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Abstract: The Amperometric Gas Sensor (AGS) uses an electrode as the transducer element which
converts its signal into a current from the electrochemical reaction of analytes taking place at the
electrode surface. Many attempts to improve AGS performance, such as modifying the working
electrode, applying a particular gas-permeable membrane, and selecting the proper electrolyte, etc.,
have been reported in the scientific literature. On the other hand, in the materials community,
atomic gold has gained much attention because its physicochemical properties dramatically differ
from those of gold nanoparticles. This paper provides an overview of the use of atomic gold in
AGSs, both in a bulky AGS and a miniaturized AGS. In the miniaturized AGS, the system must be
redesigned; for example, the aqueous electrolyte commonly used in a bulky AGS cannot be used due
to volatility and fluidity issues. A Room Temperature Ionic Liquid (RTIL) can be used to replace the
aqueous electrolyte since it has negligible vapor pressure; thus, a thin film of RTIL can be realized in a
miniaturized AGS. In this paper, we also explain the possibility of using RTIL for a miniaturized AGS
by incorporating a quartz crystal microbalance sensor. Several RTILs coated onto modified electrodes
used for isomeric gas measurement are presented. Based on the results, the bulky and miniaturized
AGS with atomic gold exhibited a higher sensor response than the AGS without atomic gold.

Keywords: bulky AGS; electrode; miniaturized AGS; room temperature ionic liquid; isomers

1. Introduction

Gas sensor technologies are extensively used for a wide range of applications, such
as Heating/Ventilation/Air/Conditioning (HVAC) systems, the semiconductor industry,
smart cities, security, environmental monitoring, the oil and gas industry, automotive and
transportation applications, the medical industry, smart agriculture, etc. [1–4]. The market
size of gas sensors reached $3.16 billion in 2022 and is projected to surpass approximately
$6.2 billion by 2030 [1–4]. Furthermore, the Compound Annual Growth Rate (CAGR)
is forecasted to grow around 8.81% from 2023 to 2030 [1–4]. The major factors driving
the demand for gas sensors are sensor miniaturization coupled with the improvement of
communication, networking, and wireless technology like the Internet of Things (IoT),
cloud computing, big data, etc. [1–4].

There are many gas sensor types such as electrochemical sensors, semiconductor sensors,
photoionization sensors, biosensors, etc. [1–4]. The semiconductor gas type is the most popular
type, particularly to build the electronic nose system, but it requires a high-power consumption
and typically its selectivity is lower than electrochemical sensors [5,6]. The biosensor type has
a high selectivity by employing a certain living microorganism to detect the analyte; however,
reproducibility and operating temperature become the issues [7]. Furthermore, with regard to
the photoionization type, it has a high sensitivity, but it is relatively expensive [8,9]. Based
on the report, the electrochemical (EC) sensor dominated the market share in 2022 with the
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largest global revenue approximately 23.0% [1–4]. The high demand for EC sensors is due to
this sensor type possessing a good selectivity coupled with less power consumption [1–4].

The Amperometric Gas Sensor (AGS) is one of the popular classes of EC sensor [10].
Numerous works have been performed to improve the catalytic activity of the AGS; one
of the common ways is by modifying its working electrode (WE) using a catalyst [10–14].
In an AGS, a catalyst made from biological elements using a living organism offers high
selectivity; however, the main issue is related to the short lifetime, and it cannot be operated
at a high temperature [7]. On the other hand, nanoparticles (NPs) have been widely used
as a catalyst for many years. Although NPs play a notable role as a catalyst, their catalytic
activities depend on their size. Reduction to atomic cluster shows a remarkable catalytic
activity [15,16].

According to numerous published reports, the physical and chemical properties of atomic
gold clusters are dramatically different from those of gold NPs and bulk gold [11,12,15]. In an
atomic gold cluster, the quantum and geometrical effects possessed by each atom contribute
to its unique properties, such as the oscillation property known as odd-even pattern which
NPs do not have. In addition, the catalytic activity shown by atomic clusters is much higher
than gold NPs [14].

Atomic clusters are a promising catalyst for AGS. A higher sensor response can be
achieved than using NPs due to the larger active area undergoing catalytic reactions. There
are a number of research works using NPs for gas sensors [17–21]; however, the research
related to atomic clusters for amperometric sensors is very limited [11–14,22–26]. In this
paper, we describe how to fabricate an atomic gold cluster for gas measurement using a
bulky AGS system. We further explain this research for a miniaturized AGS.

Sensor miniaturization is a promising technology development that principally offers
numerous benefits in terms of response time, power consumption, portability, and chip
integration. However, a low sensor signal is the main issue; hence, the atomic catalyst is
indeed required to enhance the sensitivity. In the miniaturized AGS, Room Temperature
Ionic Liquid (RTIL) was used as a substitute for the aqueous electrolyte due to fluidity
and evaporation issues [27]. Although there are many works related to RTILs used for
miniaturized AGSs [28,29], using atomic gold with the RTIL is still very new and can be
explored. There have been no review papers of AGSs with atomic metal, although there is
a good review paper of general AGSs [10].

Herein, the gas measurements using atomic gold-decorated AGSs for several volatile
organic compounds (VOCs) are presented. We also provide our perspective to enhance the
performance of miniaturized AGSs with atomic gold and RTILs.

2. Methodology

In this review paper, several related works were included which come from our previ-
ous works and other relevant research papers. Table 1 summarizes the main papers used in
this manuscript including information like the keywords, references, and publication year.

Table 1. Relevant papers/works and keywords used in this review paper.

No. Year [Ref] Keywords

1. 2008 [10] Amperometric Gas Sensor (AGS)

2. 2008 [10] Electrolytes for AGS

3. 2020 [28], 2018 [30], 2014 [29], 2008 [11,31] Room temperature ionic liquid in AGS

4. 2023 [19], 2022 [20], 2020 [32], 2017 [7],
2012 [18], 2010 [33]

Catalysts for AGS, i.e., biological elements,
metal oxide nanostructures, metal
nanoparticles, atomic metal

5. 2022 [34], 2018 [35], 2012 [15] Atomic metal catalyst

6. 2020 [36], 2013 [21,37] Polyaniline (PANI)
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Table 1. Cont.

No. Year [Ref] Keywords

7. 2011 [12], 2012 [14], 2013 [22], 2016 [38],
2020 [23,26]

Atomic gold decorating PANI for
amperometric sensors

8. 2008 [11], 2021 [39], 2023 [25] Atomic gold with RTIL for AGS

In this review paper, firstly, some basic knowledge is provided regarding the working
principle of AGSs with various electrolytes and catalysts. Then, the new sensing material
related to the atomic metal properties is presented. Afterward, the experimental procedure
to fabricate atomic gold on a bulky AGS is explained as well as the results of several VOCs
in gas phase measurement. In a miniaturized AGS, RTIL can be used to substitute for
the aqueous electrolyte. Several research publications are also explained briefly in Table 2
which includes both bulky and miniaturized AGS systems with atomic gold.

Table 2. Summary of conducted research works related to atomic gold for AGS.

