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Abstract: Leaves of yerba mate plant (Ilex paraguariensis) have a wealth of nutrients, ingested by
people who drink them in the hot water infusion popularly known as mate. In the present work, the
laser-induced breakdown spectroscopy (LIBS) technique was applied for the first time to analysis of
the extractability of macronutrients, including Mg, Ca, Na, and K, in commercial samples of yerba
mate. Powdered samples from leaves’ material were used to simulate the infusion process in the
laboratory. To carry out LIBS analysis, the emission spectra were measured before and after the
infusion from the samples prepared in pellets. The spectral data were processed and analyzed by a
specially designed algorithm. A coefficient of extractability was calculated for each of the investigated
macronutrients in the range 34–76%, showing a good correlation with the corresponding elemental
concentrations leached into the water infusion, determined by Atomic Absorption Spectroscopy. The
obtained results demonstrated the feasibility of our approach for the rapid analysis of extractable
macronutrients present in yerba mate leaves.

Keywords: laser-induced breakdown spectroscopy; LIBS; yerba mate; macronutrients

1. Introduction

Over recent years, research has shown that the leaves of yerba mate plant (Illex
paraguariensis) are an important source of dietary minerals which are essential to the proper
functioning of our body [1]. In South America, yerba mate is extensively cultivated in
Argentina, Brazil, Uruguay, and Paraguay. Among them, Argentina is the major producer,
consumer and exporting country worldwide, where it is consumed in the form of a hot
water infusion traditionally known as mate [2]. Mate is prepared with the dried minced
leaves of the plant and a given proportion of twigs, which is added as diluent. During
the infusion process, the minerals contained in the leaves of yerba mate leach into the
water which is directly ingested by consumers. According to their concentration level,
these essential minerals are usually classified into macronutrients (i.e., P, Mg, Ca, Na,
and K), and micronutrients (i.e., Mn, Cu, Mo, Cr, Fe, and Zn). While trace amounts
of micronutrients are needed in the daily diet, major quantities of macronutrients are
imperative to reach the body’s nutritional and health requirements. The amounts of
macronutrients contained in the crop yields of yerba mate can be affected by several
issues along the supply chain, including soil characteristics, water irrigation, amendments,
harvesting and processing practices, as well as the conditions under which the infusion
is prepared, such as water temperature. In this scenario, the detection of macronutrients
available in the final commercial products together with the evaluation of their extractability
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in the infusion, namely, the amount of the macronutrients that is effectively extracted into
water, is of paramount importance for both yerba mate producers and consumers.

