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Abstract: Hepatocellular carcinoma (HCC) is the main pathological type of liver cancer. Due to its
insidious onset and the lack of specific early markers, HCC is often diagnosed at an advanced stage,
and the survival rate of patients with partial liver resection is low. Non-coding RNAs (ncRNAs) have
emerged as valuable biomarkers for HCC detection, with microRNAs (miRNAs) being a particularly
relevant class of short ncRNAs. MiRNAs play a crucial role in gene expression regulation and can
serve as biomarkers for early HCC detection. However, the detection of miRNAs poses a significant
challenge due to their small molecular weight and low abundance. In recent years, biosensors
utilizing electrochemical, optical, and electrochemiluminescent strategies have been developed to
address the need for simple, rapid, highly specific, and sensitive miRNA detection. This paper
reviews the recent advances in miRNA biosensors and discusses in detail the probe types, electrode
materials, sensing strategies, linear ranges, and detection limits of the sensors. These studies are
expected to enable early intervention and dynamic monitoring of tumor changes in HCC patients to
improve their prognosis and survival status.
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1. Introduction

Liver cancer is a malignant tumor that poses a serious threat to human health and
has a very high mortality rate. The pathological types of hepatocellular carcinoma include
hepatocellular, biliary, and mixed cell types, of which hepatocellular carcinoma accounts
for approximately 70% [1]. Hepatitis B virus (HBV), hepatitis C virus (HCV), alcohol,
fatty liver, and genetic disorders may induce HCC [2]. Due to the insidious onset of HCC,
most patients are usually diagnosed at a late stage, with a high frequency of metastasis
and recurrence after surgery, resulting in poor prognosis and survival. Therefore, early
diagnosis and detection of hepatocellular carcinoma is crucial to improve patient prognosis
and survival. The main clinical methods for detecting hepatocellular carcinoma include
computed tomography (CT) [3], ultrasonography (US) [4], magnetic resonance imaging
(MRI) [5], and tissue biopsy [6]. These methods have limitations in detection sensitivity,
expensive detection equipment, and are heavily operator-dependent and invasive to the
patient’s body [7]. Therefore, the development of analytical techniques that are simple to
operate, inexpensive, highly sensitive, and selective is crucial for achieving early diagnosis
of hepatocellular carcinoma. In recent years, the detection and analysis of tumor markers
has become an effective tool in the diagnosis, prognosis, and treatment of cancer [8].
The detection of tumor markers in peripheral blood holds significant promise for clinical
applications due to several key advantages, such as minimized invasiveness, continuous
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monitoring, and broad accessibility. Currently, several tumor markers have been evaluated
in hepatocellular carcinoma, among which alpha-fetoprotein (AFP) is the most widely used
in the diagnosis of primary liver cancer [9]. Despite the high specificity of AFP, its detection
sensitivity and accuracy are not sufficient to detect patients with hepatocellular carcinoma
in the early stages, and false negative results may occur [10].

With the extensive characterization of the protein-coding genome of liver tumors by
researchers, ncRNAs were found to regulate hepatocarcinogenesis [11]. Classified based
on length and shape characteristics, ncRNAs include miRNAs, long noncoding RNAs
(lncRNAs), and circular RNAs (circRNAs) [12]. These transcripts have been shown to
regulate the transcription, stability, or translation of protein-coding genes in the genome,
although they are not transcribed into proproteins [13]. During hepatocellular carcino-
genesis, investigators have found that the expression of miRNAs is disturbed in patients.
Dysregulated miRNAs may affect HCC cell proliferation by directly interacting with key
regulators of the cell cycle machinery [14]. Thus, miRNAs are potential HCC biomarkers
and targets for intervention.

miRNAs are the smallest non-coding RNAs with an average size of 22 nucleotides [15].
The production of miRNAs in cancer cells, the process of obtaining miRNAs, and com-
monly used miRNA quantification methods are shown in Figure 1. At each step of HCC
development, specific miRNAs are dysregulated. Accurate detection of miRNAs from
complex biological samples is extremely challenging due to their short sequences, low
levels in vivo, and easy degradation. Traditional detection methods include qRT-PCR,
microarrays, and Northern blotting [16]. Among them, qRT-PCR offers high sensitivity and
a wide dynamic range for miRNA expression profiles, but its application is limited due
to susceptibility to contamination. Microarray technology has high throughput screening
capability and can analyze a wide range of miRNAs, but requires complex probes and
instruments, as well as specialized operators. Northern blotting is considered the “gold
standard” for miRNAs, but has shortcomings in detection time and sample consumption,
and has low sensitivity and throughput [17]. Biosensors offer significant advantages in
terms of sample consumption, detection time, cost, portability, and complexity compared to
the above-mentioned traditional techniques for miRNA detection [18]. Biosensor technol-
ogy has become a cross-disciplinary field combining biology, chemistry, physics, medicine,
electronics, and other disciplines [19]. In recent years, several biosensor-based techniques
have emerged for the detection of miRNAs, such as electrochemistry [20], colorimetry [21],
fluorescence [22], surface plasmon resonance (SPR) [23], surface-enhanced Raman scatter-
ing (SERS) [24], and electrochemiluminescence (ECL) [25]. These methods can also be used
for in situ screening and mobile health monitoring.

In this review, the focus is on the impact of miRNAs as potential biomarkers for
hepatocellular carcinoma. Recent advances in electrochemical and optical biosensors for the
detection of hepatocellular carcinoma-associated miRNAs are reviewed. The target detector
types, probe selection, electrode design, modification methods, sensing strategies, linear
detection ranges, detection limits, and response times of these biosensors are discussed in
detail. In addition, the characteristics and limitations of these biosensors are summarized.
The organization is as follows: Section 2 provides an overview of the expression and
roles of miRNAs associated with HCC. Sections 3 and 4 analyze the research progress
of electrochemical and optical biosensors for the detection of HCC-associated miRNAs,
respectively. Section 5 discusses the methods to improve the detection performance of
miRNA biosensors and summarizes the challenges and prospects of miRNA biosensors
for clinical applications in the future. Compared with some previous reviews on miRNA
biosensors, this review carefully categorizes miRNA biosensors associated with HCC, and
the biotechnology and sensing technologies covered in the review are more comprehensive.
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Figure 1. The principle of miRNA production in cancer cells, the process of obtaining miRNA, and
commonly used miRNA quantification methods.

2. miRNAs Associated with HCC

Some miRNAs that are differentially expressed in HCC tumors compared to nor-
mal liver tissue include miRNA-21, miRNA-34a, miRNA-122, miRNA-125b, miRNA-141,
miRNA-155, miRNA-223, miRNA-224, miRNA let-7a, and miRNA let-7b [26]. Among
them, miRNA-21 is an important non-coding RNA affecting liver diseases, which can
serve as a dual marker for early screening and prognosis of HCC [27]. miRNA-34a is an
important tumor suppressor that can inhibit tumor progression and tumorigenesis [28].
However, miRNA-34a expression was significantly reduced in clinical HCC specimens,
suggesting that miRNA-34a is a potential marker for HCC diagnosis and prognosis [29].
miRNA-122 is primarily expressed in liver tissue and plays a central role in various aspects
of hepatocyte development and differentiation. It constitutes a substantial proportion
of the total miRNA content within the liver, accounting for approximately 70% of the
entire miRNA population in this organ [30]. Liang et al. [31] found that miRNA-125b
inhibits the expression of the oncogene LIN28B and thus exerts tumor suppressor effects
in HCC. However, downregulation of miRNA-125b was frequently observed in human
hepatocellular carcinoma. miRNA-125b was under-expressed in most HCC cases and nega-
tively correlated with the cell proliferation index in HCC. miRNA-141 plays an important
role in cancer formation and progression. The downregulated miRNA-141 expression
may be an important predictor of HCC [32]. miRNA-155 acts as a tumor suppressor in
HCC and its expression level is significantly elevated in HCC tissues, with a marked
increase of 1.5–6 times compared to normal liver tissues [33]. miRNA-223 was reported
to be significantly lower in the serum of HCC patients compared to non-tumor livers by
Elmougy et al. [34]. Eldeen et al. [35] demonstrated that miRNA-122 and miRNA-224 can
be used as biomarkers for HCC diagnosis, and the detection of either of these miRNAs in
combination with AFP will improve the accuracy of early HCC diagnosis. Qiu et al. [36]
found a correlation between the expression level of miRNA let-7a and HBV replication. The
downregulation of miRNA let-7a is associated with a decrease in HBV replication and may
prevent the development of HCC. In addition, Wang et al. [37] showed that miRNA let-7b
was able to inhibit the proliferation of HCC cells through Wnt/β-linker protein signaling
in HCC cells, but miRNA let-7b was significantly downregulated in human HCC tissues.
The expression of the above miRNA markers can respond to the development of HCC and
has great potential in the early screening and diagnosis of HCC.
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3. Electrochemical Biosensors

Electrochemical biosensors are devices that convert the biological signal generated by
the specific binding of a recognition probe to a target to be measured into electrical signals
such as voltage, current, and impedance [38]. Electrochemical biosensors are suitable for
point-of-care (POC) detection due to the ease of miniaturization, automation, integration,
and mass production. In recent years, nanotechnology has brought great opportunities for
development in the field of electrochemical biosensors. The large surface volume ratio of
nanomaterials helps to improve the detection sensitivity of biosensors [39]. Currently, the
commonly used electrochemical detection methods mainly include voltammetry [40] and
impedance methods [41]. Electrochemical biosensors for the detection of HCC-associated
miRNAs will be discussed next according to the classification of electrochemical detection
methods.

