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Abstract: Nanostructures and nanomaterials, especially plasmonic nanostructures, often show optical
properties that conventional materials lack and can manipulate light, as well as various light–matter
interactions, in both their near-field and far-field regions with a high efficiency. Thanks to these
unique properties, not only can they be used to enhance the sensitivity of chemical sensing and
analysis techniques, but they also provide a solution for designing new sensing devices and simpli-
fying the design of analytical instruments. The earliest applications of optical nanostructures are
surface-enhanced spectroscopies. With the help of the resonance field enhancement of plasmonic
nanostructures, molecular signals, such as Raman, infrared absorption, and fluorescence can be
significantly enhanced, and even single-molecule analysis can be realized. Moreover, the resonant
field enhancements of plasmonic nanostructures are often associated with other effects, such as
optical forces, resonance shifts, and photothermal effects. Using these properties, label-free plas-
monic sensors, nano-optical tweezers, and plasmonic matrix-assisted laser desorption/ionization
have also been demonstrated in the past two decades. In the last few years, the research on optical
nanostructures has gradually expanded to non-periodic 2D array structures, namely metasurfaces.
With the help of metasurfaces, light can be arbitrarily manipulated, leading to many new possibilities
for developing miniaturized integrated intelligent sensing and analysis systems. In this review,
we discuss the applications of optical nanostructures in chemical sensing and analysis from both
theoretical and practical aspects, aiming at a concise and unified framework for this field.
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1. Introduction

Scientists have long dreamed of a rapid, simple, and low-cost analytical technique for
tracing amounts of components in complex samples. This technique has broad applications
in chemistry, material sciences, and life sciences but also presents a great challenge to
researchers. Traditional methods are no longer applicable when faced with very small
quantities of molecules or samples with complex nanostructures and nano-compositions
(such as single cells, a droplet of blood, and complex polymer mixtures) due to the limita-
tions of sample size and scale. New physical or chemical effects are required to transduce
and amplify extremely weak sample information into readable physical signals. To meet
this demand, many new advanced analytical techniques, particularly optical methods, have
been developed in the last few decades thanks to breakthroughs in nano-optics.

Optical techniques are the most widely used techniques in chemical sensing and
analysis because light–matter interactions are one of the most fundamental types of physical
interactions in nature and form the basis of many analytical methods [1,2]. For example,
the optical interactions with molecules’ electronic states lead to UV-Vis spectroscopy,
and interactions with the vibrational states lead to Raman spectroscopy and infrared
spectroscopy. Using the optothermal effect, one can even vaporize and ionize molecules and
subsequently measure their molecular weights. At the same time, with the development
of the semiconductor industry, crucial components, e.g., lasers and photodetectors, have
become cheap and easy to access today. All these factors have made optics a powerful,
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versatile, and convenient choice for chemical sensing and analysis. However, light–matter
interactions are generally weak due to the fact that the size of molecules is several orders of
magnitude smaller than the wavelength of light. This causes the sensitivity issue in optical
measurements (Figure 1). Fortunately, the development of nano-optical technology makes
it possible to circumvent this issue and obtain ultrasensitive analysis [3–5]. With an optical
nanostructure, light can be resonantly enhanced, scattered, and absorbed, and one can
therefore enhance local optical signals significantly, making ultrasensitive nano-analysis
possible [6–8].
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To date, countless optical nanostructures, particularly metallic nanostructures, with
different shapes and properties have been studied. The metallic nanostructures are also
known as plasmonic nanostructures because they support collective oscillations of elec-
trons (so-called plasmon polaritons). These plasmon oscillations can be divided into two
categories: (1) surface plasmon resonance (SPR), which propagates along the surface of
metal surfaces, and (2) localized surface plasmon resonance (LSPR), which cannot [9–11].
Both are tightly confined at the surfaces of structures and, in particular, with LSPR, light
can be confined to sub-10 nm “hot spots” adjacent to metal nanostructures. This extreme
light confinement can also lead to strong local enhancement of the electric fields and
consequently various light–matter interactions, making it very useful in various analysis
techniques (Figure 2). For example, when a molecule is placed in a “hot spot”, its signal
(e.g., Raman scattering, fluorescence, and absorption) can be increased by several orders of
magnitude, and even single-molecule Raman detection can be achieved [12,13]. The pres-
ence of the molecule also shifts the plasmon resonance, and in other words, the plasmonic
nanostructure can also be used as a high-performance index nanosensor [14–17]. Moreover,
thanks to their strong optothermal effects, plasmonic nanostructures can even be used as
the ion source for mass spectrometry (MS) [18–20]. Besides the plasmonic structure, it was
reported that dielectric micro-resonators can also be used for detecting chemicals or viruses
by monitoring the induced resonance shifts, which is similar to the LSPR sensors [21–25].
However, due to the absence of free electrons, these dielectric micro-resonators cannot
confine or absorb light like their metallic counterparts.