Nowadays, many scientific works have been reported dealing with the elemental
analyses of yerba mate leaves and its infusion, as well as other plant stimulants, such as tea
and coffee. In these studies, different analytical tools, such as ion beam and spectrometric
techniques, were routinely employed. For instance, Wrobel et al. [3] determined total Al,
Cr, Cu, Fe, Mn, and Ni in black tea, green tea, Hibiscus sabdariffa, and Ilex paraguariensis
(mate) by electrothermal atomic absorption spectrometry (EAAS). Giulian et al. [4] analyzed
dried powdered leaves of yerba mate of 20 different Brazilian trademarks. The elemental
concentrations of several elements, including Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu,
Zn, and Rb in the commercialized samples and after the infusion were quantitatively
determined by using a particle-induced X-ray emission (PIXE) technique. For calibration
purposes, apple leaf standards were employed together with the assistance of two other
techniques, Rutherford backscattering spectroscopy (RBS) and elastic recoil detection
analysis (ERDA). The relative elemental percentages removed from the samples in the
infusion were studied, as well as their dependence on water volume and temperature for
one specific trademark. Malik et al. [5] carried out a quantitative analysis of nutritious and
harmful elements for the human diet present in both the raw material and infusions from
31 samples of tea, coffee, rooibos, honeybush, chamomile, and 3 samples of mate, available
in the market in Czech Republic. Inductively coupled plasma optical emission spectrometry
(ICP-OES) was employed for determination of Al, B, Cu, Fe, Mn, P, and Zn, while atomic
absorption spectrometry (AAS) was used for the analysis of Ca, K, and Mg. In addition,
Pozebon et al. [6] investigated toxic and nutrient elements in 54 commercial brands of yerba
mate from South America. The study was aimed at the determination of trace elements,
contaminants, and the calculation of the percentage of extraction of the products produced
in the different countries. ICP-OES was employed for the analysis of Al, Ba, Ca, Cu, Fe, K,
Mg, Mn, P, Sr, and Zn, and inductively coupled plasma mass spectrometry (ICP-MS) for
the analysis of Li, Be, Ti, V, Cr, Ni, Co, As, Se, Rb, Mo, Ag, Cd, Sb, La, Ce, Pb, Bi, and U.
Barbosa et al. [7] characterized the composition, the hot water solubility of the elements,
including C, N, K, Ca, Mg, P, Al, Mn, Na, Fe, Zn, Ba, Cu, Ni, Pb, Cr, Mo, As, Co, Ag, V, and
Cd, and the nutritional value of yerba mate (Ilex paraguariensis St. Hill) fruits and leaves
collected from four yerba mate provenances of Brazil. Moreover, Vaccari Toppel et al. [8]
determined the elemental composition of yerba mate leaves, including Ca, K, Mn, Mg, P,
Al, Fe, B, Zn, Ba, Cu, Ni, Cr, V, and Co, from the Southern Region of the state of Paraná,
Brazil, by means of ICP-OES. The concentrations of some key elements (i.e., Mn and Al)
were found to be closely correlated to the chemical attributes of the cultivated soil of the
sampled plants, such as pH. In a different research study, Urruchua et al. [9] investigated
recycling of yerba mate waste as a raw material to produce biochar, a sorbent material
with a magnetic response that can be potentially applied as a sustainable solution for water
remediation processes. The main chemical composition of the material, including C, O, Na,
Mg, P, S, K, and Ca, was determined by energy dispersive spectroscopy (EDS).

In spite of their high accuracy, the mentioned analyses often require wet chemistry
procedures for sample preparation, e.g., acid digestion, or the use of ionizing radiation
sources, e.g., X-rays. At the same time, laser spectroscopic techniques have gained great
attention because of their advantageous analytical and practical conditions, namely, remote
optical access, avoiding the use of ionizing radiations or chemical reagents and reduced
preparation of the samples [10]. Among them, laser-induced breakdown spectroscopy
(LIBS) is a useful atomic spectroscopic technique with distinctive advantages in terms of
simplicity and versatility to accomplish rapid simultaneous multi-elemental analysis of the
chemical composition of a wide variety of sample materials (gas, liquid, or solid) with a
minimum of sample treatment [11,12]. LIBS is a very active field of research worldwide,
with a widespread range of applications in many fields. Regarding LIBS applications for
agricultural studies, the direct analysis of plant materials (leaves, roots, and fruits) has
been reported due to its importance to monitoring nutrients and toxic metals [13]. From
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a review by Santos Jr. et al., it is noticed that Na has been noticeably less investigated
than other major elements and only at a qualitative level (see Ref. [13], Table 1 (pp. 4–5)).
This may be mainly attributed to the ease of Na contamination of liquid solutions in
the laboratory and the high sensitivity for detection of this element for most analytical
methods. Thus, the joint action of these issues usually hinders the achievement of accurate
quantitative analysis of this element. In a previous study by our group, the suitability of
the LIBS method was demonstrated for the analysis of Na in vegetable samples through a
convenient liquid-to-solid matrix transformation [14].

To the best of the authors’ knowledge, the application of the LIBS technique for the
analysis of yerba mate plant has not yet been investigated. To fill the gap, in the present
work, the LIBS technique was applied for the first time to the systematic study of yerba mate
samples. The focus of the research was mainly on the determination of the extractability of
the main macronutrients (Mg, Ca, Na, and K) contained in the final products bought by
consumers. Moreover, bearing in mind that the commonly used method of constructing
calibration curves to achieve quantitative results may be quite cumbersome and time
consuming, with a lack of matrix-matched standards for plant materials, which would
limit the applicability of the technique in real-life cases, a derived objective was to develop
and test a LIBS-based analytical methodology relying on state-of-the-art insight into the
emission and absorption of radiation by LIPs. To evaluate the analytical performance of our
approach, the LIBS results were compared with the corresponding concentrations leached
into water infusion determined by Atomic Absorption Spectroscopy (AAS). The obtained
results demonstrated the feasibility of the LIBS technique for the direct rapid analysis of
extractable macronutrients contained in yerba mate samples.