3.1. Voltammetry

Voltammetry is based on the relationship between the electrode potential and the
current through the electrolytic cell to obtain analytical results. With the development of
bioanalytical techniques, voltammetry is now mostly performed using a three-electrode
system consisting of a working electrode, a counter electrode, and a reference electrode.
The test methods mainly include cyclic voltammetry (CV) [42], square wave voltammetry
(SWV) [43], differential pulse voltammetry (DPV) [44], and other methods.

Pathological studies have shown that miRNA-122 acts to repress oncogenes involved
in different HCC features, and downregulation of miRNA-122 can cause tumor metastasis
and hepatocellular carcinoma progression [45]. Therefore, simple and sensitive detection
of miRNA-122 is highly relevant for the early diagnosis of HCC. Gao et al. [46] proposed
an electrochemical biosensor based on the ion barrier effect for the detection of miRNA-122.
A schematic diagram of the preparation and operation of the sensor is shown in Figure 2a.
Prussian blue (PB) and gold nanoparticles (AuNPs) were first modified on the surface of a
glassy carbon electrode (GCE) by a two-step electrodeposition method. The addition of
Prussian blue was able to sensitize the GCE electrode to K+, resulting in a significant change
in the voltammetric signal. KNO3 was chosen to provide K+. The modification of AuNPs
enabled the GCE electrode to immobilize thiolated DNA probes by the self-assembly of Au-
S bonds. An ionic barrier effect was produced when the DNA probe hybridized specifically
with the target miRNA-122, preventing the diffusion of K+ from the solution to the electrode
surface. In this way, the voltammetric signal at the electrode surface was suppressed, which
achieved the quantitative detection of miRNA-122. The electrochemical response of the
sensor was studied using DPV. Figures 2b and 2c, respectively, show the DPV response
curve and calibration curve of the sensor. The sensor has a response time of 60 min and can
analyze miRNA-122 in the concentration range of 0.1 fmol/L–1.0 nmol/L with a detection
limit of 0.021 fmol/L. This biosensor based on the ion barrier effect has the advantages
of simple operation, low cost, sensitive response, high specificity, and high stability. In
addition, the method shows better detection in real human serum samples and can be used
to analyze complex biological samples. However, the detection time of this method is long,
which is not conducive to the realization of point-of-care detection.

Losada et al. [47] designed an electrochemical biosensing platform based on microflu-
idic sensing technology that can perform eight multiple measurements of miRNA-122. The
platform consisted of a glass substrate containing gold microelectrodes and a polydimethyl-
siloxane (PDMS) layer containing microfluidic channels. The capture probe modified with
thiols was incubated in the microfluidic channel, and the probe was able to form a self-
assembled monolayer (SAM) by immobilizing it on the electrode surface with Au-S bonds.
After rinsing the channel with 0.5 M NaCl, miRNA-122 was injected into the microfluidic
channel to hybridize with the capture probe. In this study, CV was used for electrochemi-
cal measurements, and the detection time required 30 min. The electrochemical sensing
platform has a linear working concentration of 10−18−10−6 mol/L and a detection limit of
10−18 mol/L. This method has a wider linear detection range, lower detection limit, and
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shorter assay time for the detection of miRNA-122 compared to the method of Gao et al. [46].
In addition, microfluidic sensing technology makes the sensing platform miniaturized and
more portable. It can also reduce costs and achieve high-throughput detection.
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Figure 2. (a) Schematic diagram of the preparation and operation of the electrochemical biosensor
based on the ion barrier effect for the detection of miRNA-122. (b) DPV response curves in the range
of 0–100 nmol/L after hybridization of the biosensor with miRNA-122 (DPV responses curves at
different concentrations are indicated by different colors. DPV response decreases with increasing
concentration). (c) Correction curve for the amount of change in peak current versus the negative
logarithm of miRNA-122 concentration. (Reproduced with permission from [46]).

In recent years, the signal amplification strategy based on 3D DNA walkers has shown
great potential for the ultrasensitive detection of miRNAs. Yang et al. [48] designed an
“on-super off” dual-mode photoelectrochemical (PEC) and ratiometric electrochemical (EC)
biosensor based on this strategy for the detection of miRNA-224. A schematic diagram of
the sensor is shown in Figure 3. The sensor applied methylene blue (MB) and ferrocene
(Fc) to induce signal quenching and enhancement. CdS quantum dots (QDs) were used
here as photoactive electrode materials due to their photoelectric conversion efficiency.
The signal “on” state was achieved by immobilizing MB-labeled hairpin DNA (MB-DNA)
through Cd-S bonding, which sensitized the CdS QDs and generated significant PEC
signals. Hairpin MB-DNA was turned on after the introduction of DNA probes labeled
with Ag nanocubes (Ag-DNA). Several ferrocene-labeled DNA (Fc-DNA) generated by
amplification of the 3D DNA walker, Ag-DNA, and MB-DNA hybridized to form a “Y”
shaped hairpin structure. This structure keeps the MB away from the CdS QDs and the Fc
close to the CdS QDs, which results in a reduced PEC signal and achieves a signal “super-
off” state. In addition, miRNA-224 detection was also accomplished on the ratiometric EC
biosensor using SWV. As the concentration of miRNA-224 increased, the oxidized peak
current of MB decreased, and the oxidized peak current of Fc increased. Quantification
of miRNA-224 was achieved by evaluating the value of IMB/IFc. The sensor has a linear
detection range of 0.1–1000 fM with a detection limit of 0.019 fM in PEC and a detection
range of 0.52–500 fM with a detection limit of 0.061 fM in ratiometric EC. CdS quantum
dots exhibited excellent optoelectronic performance in the detection of miRNA-224 by this
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biosensor. The signal enhancing and quenching could be easily controlled by changing
the structure of DNA, and the signal amplification strategy based on the 3D DNA walker
significantly improved the sensitivity of detecting miRNAs.
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Figure 3. Schematic diagram of the dual model PEC and EC biosensor for miRNA-224 detection.
(A). The process of 3D DNA walker-induced ring amplification. (B). Preparation process of the
biosensor for the detection of miRNA-224. In the process from a to b, the hairpin structure probe
transforms into a “Y” structure. (Reproduced with permission from [48]).

Homogeneous electrochemical biosensors are low-cost, simple to immobilize, and the
detection process occurs in a homogeneous solution. Wu et al. [49] designed a homogeneous
electrochemical biosensor based on MnO2 nanosheets with dual enzyme activity for the
detection of miRNA let-7a. In the absence of miRNA let-7a, the nucleic acid probe was
tightly adsorbed on the surface of the 2D MnO2 nanosheets, and the catalytic activity of the
MnO2 nanosheets was significantly inhibited. This led to the presence of a large amount of
MB in the solution, which produced a very high DPV current peak. After the addition of
miRNA let-7a, the phosphate group triggered the nucleobase pair shielding effect, and the
probe was detached from the surface of MnO2 nanosheets after hybridization with miRNA
let-7a. At this time, the surface-active sites of the MnO2 nanosheets were significantly
increased and were able to fully react with MB. As a result, a large amount of MB was
eliminated, leading to a significant decrease in the DPV response. The linear detection
range of this homogeneous electrochemical biosensor was 0.4–140 nM, and the detection
limit was 0.25 nM. Although this homogeneous electrochemical biosensor was simple to
prepare, the detection sensitivity was limited.