In recent years, researchers started to realize that one can achieve arbitrary regulation
of the wavefront of light by patterning separated nanostructures into a planar 2D device,
which is also known as a metasurface [26,27]. A variety of designs have been demonstrated,
including periodic arrays, gradient structures, and even more complex designs. With these
structures, one can conduct sensing, imaging, spectroscopy, and even polarimetry with
good quality and efficiency [28–35]. This not only opens the door towards new sensor
designs but also makes the miniaturization of conventional analysis equipment possible.

Today, optical nanostructures have become one of the most dynamic research areas
in chemical sensing and analysis, and there have been quite a few review articles on this
topic [36–38]. Most of them are mainly focused on the applications related to field confine-
ment and enhancement, such as surface-enhanced spectroscopies and LSPR-based sensors,
but other important topics, such as photothermal effect-related applications, miniaturized
sensors, and metasurface-based polarimetric techniques, are not covered. We, therefore,
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write this review to sort out the various basic properties of nano-optical structures, further
discuss their applications in chemical analysis, from conventional surface-enhanced spec-
troscopies and index sensing to more complex phenomena like laser-induced desorption
and ionization, and then cover the application of metasurfaces for circular dichroism (CD)
measurement, as shown in Figure 2.
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2. Optical Properties of Nanostructures

In this section, we will give a concise review of the theory of the localized plasmon
resonance of subwavelength nanostructures. Associated optical effects, such as field
confinement, field enhancement, and local heating, which are crucial for chemical sensing
and analysis, will also be discussed. At the end of this section, some of the basic ideas
of metasurfaces will also be introduced based on the discussion of the local behaviors of
subwavelength optical nanostructures.

2.1. Localized Plasmon Resonance and Field Enhancement

The simplest model for understanding plasmon resonance phenomena is spherical
nanoparticles [11]. When the nanoparticle’s size is much smaller than the wavelength of
light, it can be treated as a dipole,

p = ε0αE. (1)

Here, α is the polarizability, and E is the external excitation field. The light scattering
cross-section and absorption cross-section of this structure then become:

Asca =
k4

6π
|α|2 (2)

Aabs = kIm(α) (3)

For a deep subwavelength particle, α has a simple form:

α = 4πr3 ε− ε0

ε + 2ε0
(4)

Interestingly, for metallic materials, the real part of the ε is negative when the frequency
is below their bulk plasma resonance frequencies, which typically lie within the optical
spectral range. As a result, the denominator of the α can approach zero, resulting in a
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strong resonance of the free electrons (i.e., localized plasmon resonances). This leads to the
strong scattering and absorption of light by the nanostructures.

The above plasmon resonances are not limited to spherical particles and can occur for
any metallic nanoparticles with any shape [39,40]. Theoretically, the scattering problem
of electromagnetic fields can be rigorously described and solved using the Lippmann–
Schwinger equation [41]:

E(r) = Eext(r) +
∫

cavity
dr′G0(r, r′)·∆ε(r′)k0

2E(r′) (5)

where ∆ε = εc−ε0 is the permittivity contrast between the scatter (nanocavity in this work)
and the background medium, Eext is the external field, G0 is the free-space Green’s tensor,
and k0 is the wavenumber in the background medium. In previous works, the author of
this work demonstrated that under the quasi-static approximation, a nanoparticle always
has a complete set of orthogonal eigenmodes, |Ei〉. The scattering fields E, obtained under
excitation field E0, can be written as a linear superposition of this set of eigenmodes
(Figure 3):

E = ∑
i

aiEi (6)

ai =
s

s− si
〈Ei|E0〉 (7)

Here, s = ε0/(εc − ε0) is a material-related parameter, and si are the eigenvalues.
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Equation 5 can be numerically used after being discretized, and interestingly, it can be
shown that si are always between −1 and 0 [41]. Considering that the permittivity of the
local environment, ε0, is positive (e.g., ε0 = 1 for vacuum), it means that a negative permittiv-
ity is always required to reach the resonance condition of a subwavelength nanostructure.
In the optical regime, only metals exhibit negative dielectric constants due to the existence
of free electrons [8]. This explains why only metal nanostructures show extraordinary
optical properties in the optical regime.