AGS System Year [Ref.] Summary

Bulky AGS system

2020
[23]

■ building the atomic gold deposition system for a bulky AGS,
■ verifying the odd-even behavior for Pt/PANI/AuN (where N = 1 to 4) in

aqueous electrolyte (i.e., KOH);
■ target compound was propanol isomers measured in liquid and gas phase.

2020
[26]

■ gas measurements using Pt/PANI/Au2;
■ target compounds were alcohols, esters, ketones, and carboxylic acids.

Miniaturized AGS
system

2021–2023
[25,39]

■ fabricating Pt/PANI/Au2 on IDA electrode;
■ proposing RE using Ag/AgCl ink;
■ RTIL was [EMIM][Otf] only;
■ only one fixed EC potential explored;
■ target compounds were propanol isomers vapors only.

2022–2023
[6,27,40]

■ fabricating Pt/PANI/Au2 on several IDA electrodes;
■ three RTILs were explored, i.e., [EMIM][Ac], [EMIM][Otf], and [EMIM][Cl];
■ several fixed potentials were investigated;
■ target compounds were gaseous butanol isomers;
■ finding the possible combination of RTILs and the fixed potentials to obtain a

good discrimination capability among butanol isomers.

3. Amperometric Gas Sensors (AGSs)
3.1. Working Principle

An amperometric gas sensor (AGS) measures current as a sensor signal. AGSs are also
well-known as amperostatic, polarographic, micro fuel cells, etc., but amperometry is the
most popular name [10]. AGSs can be built using two- or three-electrode configurations. In
an AGS, the three-electrode configuration shown in Figure 1 is commonly used because
it uses the reference electrode to maintain a stable reaction and thus does not require
calibrating to another electrode. Although the two-electrode configuration is simpler, the
net voltage applied to the liquid depends on the current. We should avoid this situation.
Figure 1 depicts the AGS with three electrode configuration, i.e., working electrode (WE),
reference electrode (RE), and counter electrode (CE) where all the electrodes must be in
contact with the electrolyte (a conductive solution) and connected to a potentiostat (either
variable or constant potential can be used) [10]. Typically, an AGS uses a gas-permeable
membrane to prevent electrolyte leakage and to filter the target gas (or analyte) flowing
into the system [10]. The electroactive species of the target gas flowing into the AGS system
undergoes the reduction and oxidation (redox) reaction when a suitable EC potential is
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applied. The oxidation takes place at the anode (working electrode) and the reduction
occurs at the cathode (counter electrode). The redox reaction which occurs at the CE and
the WE can be determined in Equations (1) and (2), respectively [10].

O1n+ + ne− → R1 (reduction at CE as cathode) (1)

R2 → O2m+ + me− (oxidation at WE as anode) (2)
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The reduction at the cathode (CE) contributes the electrons (e) which combine with the
oxidized species (O1) to produce a reduced species (R1). At the same time, on the contrary,
oxidation occurs at the anode (WE) where a reduced species (R2) generates the oxidized
species (O2) and the electrons (e) are transferred to the WE. The charges are generated on
each electrode surface; when an external circuit connects the WE and CE, then the electrons
will flow from anode (WE) to cathode (CE) [10].

AGSs follow Faraday’s law which can be briefly explained as follows: a number of
electrons are generated from (at the WE) or consumed (at the CE) by an analyte, then the
charge occurs on each electrode surface depending on the amount of the analyte taking
part in the EC reaction at the electrode. Afterward, the current relies on the EC reaction rate
which is directly proportional to the amount of analyte concentration. Consequently, in
an AGS, the current is also proportional to the analyte concentration that can be measured
between the WE and CE. The AGS generates a sensor signal when the analyte contains
the electroactive species because it undergoes an EC reaction which either consumes or
generates electrons (i.e., a redox reaction) [10].

For the electrodes, typically, the WE is made from a noble metal that is resistant to
corrosion, such as gold or platinum. In addition, many forms of carbon are biocompatible;
graphite and glassy carbon are also popular materials used for the WE [10]. Afterward,
the CE is required to complete the circuit and must also be stable during the EC reaction;
platinum is also generally used for the CE in an AGS. The RE is used to form a stable
EC reaction and to avoid a voltage drop during measurement. Hence, basically, the RE
should be not sensitive to relative humidity (RH), temperature, and other contaminants or
reactants; Ag/AgCl is a very popular material used as the RE in the AGS, particularly in
the three-electrode configuration [10,11,24].

There are numerous benefits offered by an AGS such as good selectivity, moderate cost,
low power consumption, and good stability. Several methods can be conducted to improve
the performance of AGSs such as modifying the WE, depositing a catalyst on the electrode,
selecting the electrolyte, etc. An AGS provides the high electroanalytical performance at a
modest price, thus making it a very popular choice for industrial applications. In addition,
the sensor dimensions of an AGS are easy to miniaturize.
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3.2. AGS with Various Electrolytes

The electrolyte is an ionically conductive medium which plays an important role in
EC cells such as being the medium for the EC reaction, solubilizing the analyte, connecting
all the electrodes, assisting the charge transport in the EC cell, etc. [10]. The electrolyte
must be stable physically and chemically during the measurements for a long period. There
have been three common types of electrolytes used in AGS systems, i.e., aqueous elec-
trolytes, nonaqueous electrolytes, and solid electrolytes. Examples of aqueous electrolytes
include sulfuric acid, potassium chloride, sodium hydroxide, acid, and base solutions.
The nonaqueous electrolytes are propylene carbonate with lithium perchlorate, diethyl
carbonate, tetrahydrofuran, etc. [10]. Furthermore, the solid electrolytes are the polymer
Nafion, yttria-stabilized zirconia (YSZ), NASICON, β-alumina, etc. [10].

The AGS can operate from low to high temperatures which range from a temperature
below freezing up to over 1000 ◦C and the material selections, including the electrolyte
are also changed significantly. Generally, liquid electrolytes like aqueous and nonaqueous
electrolytes operate at room temperatures and are commonly used for safety, industrial
hygiene, and medical applications, whereas the solid electrolytes are used at a high temper-
ature and are often used in stack gas process monitoring, automotive applications, internal
combustion engine control systems, monitoring in harsh environments, etc. [10].

The aqueous electrolyte belongs to the liquid electrolytes. It is a water-based solvent
including alkaline (base) and acid. Although in the 1970s nonaqueous and solid polymer
electrolytes emerged for AGSs, the aqueous electrolyte is still favorable even nowadays due
to its high conductivity, insensitivity to moisture, and good stability. The big companies like
Figaro Engineering Inc. (Osaka, Japan) and Alphasense Inc. (Great Notley, Braintree, Essex,
UK) are also still selling AGSs with an aqueous electrolyte. For example, the TGS 5042 for
the detection of CO from Figaro Engineering Inc. uses a mixed alkaline electrolyte that
consists of potassium bicarbonate (KHCO3), potassium carbonate (K2CO3), and potassium
hydroxide (KOH) [41]. The oxygen sensors products from Alphasense Inc. like the O2-A2
and O2-A3 sensors, also use a liquid electrolyte [42,43].