Azab et al. [50] prepared an miRNA let-7a biosensor with a sandwich structure based
on nanomaterials. The schematic diagram of the biosensor is shown in Figure 4a. Chrysin
and carbon nanotubes (CNTs) were, respectively, modified on the carbon paste electrode
(CPE), which could improve the antioxidant property of the electrode and optimize the
conductivity and biocompatibility of the electrode. Then AuNPs were employed to modify
the electrode surface, enhancing both the active surface area of the electrode and the
stability of the immobilized capture probe. The electrochemical response was monitored
by DPV, and the optimal time for hybridization of this sensor is 30 min. Figure 4b shows
the calibration curve of ∆I versus the logarithm of miRNA let-7a concentration. In this
work, the current response increased with increasing miRNA let-7a concentration in the
range of 1.0 zM to 11 nM, and the limit of detection was 1.0 zM. The introduction of
nanomaterials such as CNTs and AuNPs has been instrumental in improving the sensitivity
of the biosensor. In addition, the prepared biosensor has good applicability for miRNA
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let-7a detection in real serum samples. The biosensor has an excellent detection limit, which
is highly favorable for early detection of clinical HCC.
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Cai et al. [51] reported an AuNP-modified graphene field effect transistor (FET) biosen-
sor for the sensitive detection of miRNA let-7b. This FET biosensor was prepared by first
dropwise addition of a reduced graphene oxide (R-GO) suspension on the FET surface,
followed by modification of AuNPs on top of it. The PNA probes possess an electrically
neutral backbone, which contributes to enhanced hybridization efficiency and reduced
background noise in comparison to traditional DNA probes. This neutral nature of PNA
probes mitigates the repulsive effects that can arise during the hybridization process [52].
In this study, after immobilizing the PNA probe on the surface of AuNPs through Au-S
bonds, the excess active site was blocked using ethanolamine solution to minimize poten-
tial nonspecific binding. When the PNA probe hybridizes with miRNA let-7b, a distinct
voltammetric response signal is generated due to the binding event. It was found that
the developed FET biosensor could achieve detection limits as low as 10 fM in the linear
range of 1 fM–100 pM. In addition, this highly sensitive and selective method was also
successfully used for the detection of miRNA let-7b in serum samples. The PNA probe is
highly promising for miRNA detection, and this PNA probe-based FET biosensor has the
potential to be used as a point-of-care tool.

Erdem et al. [53] developed a method for electrochemical analysis of miRNA-34a
based on the Zip nucleic acid (ZNA) probe. Figure 5a shows a schematic diagram of the
electrochemical analysis based on the ZNA probe. ZNA probes were hybridized with
target miRNA-34a in solution, and double-stranded products formed by hybridization
were immobilized on the surface of magnetic beads (MBs) coated with streptavidin through
biotin–streptavidin interaction. The double-stranded product was separated from the MBs
by magnetic separation technique and then immobilized on the surface of pencil graphite
electrodes (PGEs) for electrochemical measurements using DPV. Figure 5b–d show the DPV
response curves and calibration plots of the ZNA probe hybridized with different concen-
trations of the target miRNA-34a. The detection limit of this method was 0.87 µg/mL in the
linear range of 2–8 µg/mL. In addition, the electrochemical analysis method based on the
ZNA probe is also suitable for the detection of miRNA-34a in real samples. The innovative
use of ZNA probes in this sensor overcomes the electrostatic repulsion between probes
and their complementary sequences, thus improving hybridization efficiency. However,
the biosensor detects miRNA-34a for up to 60 min, which is not conducive to achieving
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point-of-care detection. In the future, with the advantage of ZNA nucleic acids combined
with rapid enrichment methods such as the AC electrokinetics (ACEK) effect, the detection
performance of the sensor will be improved, and the detection time will be shortened.
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Zeng et al. [54] explored the photocurrent properties of yolk-in-shell Au@CdS and yolk-
shell Au@CdS and established a sensitive and feasible PEC biosensor for the quantitative
detection of miRNA-21 based on yolk-in-shell Au@CdS. The biosensor used HRP-labeled
ssDNA combined with MBs to form MB-ssDNA-HRP as the signal probe, yolk-in-shell
Au@CdS as the photoactive substrate, and benzo-4-chlorohexadienone (4-CD) precipitation
as the signal quencher. In the presence of miRNA-21, miRNA-21 and two hairpin DNAs
(H1, H2) could generate a large amount of H1-H2 double-stranded (dsDNA) by catalytic
hairpin assembly (CHA) reaction. dsDNA binding to Cas12a-crRNA triggered the cleavage
of MB-ssDNA-HRP by Cas12a, which led to the detachment of HRP from the MB surface.
After magnetic separation, HRP was able to catalyze 4-chloro-1-naphthol (4-CN) to generate
4-CD precipitates that covered the yolk-in-shell Au@CdS surface, resulting in a significant
decrease in its photocurrent response. The linear detection range of this PEC biosensor
for miRNA-21 was 0.01 pM-10 nM, with a detection limit of 4.2 fM. In addition, stronger
synergistic effects, SPR, and thermal electron transfer were found for yolk-in-shell Au@CdS
by FDTD simulation combined with photocurrent/photothermal testing. Yolk-in-shell
Au@CdS functional nanomaterials have great potential for early screening and diagnosis of
various cancers.

Ouyang et al. [55] constructed an electrochemical biosensor for miRNA-21 detection by
combining nanomaterials and hybridization chain reaction (HCR). First, Ti3C2 was obtained
by etching Ti3AlC2 with HF, and then Ti3C2 was covered with Bi2O3 nanoparticles to form
Ti3C2@Bi2O3 with an accordion-like structure. GCE was modified with Ti3C2@Bi2O3 to
enhance electrode conductivity and AuNPs to increase the active surface area. Then the
thiol-modified capture probe (SH-CP) was immobilized on the electrode through Au-S
bonds. The hairpin structure of the capture probe was opened when the target miRNA-21
was present, allowing miRNA-21 to hybridize specifically with the capture probe. The
addition of primers H1 and H2 triggered the hybridization chain reaction, forming long
double strands on the GCE surface. Many methylene blue (MB) molecules were embedded
in the long double strand, which resulted in a significant DPV response of the biosensor at
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a potential of 0.19 V. This dual-signal amplification strategy based on nanomaterials and
HCR can detect miRNA-21 in a wide linear range of 1 fM–100 pM with a detection limit
as low as 0.16 fM. Compared with the qRT-PCR quantification technique, the biosensor
detected miRNA-21 in the same linear range as qRT-PCR, but with a lower detection limit
and higher sensitivity. In addition, the biosensor shows good applicability in human serum
samples. However, the biosensor is dependent on primed DNA strands, which leads to
higher costs and is not favorable for mass production.

3.2. Impedance Method

Electrochemical impedance spectroscopy (EIS) is a sensitive and versatile electro-
chemical sensing technique that finds extensive applications in the analysis of microscopic
interfacial features associated with biomolecules [56]. By probing the impedance spectro-
scopic response of electrochemical systems, EIS provides valuable insights into various
physical properties such as diffusion rates, reaction rates, and microstructural features [57].
Currently, EIS serves a dual role in electrochemical biosensors. It can be used to characterize
the sensor construction process, and also to quantitatively detect biomolecules [58].

La et al. [59] proposed a signal amplification strategy induced by the insulating effect
to enable sensitive impedance measurements of miRNA-21. The DNA probe encapsu-
lated on the surface of the Au electrode was able to capture the target miRNA-21 and a
biotin-modified miRNA (biotin–miRNA) with the same nucleic acid sequence. After self-
assembly by biotin–F monomers, the streptavidin (SA)–biotin–FNP network was formed by
binding SA. Biotin–miRNA adsorbed onto the SA–biotin–FNP network through biotin–SA
interactions, forming an insulating layer on the electrode surface that hinders electron
transport and consequently amplifies the impedance response. When the target miRNA-21
was present, miRNA-21 and biotin–miRNA competed for hybridization to the capture
probe. With the reduction of biotin–miRNA captured on the electrode, the adsorbed SA–
biotin–FNP network was also reduced, resulting in a significant decrease in the impedance
signal. The linear range of this detection strategy for miRNA-21 detection is 0.1–250 fM,
with detection limits as low as 0.1 fM. The SA–biotin–FNP network used in this method is
relatively easy to prepare and the sensor has good applicability in real samples. However,
the detection time of this sensor is greater than 2 h, which is not conducive to achieving
rapid point-of-care detection.