In the quasi-electrostatic model described above, the field enhancement effect is
determined by two factors, (1) resonance enhancement and (2) mode distribution, that is,
the field distribution of the eigenmode |Ei〉 . The first factor is determined by the intrinsic
properties of the material. At the resonance wavelength, the real part of the denominator of
s/(s− si) will be zero, and it is evident that the smaller the imaginary part of the dielectric
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constant of the material is, the greater the resonance enhancement will be. For noble metals,
e.g., Ag and Au, the resonance factors can be greater than ten or even reach hundreds.
The second factor is determined by the geometry of the nanostructure. It is well known
that large field enhancement is often associated with some specific features, such as sharp
corners (i.e., lightning rod effect) and nanometer gaps [42]. In practice, by combining both
the resonance and geometric effects, the field enhancement factor, g = |E|/|E0|, can reach
>100 times at some “hot spots”. If there are molecules present in the “hot spot”, their
excitation rate will be increased by a factor of g2, which is more than 10,000 times.

The above theoretical description can also be understood with the following physical
picture. At the resonance frequency, a plasmon nanostructure can collect propagating
light in free space from a cross-section larger than its geometric size and squeeze the
light into nanometer “hot spots”. This process is very similar to the function of radio
antennas, which can collect the radio waves in the free space into their near field efficiently.
This is why plasmon nanostructures are often called optical antennas or plasmonic nano-
antennas [43–45].

2.2. Enhancement of the Near-Field Scattering and Fluorescence Emission

In antenna theory, it is known that radio antennas are bidirectional devices. They not
only collect the far-field signals to their near field but also broadcast signals from their
near-field to the far-field region [46]. Similarly, plasmon nanostructures can also greatly
increase the rate of Raman scattering, as well as the fluorescence radiation of molecules
in their near-field range. The former can be understood using the reciprocity principle in
light scattering, and to understand the latter, one needs to consider the change in the local
density of states caused by the antenna.

Let us first examine the process of Raman scattering. We consider a molecule located
at r1 in the near field of a metallic particle, and the scattered signal E at r2 in the far field
can then be described using Green’s function G(r2, r1), as shown in Figure 4a. To excite the
Raman signal, we let the emission of a dipole at r2 be the incident light, and at r1, the local
excitation can be described by G(r1, r2), as shown in Figure 4b. In most cases, the reciprocal
principle holds [46,47]:

G(r1, r2) = G(r2, r1) (8)
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In other words, if exaction light is enhanced by g2 times due to the presence of the
particle, in the emission process from r1 to r2, the signal will be enhanced by g2 times again.
Therefore, the total enhancement of the Raman signal is g4, which is called the fourth power
law in surface-enhanced Raman spectroscopy.
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On the other hand, the enhancement of the emission process of fluorescence is very
different because it is linked with the change in the lifetime of the electronic states, which
can no longer be described by the theory of classical electrodynamics. To describe the
emission process, Fermi’s Golden Rule is used [3,6]. That is, the rate of transition (radiation)
of molecules is completely determined by the local density of state (LDOS), ρ:

γi− f =
2π

h̄
∣∣〈 f
∣∣H′∣∣i〉∣∣2ρ(E f ) (9)

Interestingly, although state density is a quantum concept, it can be derived from the
Green’s function, which describes the classical electromagnetic fields [8,48,49], namely:

ρ(r, ω) =
2ω

πc2 Im{Tr[G(r, r, ω)]} (10)

When a plasmonic nanostructure is present, the LDOS can be significantly enhanced.
This can be calculated using Equation (10), where Green’s tensor can be directly calculated
using iterative techniques developed by Martin and colleagues [50]. The LDOS can also be
obtained using Equation (9), which states that the LDOS is proportional to the emission
rate and, consequently, the power of a dipole source. One can therefore calculate the LDOS
by simulating the emission properties of a dipole source using normal numerical solvers
for electromagnetic fields, e.g., the finite-difference time-domain (FDTD) and finite element
method (FEM).

Fluorescence signals can be affected by many factors, such as temperature, pH, con-
centration, and so on. In addition to the emission rate, the fluorescence signal can also be
influenced by the quantum yield. The presence of plasmonic nanoparticles may lower the
quantum yield due to the material losses of metal, and this can even quench the fluores-
cence signals despite the enhancement [51,52], particularly for the dye molecules in the
visible spectral range, whose intrinsic quantum yields are often close to 100% [53].