Although AGSs with liquid electrolytes have been used in many fields, the main issue
encountered is the prolonged response time due to the presence of the gas-permeable
membrane [10]. Therefore, it is impractical for sensing rapid changes of gas that occur
within a second or less. Generally, aqueous electrolytes have a narrow EC potential window
which limits the detection of a target gas which has redox reactions at a high EC potential.
In addition, miniaturizing an AGS with a liquid electrolyte is hard to realize due to fluidity
and evaporation issues since a gas permeable membrane is necessary to avoid electrolyte
leakage and to slow down the evaporation rate of the electrolyte [10].

In this paper, we explain an AGS for room temperature operation. An atomic gold-
decorated working electrode using an aqueous electrolyte, i.e., perchloric acid (HClO4) is
shown. Afterwards, we describe the gas measurements for a bulky amperometric sensor
using a base electrolyte, i.e., potassium hydroxide (KOH). We further show the research
into a miniaturized amperometric sensor by applying a room temperature ionic liquid
(RTIL) to substitute for KOH, which is explained in Section 3.3.

3.3. AGSs with Room Temperature Ionic Liquids (RTILs)

To miniaturize the AGS, the system must be redesigned, i.e., the sensor dimensions
including the electrolyte selection. Although the solid polymer electrolyte (SPE) has been
used since the 1970s, it has a low conductivity working at room temperature and mostly is
used at extreme temperatures [10]. In 1914, Paul Walden introduced the term Ionic Liquid
(IL) when he reported the properties of ethyl ammonium nitrate ([EtNH3][NO3]) [31]. Ionic
liquids are molten salts that are fluid over a wide range of temperatures, i.e., from low
to high temperatures without any significant concentration losses due to a high thermal
stability and low volatility. IL has been used for many applications, e.g., electrolyte,
sensors, coating, drug delivery, enzymatic reaction, solvents, gas chromatography materials,
etc. [31]. ILs can have various interactions, i.e., weak interactions, strong interactions like
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the Coulombic, specific interactions, nonspecific interactions, isotropic interactions (e.g.,
dispersion, van der Waals forces, solvophobic forces), and anisotropic interactions (e.g.,
halogen bonding, dipole-dipole, magnetic dipole, electron pair donor/acceptor interactions,
hydrogen bonding), etc. [44].

Room temperature ionic liquids (RTILs) are a class of ionic liquids that exist in a liquid
phase below 100 ◦C (298 K) [11,31,44]. Recently, room temperature ionic liquid (RTIL) has
been a promising choice for a miniaturized AGS operating at ambient temperature. RTIL
offers many benefits: Firstly, it has negligible vapor pressure and very low volatility at
room temperature thus the membrane-free gas sensor can be realized, hence, theoretically,
the response time can be faster. Secondly, it is widely reported that RTIL has a wider EC
potential window than liquid electrolytes which allows for detecting more target gasses
where the redox reaction takes place at a high EC potential. Lastly, using RTIL, a thin film
for a miniaturized AGS can be realized and the fluidity issue can be removed due to its high
viscosity [27]. In this section, we also provide brief information regarding the structure and
several physical-chemical properties of RTIL.

The RTIL structure is formed by the combination of a cation (positively charged) and
an anion (negatively charged) [28,31]. Generally, RTIL is made from asymmetric organic
cations and organic or inorganic anions [28,31]. The cation and anion combinations influ-
ence the physical and chemical properties of RTIL. For example, with regard to the melting
point property, an asymmetric cation contributes to a lower melting point. As reported
by MacFarlane et al., using a highly symmetrical species, ammonium and pyrrolidinium
cations had a “solid” phase at ambient temperature, asymmetrical (or low-symmetry)
species resulted in a “liquid” phase at ambient temperature [31,45]. The hydrophobic and
hydrophilic properties of RTILs are also varied according to the cation-anion combination.
Typically, the anions are responsible for water uptake. Although cations play a minor
role in water absorption, the shorter the alkyl chain, the more it contributes to greater
water uptake. As shown in Figure 2, the water uptake of 1-ethyl-3-methylimidazolium
([EMIM]+) is greater than 1-butyl-3-methylimidazolium ([BMIM]+) followed by 1-hexyl-
3-methylimidazolium ([HMIM]+) ∼= 1-octyl-3-methylimidazolium ([OMIM]+). Figure 2
depicts the hydrophobic and hydrophilic properties of several cations and anions [6].
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Another important RTIL property is the electrochemical window (ECW). It is the
range of the operating EC potential from the RTIL. A wider ECW allows a greater range
of target gasses to be detected. The ECW is determined as the difference between anodic
limit potential (VAL) and the cathodic limit potential (VCL) calculated in Equation (3). The
cations and anions determine the VAL and VCL, respectively [46,47].
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ECW = VAL − VCL (3)

Viscosity and conductivity are also important properties influenced by the combination
of cation and anion. Although high viscosity can slow down the diffusion rate in EC
reactions, an RTIL film with high viscosity is necessary because it must remain on the
substrate. Furthermore, conductivity is the main property of the electrolyte. Since RTIL
is composed of ions, i.e., cations and anions, it has purely an intrinsic conductivity that
depends on the ion mobility [46,48]. In fact, the conductivity change can be associated
almost directly with the viscosity change [48]. Figure 3 shows the conductivity—viscosity
relation for imidazolium cation-based RTILs with different alkyl chains. As shown in
Figure 3, the conductivity is decreased by the increase in alkyl chain length. A longer
alkyl chain has a higher viscosity due to a high viscosity reducing the ion mobility, hence
decreasing the conductivity [46]. RTIL is formed of cation-anion combinations, different
pairs of cation-anion combinations; provide different physical and chemical properties.
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In a miniaturized AGS, the amount of RTIL needed is in the microliter range or less.
In 2018, Gondosiswanto et. al. used one µL of RTIL, i.e., 1-butyl-1-methylpyrrolidinium
bis(trifluoromethylsulfonyl)imide ([BMP][Ntf2]), to measure oxygen gas at room temperature
in a miniaturized AGS system [30]. Figure 4 shows the miniaturized AGS used two kinds of
electrodes, i.e., a macro disk electrode (Figure 4a) and a microelectrode array (Figure 4b). The
MDE and MEA had the same dimensional size, i.e., 10 mm × 6 mm × 0.75 mm. The MDE
was made of platinum for both the CE and pseudoreference electrode, and gold material was
used as the WE (diameter, 1 mm). The WE, CE, and RE of the MEA were made of gold and
had a microelectrode array with 15 pairs of 10 µm electrodes. Based on the results shown in
Figure 4c, the MEA had higher sensor response than the MDE (both MDE and MEA applying
a fixed potential of −1.2 V). However, the work included only applying RTIL and modifying
the WE without a catalyst. A catalyst is necessary to boost the performance either for bulky
or miniaturized AGS systems. In Section 3.4, the information regarding several catalysts
commonly used for AGS systems was provided.