Eksin et al. [60] developed a paper-based electrochemical impedance biosensor for
quantitative detection of miRNA-155. This paper-based biosensor is shown in Figure 6a.
The paper-based sensor consisted of a microfluidic channel and a working area where the
working electrode, counter electrode, and reference electrode were placed. AuNPs-PE was
formed by depositing AuNPs onto PE through the chronocurrent method. Figures 6b and 6c,
respectively, show the EIS response curve and the calibration curve of this biosensor for the
detection of miRNA-155. The thiol-modified DNA probe was immobilized on AuNPs-PE
via Au-S bonds. When miRNA-155 was present, KCl solution containing [Fe(CN)6]3−/4−

was added dropwise, and miRNA-155 was quantified by measuring the change in charge
transfer resistance (Rct). The linear detection range of the sensor was 0–1.5 µg/mL in
PBS with a detection limit of 33.8 nM, and 0–4 µg/mL in the fetal bovine serum (FBS)
medium with a detection limit of 93.4 nM. The biosensor shows good selectivity for non-
complementary and mismatched miRNA sequences. The paper-based electrochemical
biosensor can selectively detect miRNAs even in complex media such as serum with a
detection time of only 15 min and good stability, which makes it very suitable for POC
detection applications.
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Yarali et al. [61] developed an electrochemical biosensor for the detection of miRNA-155
and miRNA-21 associated with early cancer diagnosis using molybdenum disulfide (MoS2)
modified paper-based electrodes for the first time. Block crystals and sheets of MoS2 were,
respectively, fabricated and modified on the surface of paper-based electrodes to explore
their performance in miRNA detection. The capture probe was modified on the MoS2-
modified electrode, and different concentrations of target miRNA solutions were added
dropwise for hybridization. The electrochemical response of the sensor was measured by
EIS technology, and the entire miRNA detection process was completed within 30 min.
The linear detection range of this biosensing platform is 1–200 ng/mL. In the PBS buffer,
the LOD for miRNA-155 was calculated to be 17.0 ng/mL and the LOD for miRNA-21
was 9.2 ng/mL through linear fitting. In the FBS medium, the LOD of miRNA-155 was
1.0 ng/mL and the LOD of miRNA-21 was 17.0 ng/mL. The electrically active surface area
of bulk MoS2 was larger compared to that of nanosheets, and thus the detection limit of the
paper-based electrode modified by bulk MoS2 was lower. In addition, they are effective in
distinguishing non-target sequences with single base mismatches. The biosensor has a low
manufacturing cost and can perform highly sensitive and selective quantitative analysis
of miRNAs at low sample volumes, offering great potential for the detection of miRNA
biomarkers in human serum.

3.3. Other Methods

In addition to the studies mentioned above, several other near-commercial miRNA
biosensors have been developed. Jin et al. [62] combined magnetic nanobeads with metal–
organic frameworks loaded with glucose oxidase (MOFs@GOX) and constructed a novel
self-powered electrochemical sensor based on a photocatalytic zinc–air battery (ZAB-SPES)
for the detection of miRNA let-7a. ZAB-SPES has a high-power density of 22.8 µW/cm2,
which is 2–3 times higher than that of commonly used photofuel cells. Gao et al. [63]
reported a flexible graphene field effect transistor (Gr-FET) biosensor. The biosensor
was able to achieve an miRNA detection limit as low as 10 fM within 20 min. Gr-FET-
based biosensors will have prospective applications in wearable electronic devices for
health monitoring and disease diagnosis. Xu et al. [64] integrated EBFCs on a flexible
paper tape carrier to establish an ingenious sensor technology for the detection of tumor
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markers in complex samples. Multivariate detection was realized by receiving real-time
instantaneous current values via a smartphone. This smartphone-based paper tape sensor
platform provides an opportunity for early cancer diagnosis and lays the foundation for
the construction of flexible wearable platforms.

Table 1 summarizes the characteristics of these electrochemical biosensors for the
detection of HCC-associated miRNAs. The main characteristics include receptor type,
electrode material, electrochemical method, linear detection range, detection limit, sen-
sitivity, and response time. It was found that the above electrochemical biosensors had
wide detection limits and high sensitivity. However, most of the sensors have poor immu-
nity to interference and still have a long response time, which is not conducive to rapid
bedside detection.

Table 1. Electrochemical biosensors for the detection of hepatocellular carcinoma-associated miRNAs.

Analyte Receptor Electrode Electrochemical
Method Linearity Range LOD Sensitivity Assay

Time Ref.

miRNA-122 DNA probe GCE DPV 0.1 fmol/L–1.0 nmol/L 0.021 fmol/L — 60 min [46]
miRNA-122 DNA probe Au CV 10−18–10−6 mol/L 10−18 mol/L — 30 min [47]
miRNA-224 DNA probe ITO SWV 0.52–500 fM 0.061 fM — — [48]

miRNA-let 7a DNA probe MnO2 DPV 0.4–140 nM 0.25 nM — — [49]
miRNA-let 7a DNA probe CPE DPV 1.0 zM–11 nM 1.0 zM — 30 min [50]
miRNA-let 7b PNA probe AuNPs Voltammetry 1 fM–100 pM 10 fM — 30 min [51]
miRNA-34a ZNA probe PGE DPV 2–8 µg/mL 0.87 µg/mL — 60 min [53]
miRNA-21 DNA probe Au@CdS Photocurrent 0.01 pM–10 nM 4.2 fM — — [54]
miRNA-21 DNA probe GCE DPV 1 fM–100 pM 0.16 fM — 30 min [55]

miRNA-21 — Au EIS 0.1–250 fM 0.1 fM — >2 h [59]
miRNA-155 DNA probe AuNPs-PE EIS 0–1.5 µg/mL 33.8 nM — 15 min [60]

miRNA-21
miRNA-155 DNA probe MoS2-PE EIS 0.025–0.75 µg/mL

0.05–0.15 µg/mL
9.2 ng/mL

17.0 ng/mL

1372.4
kOhm.mL.µg−1.cm−2

1361
kOhm.mL.µg−1.cm−2

30 min [61]

4. Optical Biosensors

Optical signals are insensitive to noise interference, have good stability, and the spec-
tral properties of different molecules to be tested are differentiated with high specificity.
Therefore, optical biosensors can directly detect the molecules to be detected [65]. In addi-
tion, optical biosensors are easily miniaturized and have the potential to facilitate chip-level
integration [66]. According to different working methods and principles, optical biosensors
can be classified as colorimetric biosensors, fluorescent biosensors, SPR-based biosensors,
and SERS-based biosensors. The optical biosensors for the detection of hepatocellular
carcinoma-associated miRNAs are categorized and reviewed next.

4.1. Colorimetry

Colorimetry is a common method for the detection of biomolecules, which is evaluated
by analyzing the change in absorbance or reflectance of the reagent [67]. Colorimetric
biosensors have the advantages of naked eye determination, low cost, fast response, and
ease of fabrication [68]. Colorimetric biosensors can change color in response to external
physical or chemical factors, as well as through an enzyme-catalyzed chromogenic reaction
inside the sensor, or with the help of metallic nanomaterials [65].

Shahsavar et al. [69] developed a novel colorimetric platform based on G-quadruplex
spherical nucleic acid enzyme (SNAzyme) for the recognition of miRNA-155. Capture
probe 1 and G-rich probes were attached to AuNPs via Au-S bonds to form G-quadruplexes.
The G-tetramer was converted to SNAzyme in the presence of K+ and hemin under buffered
conditions of Tris-HCl 100 mM, KCl 150 mM pH 7. The target miRNA-155 was able to
hybridize with the capture probe 1 to form a double strand, resulting in a significant
decrease in the intensity of the colorimetric response. In the range of 1–100 nM, there is a
linear relationship between the decrease in colorimetric response signal and the amount of
miRNA-155. The detection limit for miRNA-155 using this method was 0.7 nM. In addition,
the colorimetric sensing platform successfully realized the quantitative detection of miRNA-
155 in human serum samples. SNAzyme has high thermal stability and resistance to
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nuclease degradation, which can improve the detection performance of the colorimetric
sensing platform. However, this biosensor exhibited a linear detection range and detection
limit at the nanomolar level, necessitating the incorporation of an amplification strategy to
improve the sensitivity of the colorimetric biosensor.