It is also worth noting that surface-enhanced fluorescence (SEF) experiments are
normally only performed with weak excitation light. When the excitation becomes strong,
the excitation rate will reach the emission rate, and that will saturate the system. In this
case, the local field enhancement will not influence the signal intensity anymore.

2.3. Plasmonic Trapping and Sensing

Another important effect related to the local field enhancement is the significant in-
crease in the field gradient, which has been widely used for optical trapping and sensing
in the last two decades. At a “hot spot”, the intensity gradient of light can be enhanced
by more than three orders of magnitude thanks to both the enhancement and spatial con-
finement of fields [54]. This will greatly enhance the gradient forces (also known as the
dielectrophoresis effect in chemistry), leading to non-negligible attractions for nanoparti-
cles and surrounding molecules. With the plasmon-enhanced trapping forces, individual
nanoparticles and even biomolecules can be trapped under milliwatt-scale laser illumina-
tion, allowing researchers to enrich molecules at “hot spots” and investigate them further
with surface-enhanced spectroscopy techniques [17,55,56].

Interestingly, if we treat the nanoparticle as an optical nano-resonator without radiation
losses, we can link the trapping effect with the optical sensing techniques together. When
a molecule or nanoparticle is trapped, the energy of the system will become lower, and
consequently, the resonance frequency of the plasmonic nanostructure will be shifted.
This property makes the plasmonic nanostructure a high-performance nanosensor that is
extremely sensitive to external analytes [55]. Today, this effect has been widely used for
label-free detections of local index changes induced by the analytes in the surrounding
environment.
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Using perturbation theory, the above resonance frequency change can be described
with an explicit formula [57]:

∆ωi = −αNP
dωi
dεca

|E(rNP)|2∫
cavity dr|E(r)|2

(11)

This is similar to the case of dielectric microcavities, whose resonance frequency shift
can be written as:

∆ωi = −
ωi
2

∫
dr∆ε(r)|E(r)|2∫
drε(r)|E(r)|2

(12)

In both cases, the resonance frequency shift is proportional to both the local light
intensity and the refractive index change induced by the trapped nano-objects. Therefore, a
larger enhancement will always lead to a better sensitivity of the LSPR-based sensors.

Meanwhile, there are also differences between Equations (11) and (12). In Equation (12),
the resonance shift is inversely proportional to

∫
drε(r)|E(r)|2, the integral of the electric

field energy over the whole space, while in Equation (11), the integral is limited to the space
inside the cavity. This is because, for the resonance mode of a plasmonic nanocavity, the
integral

∫
drε(r)|E(r)|2 = 0 is due to the negative permittivity of the metal.

2.4. Photothermal Effect

Large field enhancement means strong optical absorption. From Equation (3), it can be
seen that the absorption cross-section of a nanoparticle can also be enhanced by resonance.
In the case of gold and silver nanoparticles, their absorption interface can even be greater
than their physical size. Meanwhile, the heat capacity and dissipation rate of plasmonic
nanoparticles are often very low. For example, in the case of porous nanostructures where
all nanopores are aligned along the z direction, the effective thermal capacity Ce f f and
conductivity along the z direction Ke f f ,zz and x-y direction Ke f f ,xy can be written as

Ce f f = φC1 + (1− φ)C2 (13)

Ke f f ,zz

Km
= 1 + (

K1 − Km

Km
)φ (14)

Ke f f ,xy

Km
= 1 +

2φ

A1 − φ + A2(0.30584φ4 + 0.013363φ8)
(15)

where C1, Cm, K1, and Km are the thermal capacity and conductance of the filler and matrix,
respectively, φ is the volume fraction of the filler, A1 = K1+Km

K1−Km
, and A2 = K2+Km

K2−Km
. Consider

that the filler is air and its thermal capacity and conductivity are close to zero. When φ is
close to 1, the thermal capacity and conductivity of the porous material will be very small.
It is therefore possible to obtain unexpectedly high temperatures under a relatively mild
excitation using specially designed plasmonic nanostructures [18]. This provides a new
solution for energy-intensive processes, e.g., water desalination and sewage treatment [19].
In the chemical analysis, it has been demonstrated that the high temperature can be used to
improve the efficiency of laser-induced desorption and ionization [58].

2.5. Metasurfaces and Light Manipulation

The plasmon resonance effect not only provides a means for the enhancement/regulation
of the local field strength but also enables the manipulation of the local phase and polariza-
tion of the optical field [26,27]. In other words, it is possible to manipulate light arbitrarily
at any point in space. Based on this idea, Capasso and coworkers proposed the concept
of metasurfaces, which use arrays of plasmon nanostructures to regulate wavefronts at
every point in space. This idea greatly expands the design freedom of optical devices
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and provides a new path for the development of optical sensing devices and analytical
instruments [31,32].