2. Materials and Methods
2.1. Samples

In this study, 10 samples of yerba mate (labelled from 1 to 10) of different trademarks
produced in Argentina were employed. The first stage of sample preparation included
the successive steps of grounding in a mortar, sieving to eliminate the twigs, and mixing
to obtain a homogeneous powder of the leaves’ material. Then, the powdered samples,
representative of the different brands, were divided into 2 identical sets to be analyzed
before and after the infusion process, respectively. The former set was preserved uncon-
taminated along the infusion process, whilst each powder belonging to the latter set was
leached with hot water to simulate the infusion process in the laboratory, as explained in
the following. Each powder was put in a small permeable bag which was immersed in
200 mL of ultrapure water at a temperature of 80 ◦C for 30 min. After infusion, the powders
were dried at room temperature. Finally, all the pairs of samples (i.e., before and after the
infusion) corresponding to a different brand were prepared in the form of solid pellets
for LIBS analysis (Section 2.2). Each pellet was prepared by mixing 2 g of powder with a
binder (2 g of polivinilic alcohol, Merck, (C2H4O)x, diluted in 5 mL of hot ultrapure water)
to improve cohesion. The mixture was stirred well to homogenize it, poured in a plastic
die, and left dry at room temperature until hardening to get pellets of approximately 2 g
of weight (diameter 3 cm, thickness 0.5 cm). It is worth mentioning that the water and
the binder contained trace amounts of the analytes that did not significantly affect their
concentrations in the samples. Moreover, the liquid solutions obtained from the individual
infusions were frozen and saved to be analyzed using the AAS technique (Section 2.3).

2.2. LIBS Analysis

The employed LIBS equipment is shown in Figure 1. A Q-switched pulsed Nd:YAG
laser (Big Sky Laser Technologies Inc., Naperville, IL, USA, wavelength 1064 nm, pulse
width 5–7 ns, pulse energy 50 mJ) operated at 2 Hz was used as the excitation source to
generate the plasmas in air at atmospheric pressure. The laser beam was directed through
a reflective mirror and focused with a lens (200 mm focal length) on the samples. The
estimated incident laser irradiance on the sample surface was about 0.5 GW/cm2. The
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plasma emission was collected and focused with a quartz lens (100 mm focal length)
onto the entrance slit (width 200 µm) of a Czerny–Turner spectrometer (Acton Research
Corporation, Acton, MA, USA, focal length 0.39 m, grating of 1200 grooves/mm, spectral
resolution 6 Å) coupled with a non-intensified, non-gated linear photodiode array detector
(Princeton Instruments Inc., Trenton, NJ, USA, Model RY–1024) with spectral coverage in
the 2000–10,000 Å range, over which all atomic and single-ionized elements have emission
lines. The detector was triggered at the start of the laser pulse in such a way that it recorded
the plasma emission during its entire life time. During the acquisition of the spectra, the
samples were rotated at approximately 100 rpm to avoid the formation of a deep crater
on their surface. The spectral lines of the elements of interest were measured in suitable
spectral ranges (width 500 Å). The recorded spectrum on each spectral range was the
result of the in-software accumulation of individual spectra generated from 50 consecutive
laser shots to improve the signal-to-noise ratio, after discarding the first 5 cleaning shots
delivered to avoid any possible superficial contamination due to handling of the samples.
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Figure 1. Experimental LIBS setup.

2.3. AAS Analysis

The determination of Mg, Ca, Na, and K in the liquid samples of the infusions was
performed by a flame atomic absorption spectrometer (GBC 906, Keysborough, Australia)
in air–acetylene flame under standard conditions [15]. The analyzer was calibrated by
means of calibration solutions prepared by diluting standards solutions. Linear calibration
curves (R2 ≥ 0.997) were obtained. The liquid samples were properly diluted and the
corresponding absorbance values were measured to obtain the respective concentrations of
the analytes. For each sample, two replicated measurements were carried out and further
averaged to obtain its final concentration.