3.4. AGSs with Various Catalysts

The WE is frequently doped with a catalyst to improve the sensitivity, selectivity,
and the response time in the AGS system. A catalyst is a substance that increases the EC
reaction rate without being consumed. A desirable catalyst should meet several criteria,
i.e., it should be stable, compatible, active, selective [49]. As we know, the size of the
electrode’s active area influences the rate of the analyte in EC reactions. Typically, the
smaller the electrode surface, the lower the sensor signal. The catalyst must be attached to
the WE surface, having a long-term stability, and not dissolve in the electrolyte during the
measurements. There are several catalysts commonly used in AGSs derived from metal
materials and biological elements. Table 3 summarizes the various catalysts commonly
applied to the WE; the benefits and drawbacks are also provided. In this research, we
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focused on decorating the modified WE with atomic gold; hence, in the next section, an
atomic gold catalyst is explained in more detail.
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Table 3. Various catalysts commonly used in AGSs. Reproduced from [6].

Catalyst Benefits Drawbacks Ref.

1. Biological element high selectivity short lifetime and slow response time [7]

2. Metal oxide (MO) nano-structures

the sensitivity can be improved by
modifying the morphology; a

high surface-to-volume ratio can
be achieved by making a

porous structure

the catalytic activity is still considered low;
hence, the metal NPs are frequently added [18,19,21,28,29]

3. Metal nanoparticles (NPs) high catalytic activity
and sensitivity

requires a proper host matrix; the selectivity
is low for isomeric compounds [19]

4. Atomic metal
remarkable catalytic activity, a
high selectivity and sensitivity,

capable of distinguishing
isomeric compounds

long process; image-based validation (like
SEM and TEM) has not been conducted yet

due to resolution limits, particularly for
atomic gold doped in PANI

[12–14,34,50]
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4. Atomic Metal Catalysts

Over the past few decades, many researchers have been attracted to metal nanopar-
ticles (NPs) with diameters less than 100 nm because their electrical, optical, chemical,
magnetic, and thermodynamic properties differ from bulk metal. In other words, the
catalytic activity of metal NPs are scalable corresponding to their diameter size. In contrast,
metal clusters (CLs) composed of less than 100 atoms with a diameter less than 2 nm exhibit
a novel catalytic property that greatly differs from those predicted by the simple scaling
laws used for metal NPs. In metal clusters, the unique catalytic property is obtained due to
quantum size effects and geometrical effects [15,30]. Figure 5 describes the position of metal
NPs, metal clusters (CLs), and a single atom, oriented to their diameter sizes, approximate
number of atoms, and molecular geometries [15,34,35].
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The catalytic activity shown by metal catalysts depends on their size, and the reduction
to atomic level exhibits a remarkable catalytic property. As shown in Figure 6, although
bulk metal is conductive, bulk metal (gold) is inert, resulting in a poor catalyst. When the
size decreases to NPs, then the catalytic property is improved because of the increase in
surface area. Furthermore, by reducing the size to atomic metal, a remarkable catalytic
property is achieved due to a high density of atomic metal sited in the host matrix so that a
larger active area simultaneously undergoes the catalytic activities. Figure 6 illustrates the
single atom noble metal formation which started from a bulk metal to metal nanoparticles
(NPs), then, down to atomic metal sited in a host matrix.
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4.1. Polyaniline (PANI)

It is well known that a host matrix is required to site a catalyst and must be prepared
first. In this research, a conducting polymer polyaniline (PANI) was selected as the host
matrix. PANI was an organic conducting polymer (CP) arranged from an aniline monomer.
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PANI is discovered in the mid-19th century. It is one of the oldest CPs and has been
extensively studied and used in many fields due to its low cost, simple fabrication, low
toxicity, biocompatibility, etc. [21,36,37]. The molecule of PANI possesses either benzenoid
or quinonoid or both types [11,12,14]. Based on the reduction-oxidation state, there are
three forms of PANI, i.e., leucoemeraldine state (yellow color), pernigraniline state (purple
color), and emeraldine state; emeraldine base (alkaline) has a blue color and emeraldine salt
(acidic) has a dark color [11,36]. Therefore, there are six forms of PANI, i.e., pernigraniline-
salt, pernigraniline-base, leucoemeraldine-salt, leucoemeraldine-base, emeraldine-salt, and
emeraldine-base, of which the emeraldine-salt is electronically conductive and other forms
are not [11,36]. The electrical conductivity of a pure emeraldine-salt (without doping)
ranges from 10−2 to 100 S/cm [36].

The electrical conductivity of PANI can be decreased over a long cycle time [11,36].
There are several ways to diminish the drawback, i.e., doping with a catalyst, copolymeriza-
tion, incorporating nanocomposites, etc. [11,36]. The doping process using PANI can be con-
ducted in acidic media such as HCl, HClO4, H2SO4, H3PO4, dodecyl-benzenesulfonic acid,
camphorsulfonic acid, and para-toluenesulfonic acid, etc. [36]. Figure 7 depicts a typical
cyclic voltammogram (CV) curve of PANI in an acidic solution of HCl. In acidic media, com-
monly, PANI has two redox peaks. The first redox occurs between 0 to 0.25 V vs. Ag/AgCl
which refers to the conversion of fully reduced leucoemeraldine to partially oxidized
emeraldine. Furthermore, the second redox occurs between 0.6 to 0.8 V vs. Ag/AgCl which
is associated to the conversion of emeraldine to fully oxidized pernigraniline form. The
EC potential of peaks 1 and 1’ corresponds to expulsion of protons and independent to the
pH change, while, peaks 2 and 2’ are dependent on the pH change and responsible for the
uptake of anions to the film; in addition, their shape and position strongly depend on the
anion and acid type [11,36]. The irreversible degradation of PANI film occurs when a high
EC potential is applied, i.e., more than 0.8 V when using acidic medium like HCl [11,36].
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4.2. Basic Theory of Atomic Gold Clusters

For more than four decades, due to quantum effects, the unique properties and re-
markable catalytic activity possessed by atomic metal clusters (CLs) have been massively
studied theoretically and experimentally [11–14,22,24]. The geometrical shape of atomic
CLs is one of the main reasons for their unique properties [15]. Density functional theory
(DFT), a popular tool used in many fields, has been applied for modeling quantum mechan-
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ical phenomena computationally. In this field, DFT is used to determine various possible
geometrical shapes that exist for atomic CLs. Figure 8 shows the various equilibrium geo-
metrical shapes using DFT for atomic gold CLs in neutral, anionic, and cationic conditions.
As depicted in Figure 8, several possible geometrical shapes exist at a certain number of
clusters (n). For example, when n = 3, there are three possible geometrical shapes in which
every shape possesses a unique catalytic property [51].
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Figure 8. Various possibilities of geometrical shapes for atomic gold clusters anionic, neutral, and
cationic equilibrium. The numbers of atomic gold clusters are 3 ≤ n ≤ 7. Reproduced with permission
from [51]. Copyright (2004) by the American Physical Society.