In light manipulation, precise control of phase is crucial. There are two main methods:
resonance tuning and geometric phase. The former uses the resonance behavior of the
optical nanostructure to tune the local phase of light [26]. By changing the resonance
across the working frequency, one can adjust the phase of the scattered light, achieving a
180-degree phase shift. The method is simple and efficient but is wavelength-dependent
and often causes undesired dispersions. Another method is the geometric phase [59–61].
We know that linearly polarized light is the superposition of left-handed and right-handed
circular polarized components. After a simple calculation, one can find that the phase of
the left and right circular polarization components is linearly related to the direction of
the linearly polarized light. In other words, the phase of circularly polarized light can be
controlled by simply manipulating the polarization direction of the field using anisotropic
nanostructures. The method is solely determined by the geometric parameters of the
nanostructure and is independent of wavelength but has relatively low conversion efficiency.
In addition to the above methods, other phase control methods were also demonstrated,
e.g., the waveguide method in dielectric metasurfaces. Using the above method, traditional
bulky optical systems can be replaced with an ultra-thin planar structure. This opens up
many new exciting possibilities for future instrument design [27].

3. Surface-Enhanced Spectroscopies

In this section, we will give a brief review of the surface-enhanced spectroscopies,
which are direct applications of large field enhancement of plasmonic nanostructures.
They are also the most important and widely studied topics in nanostructure-based chemi-
cal analysis.

3.1. Surface-Enhanced Raman Scattering

Raman spectroscopy is commonly known as the fingerprint of molecules in analytical
chemistry, but Raman signals are commonly extremely weak, preventing them from being
used in many applications. Because of this, SERS attracted a lot of attention after it was
first reported in the 1970s [62–64]. In particular, Nie and Kneipp’s groups independently
reported single-molecule Raman measurements from some “hot spots” of Ag nanoparti-
cles [12,13], and for the first time, people were capable of performing structural analysis for
individual molecules in an ambient environment. Encouraged by this, many researchers
carried out research over the last two decades to develop SERS into a quantitative, robust,
and reliable ultrasensitive analytical method. However, it was found that SERS had a series
of limitations due to its own mechanism [65].

One of the major challenges in SERS is the fabrication of high-performance SERS
substrates, which is a long-standing issue in the field. In the early stages, SERS is often
performed with rough metal surfaces or metallic nanoparticle aggregates, in which “hot
spots” can be randomly formed in the nanogaps between particles (Figure 5a) [66]. Later,
the concept of nano-antennas was introduced [43], and “hot spots” can be designed and fab-
ricated using laterally coupled structures in a “controllable” fashion (Figure 5c) [43,67–69].
However, until around 2010, “hot spots” on SERS substrates were always sparse and ran-
dom. This sparse random “hot spots” problem stems from the fact that the enhancement
factor of a “hot spot” is extremely sensitive to its local geometry. The SERS performance can
be very different even if two nanostructures are almost identical under electron microscopy.
For example, one of the authors of this work demonstrated that even 1 nm surface rough-
ness can lead to a one order of magnitude change in the Raman signal [70]. Moreover,
nanometer features are unstable under illumination due to local photothermal effects [71].
It is therefore almost impossible to create “hot spots” in a repeatable fashion because it
is extremely difficult to control the detailed features at the nanoscale using conventional
nanofabrication techniques.
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To solve this problem, various vertically coupled designs were proposed to circumvent
the fabrication challenge faced by laterally coupled structures (Figure 5e). Currently,
deposition and etching techniques allow us to control the thickness of a layer at sub-
nanometer precision. It is, therefore, possible to construct vertically coupled nanostructures
with extremely high precision [74–76]. To date, various vertically coupled structures with a
high density and large area uniformity of “hot spots” have been reported, and with these
structures, SERS has gradually become a quantitative analytical tool [77].

Recently, some successful strategies that partly overcome this problem have been
reported. One work reported that alkanethiolate ligand-regulated Ag nanoparticle films can
be used to achieve quantitative SERS measurements down to the single-molecule level [78].
Another showed that arrays of weakly coupled Ag nanohelices achieved both homogeneous
and strong near-field enhancements [79]. These works allow reproducible SERS detection
over a large area with excellent uniformity and a high Raman enhancement factor.