3. Results and Discussion

LIBS spectra from yerba mate samples were measured in four selected spectral regions:
2650–3100 Å, 3650–4100 Å, 5650–6100 Å, and 7450–7900 Å, where the main emission lines
of the macronutrients investigated were detected. In each region, elemental identification
was based on the NIST Atomic Spectra Database [16]. The spectra measured in the different
spectral regions are shown in Figure 2 (for sample #1), where intense emission peaks of
Mg, Ca, Na, and K are observed. In addition, O was observed because of contributions of
both the surrounding ambient air excited by the plasma plume and the sample. Very weak
spectral lines corresponding to traces of other minor elements, such as Si, Fe, Al, Ti, and
Sr, were also detected. After acquisition, the spectral data (i.e., 1024 pixels vs. emission
intensity) were processed by a specially designed algorithm implemented in the MATLAB®
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environment which involved successive steps of (i) pre-processing, (ii) spectral analysis,
and (iii) calculation of the extractability of the macronutrients, as explained in the following.
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Figure 2. Measured and pre-processed LIBS spectra from yerba mate (sample #1).

3.1. Data Pre-Processing

Firstly, the measured spectra were pre-processed to prepare them for subsequent
analysis. Specifically, pre-processing comprised automated routines for edge trimming to
eliminate non-meaningful data recorded by the detector, wavelength calibration, removal of
the dark current background, and subtraction of the continuous background mainly caused
by bremsstrahlung radiation. Wavelength calibration was carried by recording a spectrum
of a standard Hg pencil lamp to establish a pixel-to-wavelength relationship applied to the
X-axis of all spectra. The background continuum was associated to a baseline under the
discrete line spectra. This baseline, with the same number of points (i.e., wavelengths) as
the spectra, was calculated by linear interpolation of two reference points located at both
sides of each spectrum (after edge trimming), as indicated in Figure 2. For a given spectrum,
the abscissas of the reference points corresponded to the left and right edges, whilst the
ordinates were estimated by averaging 10 intensity values corresponding to the neighbor
points adjacent to the first and last experimental values of each spectrum, respectively.
Then, the baseline was subtracted for all wavelengths in the spectra. Pre-processing is
illustrated in Figure 2 (for sample #1).

3.2. Spectral Analysis

After pre-processing, the spectra were analyzed to identify the detected spectral lines.
Spectral lines with a suitable signal-to-background ratio and free of spectral interference
from other elements were selected as analytical lines of the macronutrients (Figure 2). The
analytical lines corresponded to transitions belonging to neutral atomic and singly ionized
species with available atomic data from the NIST database, summarized in Table 1.
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Table 1. Spectroscopic parameters of neutral (I) and single-ionized (II) analytical atomic lines for the
studied macronutrients (data from NIST database [16]).

Element Ionization
State

λ0
(Å)

Aji
(108 s–1)

Ei
(eV)

Ej
(eV) gi gj

Mg
I 2852.1 4.91 0.000 4.346 1 3
II 2795.5 2.60 0.000 4.434 2 4
II 2802.7 2.57 0.000 4.442 2 2

Ca
II 3933.7 1.47 0.000 3.151 2 4
II 3968.5 1.40 0.000 3.123 2 2

Na
I 5889.9 0.61 0.000 2.104 2 4
I 5895.9 0.61 0.000 2.102 2 2

K
I 7664.9 0.38 0.000 1.617 2 4
I 7699.0 0.37 0.000 1.610 2 2

In Figure 3, the lines from Table 1 are plotted in detail for the pre-processed LIBS
spectra measured before and after the infusion. The spectral lines were fit with a Gaussian
function (mainly due to the instrumental profile) to get their net intensities, given by the
integrated areas of the line profiles after subtracting the background baseline. Then, the net
intensities of all the analytical lines corresponding to the same macronutrients were added
to obtain their total intensity of emission.
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Figure 3. Analytical lines of Mg, Ca, Na, and K measured from yerba mate (sample #1) before and
after the infusion process.