In the atomic metal CLs, the difference of energy between the highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), popularly
known as HOMO-LUMO gap energy, is mostly utilized to confirm the atomic metal CLs
formation [14,51]. DFT has been widely used to predict the HOMO-LUMO gap energy of
atomic metal CLs like gold, silver, copper, etc. The formation of atomic metal CLs exhibits
an odd-even pattern of HOMO-LUMO gap energy which corresponds to the number of
atoms in CLs as shown in Figure 9. Typically, the HOMO-LUMO gap energy for even-
numbered atomic gold clusters is higher than odd-numbered; this odd-even pattern (as
depicted in Figure 9) is an indirect method to confirm the formation of atomic gold clusters.
In amperometry, another way to confirm the atomic gold clusters uses the electrooxidation
of full CV scans from propanol isomers in a base medium that is explained in the next
section after preparation of atomic gold decorating PANI [12,14,24].

4.3. Atomic Gold Decorating PANI

Herein, the atomic gold catalyst is doped into a host matrix of PANI using an acidic
medium, i.e., perchloric acid (HClO4). Figure 10 depicts the process of forming the Au
clusters from atom-by-atom growth in PANI. There are several procedures conducted:
Firstly, sweeping the potential from −0.2 V to +0.8 V (I to II) to make fully oxidized PANI
into pernigraniline form. Afterwards, the potential is held at +0.8 V (III), then, AuCl−4
anions are introduced to PANI (pernigraniline form) in situ. The PANI (pernigraniline
form) uptakes one anion forming a PANI*AuCl−4 and the excess of AuCl−4 anions are rinsed
away using HClO4 at +0.8 V (IV). Finally, the reduction of AuCl−4 to Au (V) can be achieved
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by sweeping the potential from +0.8 V to −0.2 V. Then the PANI/Au1 (i.e., PANI doped
with one atomic gold AuN=1) is obtained. This cycle can be repeated N times to dope N
atomic gold clusters in PANI, for example, PANI/Au2 means that the atomic gold doping
process is repeated twice [23,26].
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from [26].

The full CV scans of atomic gold clusters doped in PANI using HClO4 were recorded
and depicted in Figure 11. The potential was swept from −0.2 V to +0.8 V vs. Ag/AgCl
reference electrode forward and backward. As shown in Figure 11, CV curves of five
different conditions of PANI were recorded, i.e., initial CV of PANI before doping process (I,
black dash line color), the recorded CV for reduction of AuCl−4 in PANI, forming PANI/Au1
(II, red color), the CV for PANI/Au1 (III, blue color), the recorded CV for reduction of
AuCl−4 in PANI/Au1, forming PANI/Au2 (IV, orange color), and the CV for PANI/Au2 (V,
green color). During the atomic gold deposition process, particularly for a higher number
of atomic gold clusters, PANI is oftentimes fully oxidized for a prolonged time (+0.8 V)
which frequently causes the irreversible degradation indicated by the decreased current
density area. As shown in Figure 11, the current density of PANI/Au2 was reduced (green
color) compared to the initial CV of PANI (black dashed line) meaning that PANI film
underwent a degradation during the doping process. Although PANI/Au2 experienced a
degradation, the performance PANI/Au2 for propanol isomers in base medium exhibits
the highest catalytic activity compared to PANI without atomic gold and PANI/Au1. It
means that the Au2 clusters have benn successfully fabricated and sited in PANI.
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5. Atomic Gold-Decorated Amperometric Sensor

An atomic gold catalyst was successfully used for an amperometric sensor by Janata’s
research group whose works can be found here [11–14,22]. In the following years, an
atomic gold deposition system in a bulky system was built in the Nakamoto Laboratory,
Tokyo Tech, Tokyo, Japan [23,24]. The success of the atomic gold cluster formation in PANI
was confirmed using electrooxidation of 0.5 M propanol isomers in 1 M KOH. Figure 12
depicts the effect of the number of atomic gold clusters AuN (N = 1 to 4) in PANI for
electrooxidation of propanol isomers in KOH. Several modified WEs (i.e., Pt/PANI/AuN)
were assessed in this measurement.

As shown in Figure 12a, the current densities were higher for even numbers of atomic
gold clusters (N = 2 and 4) than the odd-numbered atoms (N = 1 and 3) both for 1-propanol
and 2-propanol due to HOMO-LUMO gap energy variation which is similar to the obtained
results from related research [12,14,53]. Two peaks occurred, i.e., peak 1 (around −0.2 V)
and peak 2 (around +0.2 V). This first oxidation peak (peak 1) is associated with the platinum
(Pt) electrode. The second oxidation peak (peak 2) is attributed to the presence of the atomic
gold formation which gives a strong indication that atomic gold clusters sited in PANI
undergo electrooxidation for propanol isomers in KOH. In addition, using Pt/PANI/Au2,
for 1-propanol, peak 1 is higher than peak 2, whereas for 2-propanol, peak 1 is lower than
peak 2; these results were also similar to other related researchers’ works [11–14,22].

Furthermore, as shown in Figure 12b, the odd-even pattern of peak 2 which is associ-
ated with atomic gold formation was also obtained both for 1-propanol and 2-propanol; the
atomic gold clusters with even-numbered atoms showed a higher catalytic activity than
the odd-numbered atoms. Thus, atomic gold cluster formation was confirmed. Later, we
focused on fabricating Pt/PANI/Au2 only for gas measurements, although the experiment
here was conducted in the liquid phase.
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6. Atomic Gold Decorating a Bulky Amperometric Gas Sensor (AGS)
6.1. Atomic Gold Deposition System for a Bulky AGS

Figure 13a depicts the flow cell where the WE, CE, and RE were located. The flow
cell was made from polycarbonate with diameter Ø = 60 mm fabricated by Ono denki,
Japan. The WE was made of platinum (Pt) with diameter Ø = 3 mm purchased from BAS
Japan. The Pt thin film (Nilaco, Tokyo, Japan) and Ag/AgCl in 3 M NaCl (BAS, Tokyo,
Japan) were used as RE and CE, respectively. The flow cell had two plates, a front and
a back plate. The Pt thin film as CE was sealed between a front and a back plate using
a polydimethylsiloxane (PDMS) membrane and O-ring to seal the two plates to prevent
electrolyte leakage.