Another challenge in SERS is that the SERS signals from “hot spots” are very unstable
and often contaminated. The main reason is that the local metal structures of “hot spots” are
very “active” due to the photothermal effect, as well as photocatalysis processes. To avoid
the above problems, researchers have developed ultra-thin protective layer technology for
SERS substrates, which greatly improves the stability of signals [80].

In addition to top-down microfabrication technology, there are also many interesting
progresses with bottom-up methods. One promising approach is the combination of
chemistry and microfluidics technology, which creates clusters of particles in large numbers
in solutions that stabilize the total SERS signal during measurements [81]. This method is
based on microfluidic chips, so it can be easily combined with pretreatment functions, i.e.,
separation and enrichment, making it a powerful tool for real-world applications.

In recent years, there has been growing interest in exploring novel SERS-active sub-
strates to enhance the Raman signals of target molecules. One work reports Mo2C as a
highly sensitive semiconductor substrate [82], and another uses hat-shaped MoS2 films
to separate two layers of metal nanoparticles and exhibits superior SERS capability [83].
These recent works collectively contribute to the understanding of 2D films as SERS-active
substrates and showcase their potential as promising candidates for sensitive molecular
detection and spectroscopic analyses.

In addition, new measurement techniques for SERS were also developed to meet the
request of different application scenarios. One example is the surface-enhanced spatially
offset Raman spectroscopy (SESORS) [84]. By introducing a spatial offset between the
excitation and detection optical paths, it allows selective detection of the Raman signal
from deep tissues [85,86]. Another important SERS measurement technique is the fiber-
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integrated SERS substrate. In recent decades, different design and fabrication strategies
were developed. The flexibility of the fiber system extended the detection to environ-
ments that cannot be reached by traditional substrates, such as tissues, cells, and harsh
environments [87,88].

Today, SERS is not only used for the detection of trace amounts of chemicals but
has also been applied in complex systems, for example, the detection and photothermal
sterilization of bacteria [89] and intracellular detections using single-particle SERS. In situ
real-time detection and tracing of various chemicals in cells are essential for understanding
the basic processes of life. The current main method involves using gene editing technology
to make specific proteins have luminescent properties and observing and analyzing them
under fluorescence microscopy. While achieving great success, fluorescence methods
also have limitations. They require labeling and also face difficulties in detecting small
molecules. But SERS does not suffer from these issues. It enhances the signal of any
molecule which is absorbed on nanoparticles, making SERS a suitable tool for the detection
of small molecules, especially metabolism-related small molecules [90–94]. For more
relevant developments in this field, one can read a related review article by Ren [37].

The above ability to detect chemical substances in complex systems shows the great
potential of SERS in medical diagnosis [95,96]. For example, SERS has been proven to be a
sensitive and effective method for detecting cancer [97–100]. Other applications include the
detection of HIV and COVID-19 [95]. Researchers have demonstrated a reliable detection
of COVID-19 based on soft SERS substrates [101].

SERS can also be used as a powerful tool for food safety and environmental detection.
In the past two decades, there have been significant advances in these fields, which have
been well summarized in recent review articles [102–105].

When talking about SERS, one also needs to mention tip-enhancement Raman spec-
troscopy (TERS) (Figure 5g), which is the combination of SERS and scanning probe mi-
croscopy. TERS utilizes a sharp metallic tip as a single “hot spot”. By scanning the “hot
spot” and collecting SERS signals point-by-point, one can map the chemical information of
a sample at nanometer resolution with single-molecule sensitivity [106,107]. This provides
researchers with a powerful tool for understanding the composition of various chemical
compositions and chemical reactions at interfaces [71,108–110]. Despite its huge successes,
today, the application of TERS is still limited, and it takes a lot of effort to obtain a high-
quality TERS image. One of the main reasons is the reliability of the probes used. The
fabrication of high-performance, chemically stable probes that are not easily damaged or
contaminated is still a challenging issue in this field.

Another important issue with TERS is that it requires a complex and expensive optical
system to excite and collect the Raman signal from the tip. This system needs to be well
integrated with a scanning probe microscope, and the precision of aligning the optical beam
with the tip-end needs to be subwavelength. To address this issue, one way is to integrate
the metallic probe with waveguides, which can guide the excitation light to the tip apex
and collect the signal from the metallic tip to far-field detectors. For example, Liu and his
colleagues developed the nanowire-fiber integrated tip, which can be directly used with
a commercial scanning tunneling microscope without any additional supporting optical
system [111]. This greatly simplified the design of TERS systems.