The capability of the proposed method to measure variations in the analyte concen-
trations before and after the mate infusion was assessed. In Figure 4, the total emission
intensities calculated for the different macronutrients and samples are compared. It was
observed that the intensities of emission measured after the infusion were lower than their
corresponding initial values, measured prior to the infusion, thus indicating a significant
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decrease in their concentrations due to a leaching of those elements to water from yerba
mate leaves in the infusion process.
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Figure 4. Total intensities of the macronutrients measured before and after the infusion for all yerba
mate samples.

3.3. Extractability of Macronutrients

For element α, the measured integrated spectral line intensity Iji (J s−1 m−1 sr−1 Å−1)
emitted along the line of sight in optically thin conditions from a homogeneous plasma
in local thermodynamic equilibrium and assuming a stoichiometric ablation is given by
solution to the equation of radiation transfer [17],

Iz
α = F

hc
4πλ0

Aji
10−2NriCα

Uz
α(T)

gje
−Ej
kT (1)

where F is an experimental factor depending on the instrumental setup and accounting
for the absolute efficiency and units, h (J s) is the Planck constant, c (m s–1) is the speed of
light in vacuum, λ0 (Å) is the central wavelength of the transition, Aji (s–1) is the transition
probability, N (m–3) is the total density of all elements in the plasma, ri is the ionization
factor, Cα (at%) is the concentration of the element α in the sample, Uα

z(T) (dimensionless)
is the partition function of the emitting species, gj (dimensionless) is the degeneration of
the upper level of the transition, Ej (eV) is the energy of the upper level, and kT (eV) is the
plasma temperature [18]. According to Equation (1), the emission intensity of a spectral line
is proportional to the concentration of the element in the sample, and it also depends on its
spectroscopic parameters, the ionization degree, the total density of elements in the plasma,
the temperature, and the electron density. The extractability Eα (%) of element α was
defined as the relative percentage leached into water in the infusion. It was calculated by
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Eα =
∆Cα

Cα,i
∗ 100 =

(
1 −

Cα,f

Cα,i

)
∗ 100 (2)

where ∆Cα ≡ Cα,f − Cα,i is the variation of its concentration between the final (f) and
initial (i) stages of the infusion rationed over the initial concentration (i.e., Cα,i). It is worth
noting that all the spectroscopic parameters of Equation (1) cancel in Equation (2), except
for the concentration. Hence, Eα can be determined by comparing the emission intensities
of an analytical line measured for stages i and f. Namely,

Eα =

(
1 −

Iz
α,f

Iz
α,i

)
∗ 100 (3)

where Iα,i
z and Iα,f

z are the corresponding net intensities (wavelength integrated and
background subtracted), given by Equation (1).

It should be noted that Equation (3) was deduced based on the consideration that
self-absorption effects on the measured line intensities were not strong. To evaluate the
degree of self-absorption of the measured analytical lines, the experimental ratios of two
lines belonging to the same multiplet were compared with the corresponding theoretical
intensity ratios expected in an optically thin plasma. In this way, a reduction in the observed
intensity of the stronger multiplet line relative to the weaker line would be indicative of
self-absorption. On the other hand, if the line ratio remains approximately constant, then
self-absorption is negligible [19]. The calculated experimental ratios were: 1.8 ± 0.2 for
Mg; 1.7 ± 0.2 for Ca; 1.3 ± 0.2 for Na; and 1.4 ± 0.2 for K. Therefore, it was deduced that
self-absorption was low to moderate. An alternative approach could be to select weaker
lines affected by low self-absorption for analysis. Nevertheless, optically thin spectral
lines are usually weak and hardly detected (e.g., due to spectral interference) at given
conditions of measurement. Therefore, a tradeoff between self-absorption of the analytical
lines and their emission intensities was addressed. For this reason, the resonant lines of
Table 1 were selected because they featured a suitable sensitivity to variations in the analyte
concentrations in the samples measured before and after the mate infusion. This is clearly
evidenced in Figure 4. In addition, to improve the sensitivity of detection of the proposed
method, the net intensities of all the corresponding analytical lines (Table 1) were added
to calculate their extractabilities, as mentioned in Section 3.2, and demonstrated in our
previous work [20].