Figure 13b shows the complete atomic gold deposition system used for a bulky AGS.
The 0.2 mM potassium tetrachloroaurate (KAuCl4) was dissolved in 0.1 M perchloric
acid (HClO4) to supply the noble metal Au. A syringe pump (Legato 110, KD Scientific,
Holliston, MA, USA) was utilized to drive KAuCl4 into the flow cell. Furthermore, to rinse
the excess of gold anions, 0.1 M HClO4 was used, and it was driven by a peristaltic pump
(13-876-2, Fisher Scientific, Pittsburgh, PA, USA). A solenoid valve (EXAK-3, Takasago,
Tokyo, Japan) was used to control the switching between KAuCl4 and HClO4. The tube used
chemically inert tygon tubes (LMT-55, Saint Gobain, Courbevoie, France). The potential
applied on the WE was controlled by a laboratory-fabricated potentiostat based on a low-
noise JFET (Junction Field Effect Transistor) operational amplifier (TL074, Texas Instruments,
Dallas, TI, USA). An Arduino was used to control the on and off states of the solenoid
valve and peristaltic pump. All measurements were taken using MATLAB script file
(2017a, Mathworks) via a Serial-USB protocol. The procedure for making a modified WE of
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Pt/PANI/Au1 followed the timing diagram shown in Figure 13c. Furthermore, if we want
to fabricate Pt/PANI/Au2, then the cycle, i.e., steps A to G, must be repeated twice.
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6.2. Sensor Fabrication and Validation

Firstly, PANI was prepared on a Pt WE (diameter Ø = 3 mm, BAS Japan) using
electropolymerization of 0.1 M aniline (C6H5NH2) in 2 M tetrafluoroboric acid (HBF4) at
a constant potential for about 200 seconds. After the atomic gold deposition process was
completed, the atomic gold cluster Au2 formation on the modified WE was checked using
electrooxidation of propanol isomers in alkaline medium. Figure 14a depicts the full CV
scans of Pt/PANI/Au2 in 1 M KOH for 0.5 M 1-propanol (nPrOH) and 0.5 M 2-propanol
(iPrOH), respectively. According to Figure 14a, there was a significant difference between
1-propanol and 2-propanol. Both propanol isomers had two oxidation peaks; 1-propanol
(nPrOH) had a higher first peak (−0.2 V) than its second peak (+0.2 V), and 2-propanol
(iPrOH) had a higher second peak (+0.2 V) than its first peak (−0.2 V), these results agreed
with other related research works and the previous explanation in Section 5 (atomic gold
decorating amperometric sensor) [12,14,53]. The reproducibility of Pt/PANI/Au2 was
also checked using several electrodes as shown in Figure 14b. According to Figure 14b,
although some variations occurred, discriminable patterns between 1-propanol (nPrOH)
and 2-propanol (iPrOH) could be seen and exhibited a similar curve to that in Figure 14a.
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6.3. Response to Propanol Isomers in Gaseous Phase

The atomic gold-decorated amperometric sensor with the analytes in liquid phase
has been massively studied and reported by Janata’s and other related research [11–14,22].
Chakraborty et al., progressed this research for a gaseous phase measurement. Herein,
we provided the gaseous phase measurement for propanol isomers using the system
shown in Figure 15. The propanol vapor was exposed to the bulky AGS system (WE:
Pt/PANI/Au2) for 5 min and the CV curve was recorded. Figure 15a,b depict the CV
response for nPrOH and iPrOH, respectively. CV curves with several concentrations are
included, i.e., 0%, 30%, 60% and 90% of full-scale concentration of 1600 ppm (measured
using ppbRAE 3000, RAE Systems, Schaumburg, IL, USA). Based on Figure 15a,b, there was
a clear difference between the curves for a concentration of 0% (without analytes) and the
presence of the analytes. For gaseous nPrOH, the peak at −0.2 V was more discriminable,
moreover, for 90% concentration. For iPrOH, using concentrations of 30% and 60%, both
the oxidation peaks at − 0.2 V and +0.2 V have strongly discriminable features; when using
90% concentration, the peak at − 0.2 V is lower than the peak at +0.2 V. Based on these
results, the measurement of propanol isomers in the gaseous phase was similar to those in
the liquid phase meaning that Pt/PANI/Au2 was catalytically active for gas measurements.
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Figure 15. Gaseous propanol isomer measurement using Pt/PANI/Au2 at various concentrations
([C] = % concentration of full scale 1600 ppm): (a) the CV scans of 1-propanol; (b) the CV scans of
2-propanol. The scan rate was 100 mV/s. Reproduced from [23].
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These works successfully demonstrated the formation of atomic gold in a bulky
AGS system. In addition, Pt/PANI/Au2 exhibited electrocatalytic activity even in gas
measurements. Afterward, we developed this research into a miniaturized AGS system as
shown in Figure 16. The sensor design, electrolyte, and atomic gold deposition system will
be redesigned and explained in more detail in Section 7.
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7. Atomic Gold Decorated Miniaturized Amperometric Gas Sensor (AGS)
7.1. A Miniaturized Amperometric Gas Sensor (AGS)

An interdigitated array electrode (IDA) as shown in Figure 17 was selected for the
miniaturized AGS in which all the electrodes made from platinum and deposited on a
same quartz plate (glass) substrate. The commercial IDA was purchased from BAS Co.,
Ltd., Tokyo, Japan. The detailed IDA structure is depicted in Figure 17.

Chemosensors 2024, 12, x FOR PEER REVIEW 18 of 28 
 

 

These works successfully demonstrated the formation of atomic gold in a bulky AGS 

system. In addition, Pt/PANI/Au2 exhibited electrocatalytic activity even in gas measure-

ments. Afterward, we developed this research into a miniaturized AGS system as shown 

in Figure 16. The sensor design, electrolyte, and atomic gold deposition system will be 

redesigned and explained in more detail in Section 7. 

 

      

Figure 16. Conversion from a bulky AGS to a miniaturized AGS. 

7. Atomic Gold Decorated Miniaturized Amperometric Gas Sensor (AGS) 

7.1. A miniaturized Amperometric Gas Sensor (AGS) 

An interdigitated array electrode (IDA) as shown in Figure 17 was selected for the 

miniaturized AGS in which all the electrodes made from platinum and deposited on a 

same quartz plate (glass) substrate. The commercial IDA was purchased from BAS Co., 

Ltd., Tokyo, Japan. The detailed IDA structure is depicted in Figure 17. 

 

Figure 17. The interdigitated array (IDA) electrode selected for a miniaturized AGS. Reproduced 

from [27]. 

7.2. RTILs as Electrolytes 

In the miniaturized AGS, besides redesigned sensor dimensions, the electrolyte was 

also changed. Herein, the RTIL was selected to substitute for the volatile aqueous electro-

lyte (e.g., KOH). The common RTIL imidazolium was chosen and used without further 

purification (purchased from Tokyo Chemical Industry Ltd., Tokyo, Japan). Three RTILs 

having the same cations and different anions were used, i.e., 1-ethyl-3-methylimidazolium 

acetate ([EMIM][Ac]), 1-ethyl-3-methylimidazolium trifluoromethanesulfonate 

([EMIM][Otf]), and 1-ethyl-3-methylimidazolium chloride ([EMIM][Cl]). The different 

Figure 17. The interdigitated array (IDA) electrode selected for a miniaturized AGS. Reproduced
from [27].

7.2. RTILs as Electrolytes

In the miniaturized AGS, besides redesigned sensor dimensions, the electrolyte was
also changed. Herein, the RTIL was selected to substitute for the volatile aqueous electrolyte
(e.g., KOH). The common RTIL imidazolium was chosen and used without further purifica-
tion (purchased from Tokyo Chemical Industry Ltd., Tokyo, Japan). Three RTILs having
the same cations and different anions were used, i.e., 1-ethyl-3-methylimidazolium acetate
([EMIM][Ac]), 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][Otf]), and
1-ethyl-3-methylimidazolium chloride ([EMIM][Cl]). The different pairs of cation-anion
combinations possess different physical and chemical properties summarized in Table 4.
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Table 4. The basic physicochemical properties of the RTILs used. Reproduced from [27].