Li et al. [70] designed a specific Y-type DNA probe for the colorimetric detection
of miRNA-21 and miRNA-141. The detection scheme combining EXO III-assisted target
cycling and HCR dual-signal amplification is shown in Figure 7. The Y-type DNA probe
consists of the capture strand of target miRNAs and the HCR promoter strand. When two
miRNAs were present, the capture probe specifically recognized target miRNAs, leading to
the formation of a DNA double strand, resulting in two loops and the subsequent release
of the HCR promoter strand Y3. EXO III can specifically cleave the DNA double strand and
release target miRNAs again. Y3 can continuously cycle to initiate HCR amplification, thus
realizing the amplification of colorimetric signals. The quantitative detection of miRNA-21
and miRNA-141 was based on UV–Vis absorption spectra. The detection limit of both
miRNAs was 3 pM, and the linear range was 10 pM-0.4 nM. This colorimetric biosensor
incorporating a dual-signal amplification strategy can simultaneously detect miRNA-21 and
miRNA-141 with high sensitivity. The Y-shaped DNA probe provided a good application
basis for the detection of miRNAs due to its simple preparation, high selectivity, and high
stability. In addition, this colorimetric biosensor was successfully applied to the detection
of miRNAs in human serum samples, and it is expected to be successfully applied to the
diagnosis of clinical cancer in the future.
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Yang et al. [71] proposed a colorimetric sensing strategy for miRNA-21 based on the
combination of G-quadruplex (GQ) and CHA. The design principle of the sensor and the
detection process are shown in Figure 8a,b. Multiple hairpin DNA H1 probes were attached
to AuNPs. When miRNA-21 was present, hairpin DNA H1 was turned on to hybridize
with miRNA-21 and hairpin DNA H2, and CHA would be triggered and continue to
circulate. Upon addition of K+ and hemin, the above precursors can self-assemble into
a spherical DNAzyme. DNAzyme can catalyze redox reactions and color changes. As
the concentration of miRNA-21 increased, the characteristic absorption signal of oxidized
tetramethylbenzidine (TMBox) gradually increased and the color of the solution changed
from burgundy to blue–violet. Figure 8c shows the UV–Vis absorption spectrum for the
detection of miRNA-21, and Figure 8d shows the calibration curve. The developed method
has a linear detection range of 100 fM to 20 nM and a detection limit of 90.3 fM. In addition,
the sensing platform has been successfully used to detect miRNA-21 in human serum,
providing a promising tool for the early diagnosis of hepatocellular carcinoma. Compared
with the method of Li et al. [70] for detecting miRNA-21, this method has a wider linear



Chemosensors 2023, 11, 504 13 of 28

range and lower detection limit. However, the detection throughput of this method is low,
and only one miRNA can be detected at a time.
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4.2. Fluorescence Method

Fluorescent biosensors are widely used in various fields such as biomedicine and
environmental protection because of their high sensitivity, good selectivity, simple opera-
tion, and fast detection speed [72]. This method improves the sensitivity and selectivity
of fluorescence detection by designing specific fluorescent probes or using fluorescent
nanoparticles such as quantum dots and metal nanoparticles [73]. Fluorescent biosen-
sors usually require fluorescence spectroscopy measurements with the help of specialized
instruments such as fluorescence spectrophotometers.

In 2019, Wang et al. [74] designed a ratiometric fluorescent biosensor based on MnO2
nanosheets for the detection and imaging of miRNA-21 in living cells. MnO2 nanosheets
were used as carriers for DNA probes H1 and H2. The recognition probe H1 of this
biosensor was required to be labeled with the fluorescent donor FAM, and the amplification
probe H2 was required to be labeled with the fluorescent acceptor TAMRA. As shown in
Figure 9a, the target miRNA-21 in the cell hybridized with the recognition probe H1 and
initiated CHA. The H1-H2 double-stranded body formed by hybridization prompted the
fluorescence donor FAM to approach the fluorescence acceptor TAMRA, which induced
a ratiometric fluorescence response. Figure 9b shows the fluorescence emission spectra
of miRNA-21 at different concentrations, and Figure 9c demonstrates the linear fit curve
about the ratio of (FA/FD)positive to (FA/FD)negative when different amounts of miRNA-21
were added. The ratio became larger with the increase in miRNA-21 concentration in
the concentration range of 0.1 to 20 nM, with a detection limit of 73 pM. Li et al. [75]
proposed a label-free fluorescence sensing strategy based on copper nanoclusters (CuNCs)
to detect miRNA-21. The change in fluorescence of CuNCs can be used to quantify the
concentration of the target miRNA-21. The DNA-CuNCs used in this biosensor were
synthesized with high efficiency, which saved the preparation time of the sensor. The
CuNCs have strong fluorescence properties and good biocompatibility, which improved
the sensitivity of fluorescence sensing and provided a new idea for fluorescence detection
of miRNAs. This strategy can quantify miRNA-21 in the range of 50–1000 pM with a
detection limit of 18.7 pM. This strategy can quantitatively detect miRNA-21 in the range
of 50–1000 pM with a detection limit of 18.7 pM, which is lower than the detection limit
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of the labeled fluorescence detection method proposed by Wang et al. [74] and has good
specificity and selectivity. Compared with the labeled fluorescence detection method, the
unlabeled method requires less material and is simpler to operate, which is expected to
improve the detection sensitivity of miRNA fluorescence sensors.
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In 2021, Forte et al. [76] developed an advanced PNA microarray system for the
detection of miRNA-122 using the PNA probe. The PNA microarray substrate consisted of
a multilayer structure that included a silicon support, a mirror layer (Al-SiCu) produced
by the CVD method, and a spin-coated agarose layer. The microarray coating was fully
characterized by electron microscopy and SEM optical techniques. By combining the mirror
effect of the aluminum membrane and the positive interference of the agarose membrane
on the emission wavelength of the Cy5 fluorescent label, the system achieved direct optical
signal enhancement. miRNA-122 was detected by the PNA microarrays with a sensitivity
of approximately 1.75 µM−1 and a limit of detection of 0.043 nM. In addition, it was
demonstrated by molecular dynamics simulations that the agarose substrate had a dsPNA-
RNA interaction with positive contribution and was able to avoid potential non-specific
binding. The Si/Al/agarose substrate is highly promising for the development of new
microarray platforms for cancer diagnostic devices.

In 2022, He et al. [77] developed a fluorescent miRNA-21 sensing strategy based
on carbon dots (CDs) and AuNPs. Positively charged CDs fluorophores (PEI-CDs) and
DNA probe-modified AuNPs (AuNPs-cDNAs) were assembled by electrostatic interaction,
resulting in fluorescence quenching. PEI-CDs were released when miRNA-21 was present,
at which point fluorescence intensity was restored. The fluorescence intensity was linearly
correlated with the logarithm of miRNA-21 concentration in the range of 1–1000 fM, and
the detection limit was as low as 1 fM. The results of this method for detecting miRNA-21 in
real serum samples were comparable to those of qRT-PCR. This fluorescent biosensor does
not require complex labeling, effectively simplifying the process. Although it had a low
detection limit for miRNA-21, the detection time still required 2 h, which was unfavorable
for point-of-care detection. The detection time of this sensor can be effectively shortened if
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combined with a molecular enrichment strategy to accelerate the binding rate of miRNA-21
molecules to DNA probes.