The obtained E values for the studied macronutrients are exposed in Table 2, together
with the concentrations of the macronutrients leached into the infusion, i.e., ∆Cα (ppm),
determined with the reference analytical technique of Atomic Absorption Spectroscopy
(AAS). Normal distributions were not assumed for the obtained results; therefore, the
medians were considered as representative values for the different trademarks and the
estimated errors corresponded to the corresponding interquartile ranges (IQR). The calcu-
lated extractabilities varied significantly for the different macronutrients analyzed. While K
presented the highest extractability, intermediate values were obtained for Mg and Ca, and
Na was the macronutrient with the lowest extractability in our experiment. In addition,
higher scatterings (i.e., IQR) are observed in Table 2 for both the extractability values of Mg
and Ca, and the amount of K leached to water, with respect to the other macronutrients.
Although the study of these effects is beyond the scope of this work, it is interesting to
highlight that the high variations mentioned can be linked to several factors taking place
along the chain supply. In fact, a possible contamination of yerba mate with Mg and Ca
may occur during growing, harvesting, and processing, as suggested by Pozebon et al. [6].
In turn, the large variation in K concentration could be related to a high variability of its
initial content in the yerba mate leaves due to the particular soil characteristics of the crop.
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Table 2. Extractability (E) of the macronutrients, calculated by LIBS, and concentrations (∆C) leached
into the water infusion, determined by AAS.

Element E (%) ∆C (ppm)

Mg 56 ± 23 30 ± 5
Ca 51 ± 21 18 ± 4
Na 34 ± 6 13 ± 1
K 76 ± 8 115 ± 29

From Equation (2), it is deduced that the concentration of a given analyte leached into
the infusion is proportional to both the extractability and the initial concentration in the
sample, i.e., the yerba mate leaves. In Figure 5, the values for E and ∆C determined by
LIBS and AAS, respectively, are compared. It is observed that both parameters presented
similar trends for the different macronutrients, denoting the consistency between LIBS
and AAS results. A few outliers were obtained for the extractability of Na which were
discarded since they were not representative of the final extractability value. Therefore,
the experimental results evidenced the feasibility of the developed methodology for the
analysis of the extractability of macronutrients in yerba mate.
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Figure 5. Comparison of the extractability values (E, in blue) and the corresponding concentrations
(∆C, in red) leached in the water infusion, determined for the studied macronutrients by LIBS and
AAS, respectively. Box plot: whisker range: min–max; box: 25th percentile, median, 75th percentile;
Outlier (τ).

4. Conclusions

In this work, the LIBS technique was successfully applied for the first time for the rapid
analysis of the extractability of the main macronutrients present in leaves of yerba mate
plant, i.e., Mg, Ca, Na, and K. The LIP properties regarding the emission and absorption
of radiation were exploited to develop a straightforward analytical methodology assisted
by a specially designed algorithm that does not require the use of calibration standards.
The method was devised as a user-friendly analytical approach to be used with portable
or benchtop LIBS equipment. The algorithm carried out a pre-treatment of the spectral
data recorded from the different samples studied, i.e., LIBS spectra, a subsequent analysis
of the detected emission peaks, and the calculus of the coefficient of extractability of
the different macronutrients based on the comparison of their total emission intensities
measured before and after the infusion process. In this approach, the obtained values for E
(%), in decreasing order, were 76 ± 8 for K, 56 ± 23 for Mg, 51 ± 21 for Ca, and 34 ± 6 for
Na, giving the relative percentage of each macronutrient that was leached into the water
in the infusion process in laboratory conditions. These results were consistent with the
concentrations of the macronutrients determined in the liquid solutions by the conventional
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AAS technique. Overall, the analytical methodology and the results presented in this work
demonstrated the feasibility of LIBS for the rapid analysis of extractable macronutrients in
yerba mate plants aimed at agricultural studies. It is worth mentioning that information
about the content of macronutrients in the yerba mate infusion is missing, or at least
incomplete, in the commercial product. Thus, the novel approach developed in this work
can potentially contribute to providing information regarding nutritional properties of
yerba mate infusion as well as assessing the solubility of the main macronutrients for
different forms of preparation of the beverage.
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