Identifier CAS
Number Full Name Viscosity, η

(P a s)

Density,
ρ

(Kg/m3)

Conductivity,
κ

(S/m)

EC Window
(V)

[EMIM] [Ac] 143314-17-4
1-ethyl-3-

methylimidazolium
acetate

0.143 1099.3 0.2 −2.3 to +0.9

[EMIM] [Otf] 145022-44-2

1-ethyl-3-
methylimidazolium
trifluoromethane-

sulfonate

0.042 1385.9 0.9 4.3

[EMIM] [Cl] 65039-09-0
1-ethyl-3-

methylimidazolium
chloride

0.047 (a) 1112 (a) 0.108 -

The information of η, ρ, and κ at 298 K (25 ◦C), except (a) 353.15 K (80 ◦C).

7.3. Atomic Gold Deposition System for the Miniaturized AGS System

Figure 18a depicts the chamber for installing IDA electrode used for atomic gold
deposition process. The IDA was installed using USB connector to the chamber. The USB
socket has four pins for the IDA’s electrode lines, i.e., WE 1, WE 2, RE, and CE. During
the deposition process, the CE and WEs from IDA and the external RE of Ag/AgCl were
connected to a lab-fabricated potentiostat (based on IC TL074, Texas Instruments, Dallas,
TX, USA). Figure 18b shows the complete atomic gold deposition system for a miniaturized
AGS. The working principle of atomic gold deposition process and timing diagram for a
miniaturized AGS was the same as the atomic gold for a bulky AGS system explained in
Section 6.1; However, the flow cell was changed to a chamber as shown in Figure 18.
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7.4. Sensor Fabrication and Validation

The WEs were polymerized with polyaniline. The polymerization of PANI was con-
ducted in Sone Laboratory at Tokyo Institute of Technology, Tokyo, Japan. The PANI was
used as a support matrix, polymerized using 0.1 M aniline (C6H5NH2) in 2 M tetrafluoro-
boric acid (HBF4). The electropolymerization of PANI used the Galvanostatic method with a
constant current of 0.56 mA for 260 s. The thickness was approximately 0.05 mm. Figure 19
depicts the CV curve of modified IDA electrodes in the 0.1 M HClO4, i.e., Pt/PANI/Au0
(black color), Pt/PANI/Au1 (red dashed line), and Pt/PANI/Au2 (blue line). As shown
in Figure 19, the current density of Pt/PANI/Au2 experienced a reduction which also
occurred in the bulky system. This degradation is due to the PANI film being held at high
potential (at +0.8 V) for a long time during the atomic gold deposition process.
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Figure 19. The CV curve of several modified IDA electrodes in 0.1 M HClO4. The scan rate was
50 mV/s. Reproduced from [6].

Figure 20 show the measurement results of electrooxidation from 0.5 M propanol iso-
mers in 1 M KOH using three different modified IDA electrodes, i.e., Pt/PANI/Au0 (with-
out atomic gold, black dashed line), Pt/PANI/Au1 (red dashed line), and Pt/PANI/Au2
(blue for 1-propanol and green for 2-propanol). As shown in Figure 20, Pt/PANI/Au2 had
the highest current density compared to Pt/PANI/Au0 and Pt/PANI/Au1. The obtained
electrooxidation results for 1-propanol and 2-propanol were also like the Pt/PANI/Au2
in a bulky system, i.e., 1-propanol had a higher first peak (at −0.2 V) than its second peak
(+0.2 V), 2-propanol had a higher second peak (at +0.2 V) than its first peak (at −0.2 V).
Thus, we confirmed the success of Au2 cluster formation on the miniaturized AGS.
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7.5. Sensors Using RTIL to Develop a Miniaturized AGS

In this research work, we also incorporated a microgravimetric sensor, i.e., a quartz
crystal microbalance sensor (QCM) to check the possibility of target gas adsorption in RTIL.
QCM is a very mass-sensitive sensor and has a high stability. QCM follows the Sauerbrey
formula where the frequency change is proportional to the amount of adsorbed mass (from
analyte) on its surface [39,54,55]. Three AT-CUT QCMs, having a basic resonant frequency
of 9 MHz, were used (purchased from Seiko EG&G Ltd., Tokyo, Japan). The three RTILs
used for the IDA were also used as coating on QCMs, i.e., [EMIM][Ac], [EMIM][Otf], and
[EMIM][Cl]. The dip-coating method was used to coat the RTIL onto the QCM as illustrated
in Figure 21 (dip coater: VLAST45-06-0100, THK Co., Ltd., Tokyo, Japan). Furthermore, the
coating information for the QCM is provided in Table 5.

Before conducting gas measurement, the platinum RE of the IDA electrode must be
painted using Ag/AgCl ink (purchased from BAS Co., Ltd., Tokyo, Japan). A RE using
Ag/AgCl is preferable to avoid a voltage drop and to maintain a stable EC reaction [54].
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Figure 22a shows the painting of Ag/AgCl ink to cover the platinum RE. The Ag/AgCl
ink was allowed to dry for around 2 days to obtain strong adhesion to the platinum RE.
Both Pt/PANI/Au0 and Pt/PANI/Au2 electrodes had a dried Ag/AgCl ink applied to
their RE. Afterward, 5 µL of RTIL was drop-casted on the IDA electrode surface as shown
in Figure 22b, where all the WEs, CE, and RE were covered. Furthermore, the estimated
thickness of RTILs drop-casted on the IDA was measured using the QCM, as summarized
in Table 6.
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Table 5. The coating information for the QCM. Reprinted from [27].

Identifier

QCM Coating Information

Solvent Concentration
(mg/mL)

Pull-Up Speed
(µm/s)

∆F
(Hz)

∆M
(µg)

d
(nm)

[EMIM][Ac] Acetone 10 1000 435 0.46 17.12

[EMIM][Otf] Acetone 9.09 1000 577 0.62 28.50

[EMIM][Cl] Acetonitrile 9.09 100 872 0.93 33.09
∆F is the frequency change, d is the coating thickness, assumed to be distributed uniformly on gold electrodes on the
QCM’s plate, and ∆M is the mass loaded after the dip-coating process calculated from Sauerbrey’s equation [54].
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Figure 22. The preparation before gas measurements: (a) Ag/AgCl ink painted and dried on RE;
(b) 5 µL of RTIL drop-casted on IDA surface. Reproduced from [27].

Table 6. The thickness of RTILs drop-casted on the IDA estimated using QCM. Reproduced from [6].