In 2023, He et al. [78] proposed another novel miRNA-21 fluorescence sensing strategy
based on CDs. The schematic diagram of this biosensor for the detection of miRNA-21 is
shown in Figure 10a. A molecular beacon (MB) probe (CDs-MB-BHQ1) was constructed
using CDs as fluorophores and BHQ1 labeled at the 5′ end of the DNA probe as a bursting
agent. Not only can graphene oxide (GO) act as a co-bursting agent but it can also adsorb the
MB probe. When miRNA-21 hybridized with the loop region of the MB probe, the hairpin
MB probe opened, increasing the distance between the CDs and BHQ1. The MB probe was
released from the GO, restoring the fluorescence intensity of the CDs. Figures 10b and 10c,
respectively, show the fluorescence spectra and calibration curve of the sensor for miRNA-
21 detection. The fluorescent biosensor can be used to determine miRNA-21 in the range
of 0.5–800 pM with a detection limit of 500 fM. In addition, the MB probe can be used to
detect miRNA-21 levels in real human serum. Although this sensing strategy is relatively
novel, it requires labeling of DNA probes, which is complicated to operate. The detection
limit of this strategy for miRNA-21 is not adequate for clinical applications, and efforts are
needed to enhance the sensitivity of the fluorescent sensor.
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Figure 10. (a) Schematic illustration of CDs-MB-BHQ1/GO system for miRNA-21 detection.
(b) Fluorescence spectra of CDs-MB-BHQ1/GO probe with the addition of various amounts of
miRNA-21 (0, 0.5, 1, 10, 20, 40, 80, 400, 800, 1000, 5000 pM). (c) The relationship between (F−F0)/F0

and miRNA-21 concentration (Insert: calibration curve between (F−F0)/F0 and the logarithm of
miRNA-21 concentration within the range of 0.5–800 pM). (Reproduced with permission from [78]).
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4.3. Surface Plasmon Resonance

Surface plasmon resonance is a label-free optical detection technology. When visible
or near-infrared light is incident on a metal surface, the refractive index (RI) near the metal
surface can reflect the level of biomolecules [73]. Common methods used to excite surface
plasmon include coupling of prisms, optical fibers, gratings, and nanoparticles [79]. The
detection data of SPR biosensors can be collected and displayed in real time. It currently
has a wide range of applications in biosensing, environmental monitoring, and clinical
diagnosis.

Yu et al. [80] constructed a surface plasmon resonance biosensor for the combined
detection of AFP and miRNA-125b markers associated with HCC. The SPR response
was amplified using the double antibody sandwich method (DASM) and S9.6 antibody
enhancement method to improve the sensitivity and specificity of the sensor. As shown
in Figure 11a,b, the anti-AFP monoclonal antibody was modified on the surface of the
CM5 chip by amide bonding, and the DNA probe paired with miRNA-125b was bound
on the surface of the CM5 chip by biotin–streptavidin interaction. The linear range of AFP
detection by DASM was 25–400 ng/mL, essentially covering the clinical AFP detection
range (0–400 ng/mL). The S9.6 antibody enhancement method reached the detection limit
of 123.044 pM for miRNA-125b in the linear range of 0–1000 pM. These results validate the
feasibility of combined multi-marker detection in the early diagnosis of HCC. The detection
technology of AFP as a clinical marker is relatively mature, and combining AFP with other
miRNA markers can improve the accuracy and reliability of early cancer diagnosis. This
combined detection strategy inspires the detection of various cancer markers.
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In conventional surface plasmon resonance biosensors, the hybridization and enzy-
matic digestion reactions to detect biomarkers are performed on the chip surface.
Huang et al. [81] proposed an innovative method to perform hybridization enzymatic
digestion cyclic reactions in solution for miRNA-21 detection. The schematic diagram
of this SPR biosensor is shown in Figure 12a. The target-free probe solution (bio-DNA-
bio/DSN) was injected into the reference channel, the target-containing probe solution
(bio-DNA-bio/miRNA-21/DSN) was injected into the detection channel, and SA-modified
gold nanoparticles (SA-AuNPs) were injected into both channels. In the channel without
miRNA-21, bio-DNA-bio adhered to the SA-modified chip via SA-bio binding and cap-
tured the SA-AuNPs, obtaining a stronger SPR signal. However, in the channel containing
miRNA-21, the DNA hybridized with miRNA-21 was digested by DSN, and miRNA-21
was released into the next enzymatic cycle while many bio-DNA fragments were generated.
The generated bio-DNA and undigested bio-DNA simultaneously bound to the SA on the
surface of the chip, and the captured SA-AuNPs were reduced, leading to a decrease in
the SPR signal. In Figure 12b, the SPR signal decreases with the increase in miRNA-21
concentration. Figure 12c demonstrates that the biosensor has a good linear correlation
in the range of 1–15 fM. The SPR signal can be detected even when the concentration of
miRNA-21 is as low as 1 fM. The sensing strategy of the SPR biosensor proposed in this
study is relatively novel, and the SPR signal amplification can be realized by releasing
miRNA-21 to participate in the cycle only through the DSN-digested DNA probes. Al-
though the detection limit of this biosensor is ideal, its linear range is narrow compared to
other studies of the same type, and the detection results are easily affected by errors.
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versus relative ∆θ. (Reproduced with permission from [81]).
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Wang et al. [82] developed an in situ-prepared silver nanoparticles (AgNPs)-based SPR
biosensor based on HCR for sensitive detection of miRNA let-7a. The dielectric constant
property of AgNPs can significantly increase the angle of SPR. Three DNA probes (ON1,
ON2, and ON3) were included in this strategy so that they could capture the miRNA let-7a,
which subsequently triggered the HCR to produce a large amount of dsDNA on the SPR
disk. ON2 and ON3 coexist in the reaction solution in the absence of the target miRNA,
and only a small amount of dsDNA is attached to the SPR disk. Almost no AgNPs are
produced on the dsDNA, resulting in smaller SPR angle changes. In the presence of target
miRNA, many AgNPs were produced with the insertion of Ag+ into the dsDNA strand
by NaBH4 reduction, leading to a significant increase in the SPR angle. The SPR angle
was proportional to the target miRNA concentration. The AgNPs-based SPR biosensor
detected miRNA let-7a with a linear range of 0.001–0.1 pM and a detection limit of 0.35 fM,
which is lower than that of other SPR biosensors using variable amplification tags. This
SPR sensing strategy exhibited unmodified properties and excellent sensitivity, and it has
great potential for health monitoring and early cancer diagnosis.

4.4. Surface-Enhanced Raman Spectroscopy

Surface-enhanced Raman spectroscopy has been widely used in different fields be-
cause of its high sensitivity, unique molecular vibrational fingerprinting, and ease of opera-
tion [83]. It is very suitable for the analysis and detection of trace biomolecules, including
the sensitive detection of low-abundance miRNAs [84]. When the target biomolecules are
adsorbed onto the surface of the SERS substrate, especially after binding to the receptors
of the substrate, a distinct Raman signal can be observed [85]. In recent years, many
researchers have combined SERS methods with biosensors for the detection of miRNAs.

Wang et al. [86] proposed a dual-mode microfluidic chip-based sensing strategy to
detect miRNA-21 by combining fluorescence and SERS spectroscopy. miRNA-21 was
detected by modifying AgNPs on glass slides to form a SERS-enhanced substrate. A
customized molecular beacon (MB) is then modified. The 3′ end of the MB was decorated
with a thiol group, which enables the MB to attach to the substrate surface. The 5′ end of
the MB was labeled with 6-FAM, which serves as both a fluorophore and a Raman reporter.
Target DNA was injected in parallel channels on a microfluidic chip prepared by PDMS,
and fluorescence and SERS measurements were performed after placing the reaction for
1 h. MBs maintained their hairpin structure in the absence of target miRNA-21. Due to
the proximity of 6-FAM labeling to AgNPs, the fluorescence of 6-FAM was quenched,
and the Raman signal was enhanced. In the presence of the target miRNA-21, specific
hybridization between the miRNA and MB will open the hairpin structure of MB. Due
to the increased distance between 6-FAM and AgNPs, the fluorescence of 6-FAM was
restored, and the SERS signal was weakened. This method can detect miRNA-21 in a
linear range of 10−9–10−7 M. Compared with the fluorescence or SERS sensing strategy
alone, the combination of opposite variations of the two optical methods can improve
the sensitivity and linearity of detection of miRNA-21. In addition, the introduction of
microfluidic chips can shorten the reaction time and save the number of reagents while
reducing the complexity of detection. However, the detection limit of this method is still
unclear.

