a support which, unlike glassy 
carbon substrate, does not require polishing of the surface of the carbon screen-printed prior to 
glutamic acid immobilization.  

The applicability of SPCE/EGA, as the best-developed sensor, for the determination of HCTZ by 
DPV was demonstrated using a commercial anti-hypertensive drug with a good trueness and a high 
reproducibility inferred by the relative error (%) and the RSD (%), respectively. 

Thus, the above presented results suggest that the SPCE/EGA can be very appropriate for the 
determination of HCTZ at μmol L−1 levels in drug samples. It could be also applicable to biological 
samples like plasma or urine, but this would require a careful study about the possible interferences 
that could be present in such complex media. 
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