3.2. Surface-Enhanced Absorption Spectroscopies

UV-Vis absorption spectroscopy and IR absorption spectroscopy are the two most
widely used spectroscopic tools in analytical laboratories. In particular, IR spectroscopy,
like Raman spectroscopy, is the fingerprint spectroscopy for chemical analysis, and the
information of molecular functional groups can be accurately obtained through the analysis
of characteristic absorption peaks, which has many applications in material science, surface
science, and other fields.

Conventionally, surface-enhanced infrared absorption spectroscopy (SEIRA) is mainly
performed with metal plasmon antennas using the local field enhancement effect [67,112,113].
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However, in the infrared region, metals tend to be perfect conductors, and their perfor-
mance is close to that of traditional antennas. The signal enhancement caused by the
resonance of the materials discussed earlier is not significant as in the case of the visible or
near-IR regime. To this end, similar to the development of substrates for SERS, new vertical
antenna-based coupled designs were introduced, which greatly improved the performance
of the enhanced spectrum [114].

Interestingly, it has been found that graphene provides excellent properties in the IR
region that traditional metal structures do not have. For graphene, the concentration of its
conductive electrons is relatively low compared with metals, and its plasmon frequency is
therefore in the IR regime instead of the visible range. Moreover, graphene is atomically
thin, and this causes strong field enhancement at the edges, which are extremely sharp.
Thanks to the above properties, graphene substrates have received a lot of attention in
the field of SEIRA [115,116]. However, compared with SERS, the sensitivity of SEIRA is
relatively low and cannot reach the single-molecule level. In addition, optical components
are expensive for the IR regime. This limits the application of SEIRA.

There are also reports on surface-enhanced UV-Vis absorption spectroscopy, but the
number is much lower compared with SERIA and SERS. This is because of several different
factors, mainly the limitation of materials, the high price of optical equipment, and the
lack of structural information in the ultraviolet spectral region. Moreover, the intrinsic
absorption section of organic molecules in the UV-Vis regime is relatively large, and in
most cases, the sensitivity already meets the requirements.

3.3. Surface-Enhanced Fluorescence

Surface-enhanced fluorescence (SEF) also has a long history, similar to the case of
SERS. However, because the signal intensity of commonly used fluorescent molecules is
much stronger than that of Raman scattering and infrared absorption, single-molecule
fluorescence detection and tracing at room temperature can be achieved without any
enhancement, and surface-enhanced fluorescence has received far less attention in chemical
analysis than SERS and SEIRA.

This situation changed considerably after near-IR (NIR) dyes became popular in
bioimaging in bio-/chem-sensing. Compared with fluorescence techniques in the visible
range, near-infrared dyes offer a larger penetration depth in tissue imaging and lower
background thanks to their low autofluorescence background. These properties make
NIR dyes very popular for in vivo bioimaging and enzyme-linked immunosorbent assays
(ELISA). However, the absorption cross-section of NIR dyes is much smaller than that in
the visible or UV spectral range, and the fluorescence yield is often less than 10%. These
properties bring up the issue of low signal again in a way similar to Raman spectroscopy,
and it is therefore important to find ways to enhance the fluorescence of NIR dyes.

To address this, Chou’s group developed a vertically coupled antenna-based technol-
ogy [74,117], which can enhance the average fluorescence by thousands of times, and at “hot
spots”, the fluorescence signal can be enhanced by up to six orders of magnitude [73,118].
Using this method, the detection limit of the Ebola virus was successfully pushed to sub-
fM [119]. This technology is compatible with existing ELISA detection equipment, and
using nanoimprinting technology, plasmon substrates themselves can be prepared in large
quantities. It is believed that this high-performance SEF-based technique will play an
increasingly important role in the field of high-sensitivity detection, especially in the early
diagnosis of major diseases.

4. Index Sensing and Laser-Induced Ionization with Plasmonic Nanostructures

In this section, we review the applications of plasmonic nanostructures based on more
complex effects, such as optical forces and photothermal effects.
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4.1. Refractive Index Sensing

As aforementioned, the resonance frequency of a plasmon resonance mode can be
shifted by the presence of external analytes due to the works of optical forces. This effect
makes plasmonic nanostructures an important tool for index sensing in chemistry (Table 1).
Researchers have invested great enthusiasm in developing different types of refractive index
sensors, and different reading and processing methods were also developed. Today, thin-
film-based SPR sensors (Figure 6a) have become the gold standard for many applications
in bio-/chem-analysis with a sensitivity down to 10−7 RIU, and they have been well
documented by review works by different groups. We therefore only focus on individual
nanostructure-based sensors as well as array structures, which are less covered.

Table 1. Comparison between SPR, LSPR, and ELISA.