Si et al. [87] developed a novel SERS sensor array with nine sensing units based on
a DNA hydrogel, which can simultaneously detect multiple cancer-related miRNAs in
a single sample. After modifying SA on each sensing unit, a DNA hydrogel responsive
to the target miRNA was added. Since the DNA hydrogel formed blocked the binding
of the modified SA sensor unit to the SERS tag, no significant Raman signal could be
observed. After the introduction of miRNA-21, the DNA probe in the DNA hydrogel of the
SERS sensor unit hybridized with miRNA-21, and the DNA hydrogel was broken down
accordingly. As a result, the SERS label was able to be captured onto the surface of the
SA-modified sensing unit, resulting in a significant Raman signal. The detection limit of
the sensor was calculated to be 0.11 nM in the range of 4–1200 nM. In this study, the smart
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combination of the SERS sensor array with barcodes highlights the applicability of the
sensor array in multiple detection. This DNA hydrogel-based SERS sensor array is likely to
be a promising candidate for early cancer screening and clinical diagnosis. However, the
developed DNA hydrogel-based SERS sensor array has limited sensitivity for the detection
of miRNA-21 and difficulty in detecting lower concentrations of miRNA.

Wu et al. [88] proposed a surface-enhanced Raman scattering biosensor based on
magnetic nanoparticles, which consisted of a magnetic capture unit and a SERS tag for the
ultrasensitive combined detection of miRNA-122, miRNA-223, and miRNA-21 biomarkers
associated with HCC. Figure 13a,b show the synthesis process of the SERS tag and magnetic
capture unit. The capture probe was modified on the silver shell on the surface of the
magnetic bead to form a magnetic capture unit to enhance the SERS signal. After adding a
mixture of target miRNA-122, miRNA-223, and miRNA-21 to hybridize with the capture
probe, SERS labels, respectively, modified by rhodamine 6G (R6G), crystalline violet (CV),
and 4-amino thiophenol (4-ATP) were attached to the magnetic capture unit to form a
sandwich structure of capture unit/miRNAs/SERS labels. The detection process is shown
in Figure 13c. The proposed strategy can simultaneously detect three miRNAs in a linear
range from 1 fM to 10 nM. In human serum, the detection limits of miRNA-122, miRNA-223,
and miRNA-21 were 349 aM, 374 aM, and 311 aM, respectively. The F-AuNPs constructed
in this study have reusable SERS performance. This SERS biosensor allows simultaneous
multiplexed detection of three miRNAs with ultra-high sensitivity with a detection limit as
low as the aM level. In addition, the biosensor showed good utility for multiplex detection
of three miRNAs in 92 clinical sera. This study provides a new approach for the early
diagnosis of cancer, the staging of HCC patients, and the prognosis of cancer, which is
highly valuable for clinical application.
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Huang et al. [89] proposed a dual-mode biosensor based on SERS and fluorescence
sensing strategy for the detection of miRNA-224 associated with HCC. The CHA strategy
was constructed on gold nano-arrays (AuNAs) as shown in Figure 14a,b, where uniformly
distributed hotspots on the AuNAs enhance the SERS signaling, and their wide surface area
is very favorable for miRNA-224 adsorption. Cy3-labeled hairpin DNA H1 can capture
miRNA-224. When Rox-functionalized hairpin DNA H2 was added, it was also able to
hybridize with H1 to release miRNA-224, which initiated CHA cyclic amplification. The
intensity of the Raman and fluorescence signals was altered by controlling the distance of
Rox from the AuNAs. This dual-mode biosensor detected target miRNA-224 in the linear
range of 1 fM to 1 nM, with a detection limit of 0.34 fM in SERS mode and 0.39 fM in FL
mode. This dual-mode biosensor is also applicable and reliable in the analysis of human
plasma samples. Figure 14c shows that the biosensor can distinguish between HCC patients
and healthy individuals, monitor HCC patients before and after hepatectomy, and guide
the different clinical liver cancer staging of BCLC. The AuNAs prepared in this study have
a large surface area and good biocompatibility, which can be used as a generalized substrate
for sensors that detect a wide range of biomarkers. In addition, the dual-mode detection
results can provide double judgment and make the detection results more reliable.
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Figure 14. (a) Schematic diagram of the self-assembly process of AuNAs substrate. (b) Principle of
AuNAs substrate for miR-224 detection combined with CHA amplification strategy. (c) SERS/FL
dual-mode sensing procedure based on AuNAs substrate and its application in clinical staging.
(Reproduced with permission from [89]).
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4.5. Electrochemiluminescence

In the above study, electrochemical biosensors have excellent sensitivity, but the
detection signal is prone to interference, which is not conducive to achieving accurate
measurements. In contrast, optical biosensors have good stability and high signal-to-
noise ratios, and each biomolecule has specific spectral properties, but their detection
sensitivity for biomolecules is low. Therefore, electrochemiluminescence sensing technology
has been investigated by many scholars. ECL is chemiluminescence triggered by an
electrochemical reaction [90]. ECL technology combines the advantages of electrochemistry
and chemiluminescence and is of great interest for early disease diagnosis and detection of
hazardous substances [91]. So far, ECL has been widely used in various fields such as food
safety, environmental monitoring, and medical diagnosis [92].

Due to the surface plasmon effect of non-metallic sulfides in the visible and near-
infrared regions, Li et al. [93] designed a novel electrochemiluminescence sensing system
based on SnS2 nanomaterials incorporating the SPR effect for the detection of miRNA-21.
SnS2-PEI was used as the plasma source, and Figure 15a shows the preparation process
of SnS2-PEI. Figure 15b demonstrates the design principle of this ECL sensor, where the
CHA cycle adsorbed more SA-PTCA by capturing more H2–biotin. There was a significant
spectral overlap between the ECL emission spectrum of PTCA and the UV–Vis absorption
spectrum of SnS2-PEI, which can produce the SPR effect. Figure 15c shows the ECL
response of this sensor, and Figure 15d shows the fitted relationship between the ECL
response and miRNA-21 concentration. This ECL sensing system detects miRNA-21 in the
linear range of 1 aM–1 nM with a detection limit as low as 0.6 aM. In addition, the ECL
biosensor exhibited excellent selectivity, stability, reproducibility, and utility for detecting
real samples. Compared to the electrochemical biosensors and optical biosensors described
above, the ECL biosensor has a significantly improved sensitivity with a detection limit as
low as the aM level for miRNA-21. In addition, the ECL biosensor has excellent selectivity,
stability, and reproducibility, and can be used for the detection of real samples.
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In 2023, Wang et al. [94] developed an electrochemiluminescent biosensor based on
three-dimensional (3D) DNA nanowalkers, which combined with DSN-mediated target
cycling amplification to achieve sensitive detection of miRNA-21. Ferrocene-labeled DNA
(Fc-DNA) was modified on Fe3O4 MBs to form 3D DNA tracks. When the target miRNA-21
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appeared, DSN digested the hybridized double strand, releasing miRNA-21 and the bipedal
DNA walker. miRNA-21 was again involved in the target cycle amplification, amplifying
the response signal. As the DNA walker moved through the DNA track, the Fc-DNA
hybridized to the DNA walker was cleaved by nucleic acid endonuclease and released
Fc-DNA fragments. Fc-DNA fragments adsorbed to the surface of C-g-C3N4-modified
electrodes, leading to quenching of the ECL signal from C-g-C3N4. The ECL biosensor has
a wide linear range of 10 fM to 10 nM in miRNA-21 detection with a detection limit as low
as 1.0 fM. This work provides an opportunity to construct miRNA biosensors based on
DNA walkers. This bipedal walker significantly increases the walking efficiency, reduces
the detection time, and improves the sensitivity of the assay as compared to the unipedal
DNA walker. This work provides a new idea for constructing miRNA biosensors based on
DNA walkers.

Graphene oxide quantum dots (GDYO QDs) are a derivative of graphene (GDY) with
good electrical conductivity and luminescence properties. Lin et al. [95] constructed an
ECL biosensor for the ultrasensitive determination of miRNA-21 based on GDYO QDs. The
sensor utilized AuNPs/GDY as the electrode substrate material, which not only connected
to the capture probe via Au-S bonds but also enhanced the conductivity of the electrode
surface. Combined with DNA walker and HCR amplification technologies, the target
miRNA-21 can drive DNA walker movement to generate many H1-H2 double strands.
H3 and H4-GDYO QDs partially hybridized with H1-H2 via HCR, and the GDYO QDs
enhanced ECL signals through electron transfer. This ECL biosensor can detect miRNA-21
in the linear range of 0.1 fM to 1 nM with a low detection limit of 0.023 fM. GDYO QDs
prepared in this study have excellent conductivity, biocompatibility, and outstanding
stability. Compared with other related studies, the ECL biosensor in this study detected
miRNA-21 with a large linear range and a small detection limit.