QCM’s Coating Information

Identifier ∆F
(Hz)

∆R
(Ω)

∆M
(µg)

d
(nm)

[EMIM][Ac] 5206.089 883.77 5.5 516.91

[EMIM][Otf] 5921.939 945.09 6.3 467.36

[EMIM][Cl] 2186.273 871.9 2.3 215.05
The RTIL thickness was assumed to be distributed uniformly on one side of the QCM’s electrodes. The mass
loaded was calculated from Sauerbrey’s formula [54].
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7.6. Response to Butanol Isomers in Gaseous Phase

This work also incorporated a microgravimetric sensor working simultaneously with
the IDA during the gas measurement. QCMs coated with the same RTILs as used for the
IDA were used to check the solubility of the target gas compound in the RTILs and to
provide a broad understanding related to the sensing behavior of RTILs with different
transducers. Different relative concentrations of butanol isomers were explored, i.e., 0%,
25%, 50%, 75%, and 100%; relative concentration was the relative concentration to the full
scale of the ODS system with 6 mL of analyte put in the vial measured by a photoionization
sensor (RAE 3000 PID). The amount of concentration released by ODS and its equivalent
to RAE 3000 PID (in ppm) reading is available in Figure 23. As shown in Figure 23, using
QCM coated with the same RTILs used for the IDA, the solubility of 1-butanol vapors was
recorded which showed by frequency change response even for low 25% concentration. As
shown in Figure 23, QCMs coated with RTILs exhibited the same trends, i.e., the higher
the concentration of target gas, the higher the frequency change response. QCM follows
Sauerbrey’s formula, i.e., the loaded mass on its surface is proportional to frequency change
and different frequency change magnitudes are due to varying adsorptions of each RTIL to
the certain target gas concentration. Furthermore, for the miniaturized AGS, as shown in
Figure 24, Pt/PANI/Au2 exhibited a higher current density than Pt/PANI/Au0 meaning
that atomic gold clusters of Au2 were catalytically active in RTIL of [EMIM][Ac].
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gas using QCM coated with RTIL. Each experiment had 5 min for target gas exposure and 10 min for
recovery (N2 flow). Reproduced from [27].
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Figure 25 shows the sensor response from Pt/PANI/Au2 and Pt/PANI/Au0 for
butanol isomers at 100% RC with five repeated measurements per analyte. Various EC po-
tentials for each RTIL were explored. The results for [EMIM][Ac], [EMIM][Otf], [EMIM][Cl]
are shown in Figure 25a–c, respectively. As depicted in Figure 25a, using [EMIM][Ac], three
fixed potentials were used for the measurement of butanol isomers, i.e., +0.25 V, +0.5 V, and
+0.9 V against the Ag/AgCl reference electrode. According to Figure 25a, Pt/PANI/Au2
contributed more to the measurement of butanol isomers vapors because it showed a higher
sensor response than Pt/PANI/Au0. Furthermore, for [EMIM][Otf] shown in Figure 25b,
Pt/PANI/Au2 was the only electrode contributing to the measurement of gaseous butanol
isomers, whereas Pt/PANI/Au0 had no response. Lastly, for [EMIM][Cl] as shown in
Figure 25c, the influence of Pt/PANI/Au2 was not significant compared to Pt/PANI/Au0.
Overall, Pt/PANI/Au2 showed a particular electrocatalytic activity depending on the RTIL
and fixed potential.
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Figure 25. The sensor response from Pt/PANI/Au2 and Pt/PANI/Au0 from five measurements
at 100% RC of butanol isomers for: (a) [EMIM][Ac]; (b) [EMIM][Otf]; (c) [EMIM][Cl]. Reproduced
from [6].
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Figure 26 shows the comparative results of several miniaturized AGSs using [EMIM][Ac],
i.e., Pt only, Pt/PANI/Au0, and Pt/PANI/Au2. Figure 26 depicts average sensor responses
from five measurements. An amount of 5 µL of [EMIM][Ac] was used as the electrolyte and
dried Ag/AgCl ink as the RE. The butanol isomer vapors were at 100% concentration. The
analyte’s exposure time was 5 min, followed by 10 min (N2 flows) of recovery time. According
to Figure 26, Pt/PANI/Au2 exhibited the highest sensor response for all butanol isomers
vapors at all fixed potentials, i.e., +0.25 V, +0.5 V, +0.9 V, meaning that the electrocatalytic
properties possessed by the Au2 clusters influenced the enhanced sensitivity of gaseous
butanol isomers compared to Pt/PANI/Au0 and the commercial Pt IDA electrode.
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Figure 26. The sensor response for several AGSs coated with [EMIM][Ac] at fixed potentials of
+0.25 V, +0.5 V, and +0.9 V vs. Ag/AgCl. Reproduced from [27].

8. Performance Enhancement of Miniaturized AGSs in the Future

In this review paper, we put our perspectives enhancing the performance of minia-
turized AGSs in the future. So far, a miniaturized AGS with RTIL has not been released
onto the commercial market. In this work, we successfully verified and demonstrated
the enhanced sensor response to the measurement of butanol isomers using atomic gold
on a miniaturized AGS with different RTILs. However, the sensor response was not en-
hanced significantly compared to those IDA electrodes without atomic gold. The sensitivity
was not as high as in an alkaline medium when using a bulky AGS system. The current
challenges and improvements can be explained as follows:

1. A slow diffusion transport. It is widely reported that RTIL has a high viscosity thus
leading to a slower diffusion transport than aqueous electrolytes like KOH, NaOH,
etc. Therefore, a thin RTIL sensing film could enhance both responses and sensitivity
compared to a thick RTIL film [25,26];

2. The electrode. The miniaturized AGS electrode must be redesigned to use a thin
layer of RTIL. According to C.A. Gunawan et.al. and R. Gondosiswanto et.al. [25,26],
a micro-electrode array type offered a higher sensitivity than the macro-electrode
because it could form a thinner RTIL although it had a smaller area. There are several
ways to make a micro-electrode array, for example by using partial printing in which
a hydrophobic layer of 1-hexadecanethiol (HDT) was used to set a boundary between
fingers. The boundary is important to keep a thin RTIL since the aggregation of RTILs
between neighbours often occurs, forming a thick RTIL;

3. The density of atomic gold. As the WE area gets shrinkage in a miniaturized AGS,
a high density of atomic gold is preferrable to achieve a high catalytic activity. To
increase the density of atomic gold, a porous host matrix is preferrable. It is widely
reported that using a porous PANI the atomic metal can be doped not only on the
surface but also inside the PANI, and thus it can boost the catalytic activity [56,57]. In
addition, a study regarding optimization of the atomic gold deposition process must
be conducted, such as the flow rate and the concentration of the solution.

In future trends, a miniaturized sensor is favorable because it possesses many advan-
tages, such as easy chip integration, lower concentration of target compound detection,
rapid response, etc. [1–4]. However, a major issue is the low signal response. Atomic gold
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catalyst doping in AGSs shows promising results by achieving a higher sensor response
than AGSs without atomic gold. Therefore, an atomic metal catalyst with RTIL films is a
new frontier in miniaturized AGS systems. Several ways have been explained to improve
the performance. If we achieve all things above, a sensor with a high selectivity, sensitivity,
and fast response time can be realized. In addition, since there are many RTILs available
on the market, a gas sensor array system can be realized. AGS array technology has been
massively used for chemical detection of gases which is also well known as the electronic
nose [58–60].
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