Shen et al. [96] developed an ECL biosensor for the sensitive detection of miRNA-155
based on DNA nanoframe carrier luminophores (DNF-Dox-ABEI). Figure 16a demonstrates
the preparation process of DNF-Dox-ABEI. Multiple luminescent molecules of Dox-ABEI
were loaded on DNF-Dox-ABEI. As shown in Figure 16b, the double strand formed by
the hybridization of DNA probes and cDNA could hybridize with miRNA-155. Then T7
exonuclease was able to digest the DNA probe, releasing miRNA-155 and cDNA at the
same time. This process drove the targeting cycle, leading to signal amplification and
the realization of the amplified ECL signal. Figure 16c shows the preparation process of
TiO2@Ag nanocomposites. The modified TiO2@Ag on the GCE electrode exhibited excellent
peroxide activity, and the generated reactive oxygen species further reacted with ABEI
to generate an ECL signal. Figure 16d shows the schematic diagram of the ECL sensing
strategy based on DNF-Dox-ABEI for the detection of miRNA-155. Figures 16e and 16f,
respectively, show the standard ECL response and calibration curves for the detection of
miRNA-155 by this sensor. The ECL biosensor can detect miRNA-155 in the linear range of
1.0 fM to 500.0 pM with a detection limit as low as 0.45 fM. Various signal enhancement
strategies such as nanocomposites and target cycling amplification were applied in this
study, which significantly improved the sensitivity of the sensor to detect miRNA-155. This
work provides a potential cancer biomarker detection tool for early cancer diagnosis.

Table 2 summarizes the characteristics of these optical biosensors used to detect HCC-
associated miRNAs. The main characteristics include receptor type, electrode material,
optical method, spectral peak, linear detection range, detection limit, and response time.
Most optical biosensors have poorer detection sensitivity and longer detection time than
electrochemical biosensors. However, the SERS method has relatively superior sensitivity
for miRNA detection.
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Figure 16. (a) Assembling of DNF-Dox-ABEI emitters. (b) Schematic description of T7 exo-TRA. (c) The
synthesis procedure of TiO2@Ag nanocomposites. (d) The construction process of the ECL biosensor.
(e) Standard ECL response of the biosensor for different miRNA-155 concentrations (a: 1 fM, b: 10 fM, c:
100 fM, d: 1 pM, e: 10 pM, f: 50 pM, g: 100 pM, h: 500 pM). (f) Calibration plot to the ECL intensity and
the logarithm of miRNA-155 concentrations. (Reproduced with permission from [96]).

Table 2. Optical biosensors for the detection of miRNAs associated with hepatocellular carcinoma.

Analyte Receptor Electrode Optical
Method Spectral Peak Linearity Range LOD Assay

Time Ref.

miRNA-155 DNA probe — Colorimetry 450 nm 1–100 nM 0.7 nM — [69]
miRNA-21

miRNA-141 DNA probe — Colorimetry 520 nm/650 nm 10 pM–0.4 nM 3 pM — [70]

miRNA-21 DNA probe — Colorimetry 650 nm 100 fM–20 nM 90.3 fM 20 min [71]

miRNA-21 DNA probe — Fluorescent 520 nm/570 nm 0.1–20 nM 73 pM 40 min [74]
miRNA-21 DNA probe — Fluorescent 605 nm 50–1000 pM 18.7 pM — [75]
miRNA-122 PNA probe — Fluorescent 650 nm 0.1–10 nM 0.043 nM 60 min [76]
miRNA-21 DNA probe — Fluorescent 500 nm 1–1000 fM 1 fM 2 h [77]
miRNA-21 DNA probe — Fluorescent 513 nm 0.5–800 pM 500 fM — [78]
miRNA-224 DNA probe — Fluorescent 618 nm 1 fM–1 nM 0.39 fM 1.5 h [89]

miRNA-125b DNA probe — SPR — 0–1000 pM 123.044 pM — [80]
miRNA-21 DNA probe — SPR — 1–15 fM 1 fM 60 min [81]

miRNA let-7a DNA probe — SPR — 0.001–0.1 pM 0.35 fM — [82]

miRNA-21 DNA probe — Fluorescent
+SERS — 10−9–10−7 M — 1h [86]

miRNA-21 DNA probe — SERS — 4−1200 nM 0.11 nM — [87]
miRNA-122
miRNA-223
miRNA-21

DNA probe — SERS
615 cm−1

918 cm−1

1140 cm−1
1 fM–10 nM

349 aM
374 aM
311 aM

— [88]

miRNA-224 DNA probe — SERS Cy3: 1586 cm−1

Rox: 1499 cm−1 1 fM–1 nM 0.34 fM 1.5 h [89]

miRNA-21 DNA probe GCE ECL — 1 aM–1 nM 0.6 aM — [93]
miRNA-21 DNA probe GCE ECL — 10 fM–10 nM 1.0 fM — [94]
miRNA-21 DNA probe GCE ECL — 0.1 fM–1 nM 0.023 fM — [95]
miRNA-155 DNA probe GCE ECL — 1.0 fM–500.0 pM 0.45 fM — [96]
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5. Summary and Outlook

This paper reviews the biosensors used for the detection of miRNAs associated with
hepatocellular carcinoma in recent years, mainly including electrochemical and optical
biosensors. A detailed analysis was provided for the sensor probe types, electrode designs,
sensing strategies, and detection effects. Among the electrochemical methods mentioned
above, voltammetry is susceptible to noise interference despite its high detection sensitivity.
Electrochemical impedance spectroscopy is a quasi-steady-state method, and the mathemat-
ical processing of the measurement results is relatively simple. Among the optical methods,
colorimetry has the advantages of low cost and fast response, and can be determined by
the naked eye, but is limited by the relative simplicity of the sample composition and the
color development of the solution is not susceptible to interference. Fluorescence methods
are characterized by high analytical sensitivity and selectivity but require the labeling of
the probe and are prone to false positive or false negative results. SPR does not require the
labeling of the substance to be measured and can monitor the dynamic process of molecular
binding in real time and continuously, but it is sensitive to the composition of the sample
and interferences such as temperature. SERS has high sensitivity and good reproducibility,
with the disadvantage of low signal-to-noise ratio, which is difficult to realize and requires
strict control of experimental parameters. In addition, electrochemiluminescent biosen-
sors do not require a light source and have low background, high sensitivity, and good
reproducibility.

With the continuous development of nanomaterials, it provides greater possibilities to
realize the ultra-sensitive detection of microRNAs. Nanomaterials with multidimensional
structures and composite nanomaterials usually have excellent conductive or luminescent
properties and provide a larger active surface area for the attachment of capture probes,
thus increasing the sensitivity of the assay. In addition, noble metal nanomaterials such
as AuNPs and AgNPs have shown good biocompatibility as well as low toxicity in cancer
marker detection. Microfluidic chips provide a pathway for the realization of portable and
miniaturized detection of microRNAs. It utilizes a micrometer-scale structure to realize
the detection process of the target within a microchannel or reaction chamber, with the
advantages of controllable liquid flow, high throughput, and minimal consumption of
samples and reagents. It has been recognized as an ideal technology for the development
of diagnostic tests for point-of-care testing. In the above study, the combination of multiple
signal amplification strategies was used to improve the sensitivity and reliability of the
assay. Bimodal detection can provide dual judgment to the researcher and make the test
results more reliable. By improving the probe structure, the capture efficiency of the
probe was improved while reducing the background noise. In summary, the development
of multi-modal biosensors, the application of multi-signal amplification strategies, the
combined detection of multiple biomarkers, and the improvement of probe structures have
greatly improved the sensitivity and specificity of miRNA biosensors.

However, the process of preparation and assay operation is also more complicated
for many novel assays proposed so far. In order to design novel and efficient biosensors
with simple preparation, further research is needed by relevant researchers. In addition,
the long assay time of most biosensors is not conducive to point-of-care detection, so
the introduction of fast enrichment detection strategies to shorten the binding time of
the target and the probe needs to be considered. Whether the prepared biosensors can
achieve detection in real samples is also one of the issues that researchers need to consider
due to the complexity of the actual sample composition, which is also a necessary path
for the developed biosensors to be applied in clinical testing. In the future, more new
nanomaterials, microfluidic analysis techniques, and signal amplification strategies will
emerge, and these materials and strategies will also lead to the development of more
novel miRNA biosensors with high detection performance, which will provide more
opportunities for realizing the clinical application of early cancer diagnosis.
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