SPR LSPR ELISA

Label-free Yes Yes No

Sensitivity 10−6 nm/RIU 10−2 nm/RIU 10−18 M [119]

Single-molecule
detection No Yes [120] Yes

Detection mode
Absorption

wavelength/angle,
imaging

Scattering, extinction,
imaging

Fluorescence,
imaging

Spatial resolution 10 µm 1 µm 1 µm

Real-time detection Yes Yes No

Multiplexing Yes Yes Yes
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Figure 6 shows the principle of this type of sensor. For a plasmonic nanoparticle, when
a single molecule or viral particle is adsorbed on it, the resonance wavelength will undergo
a step-like shift due to a change of the system’s energy (Figure 6b), allowing us to probe a
single particle or even single molecule in its local environment [17,121,122]. Array struc-
tures were also reported. They are mainly used for measuring the average concentration of
solutions via continuous resonance shifts induced by global index changes [123].

Compared with conventional sensors, individual nanostructure-based LSRP sensors
offer better sensitivity and spatial information. In recent decades, many interesting results
have been reported using individual nanostructure-based LSPR sensors. For example,
using separated plasmonic nanorods, researchers demonstrated the detection of single pro-
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tein molecules [120]. When further combined with plasmon nano-antennas and traditional
whispering-gallery-mode microcavities, the sensitivity can be further improved [124–126].
These above methods are based on the displacement detection of formants, which re-
quires sophisticated spectroscopic equipment. Interestingly, it has been reported that by
using nanopore design, optical detection of single molecules can be achieved by mea-
suring the transmission intensity directly without requiring sophisticated spectroscopic
equipment [127–129].

Due to their small size, plasmonic nanoparticles can even be used to detect local
chemical information in living cells. This is because their scattering spectra can still be
clearly recorded with dark-field imaging spectrographic instruments even after being
injected into tissues [130,131]. Thanks to the high sensitivity and stability of plasmonic
nanoparticles, they are expected to play an increasingly important role in in situ real-time
analysis for life science in the future.

LSPR sensors can also be integrated with optical fibers [132,133]. In fact, fibers can
be used for index sensing themselves using their own optical modes, such as the lossy-
mode resonance (LMR)-based sensing technique [134–138]. The integration of LSPR can
improve the sensitivity of the fiber-based sensors and further enable the combination of the
SERS technique.

Thanks to their high sensitivity and ease of use, SPR and LSPR are now widely used
in a variety of applications. Compared to ELISA, they can detect dynamic processes, which
makes SPR technology particularly important in measuring molecular binding processes.

4.2. Photothermal Effects and Their Applications in Mass Spectrometry

As aforementioned, plasmonic nanostructures often exhibit strong photothermal
effects. With their large light absorption cross-section and nanoscale volume, plasmonic
nanostructures can be instantly heated to hundreds or even thousands of degrees when
excited by laser pulses. This high temperature can be used to melt, desorb, and even break
chemical bonds of the sample, making plasmonic nanostructures an interesting choice for
building ion sources for MS measurements.

In MS, laser-induced desorption/ionization (LDI) is one of the most important ion-
ization techniques for biomolecules [139,140]. It often uses small organic molecules as
an assisting material to improve the efficiency of LDI and soften the ionization process
of biomolecules. In the matrix-assisted LDI (MALDI) technique, the matrix molecules
are ionized first, immediately after being hit by laser pulses, and then they transfer their
charges to the target sample molecules. Because the energy is mainly absorbed by the ma-
trix molecules, it does not destroy the structure of the organic analyte and can consequently
avoid fragmentation issues. However, due to the presence of matrix molecules, there is
always a high background noise level in the low mass regime. To address this issue, people
developed surface-assisted laser desorption/ionization (SALDI) technology, which uses the
photothermal effect of micro- and nanostructures to achieve the efficient, background-free
desorption and ionization of organic molecules [141].

To date, many different types of nanostructures have been used for SALDI, but surpris-
ingly, plasmonic nanostructures did often not show any advantages over nanostructures
made of other materials until very recently [142,143]. This is because most of the plasmonic
nanostructures are designed for surface-enhanced spectroscopies and are not optimized
for the photothermal effect. Things only started to change in recent years. With the under-
standing of plasmon photothermal effects becoming deeper, high-performance plasmonic
photothermal nanostructures were continuously reported. In particular, porous plasmonic
nanostructures have emerged, which exhibit extremely high absorption efficiency, small
heat capacity, and low thermal conductivity at the same time [18,19]. Using this structure,
the authors successfully demonstrated the ionization of biomolecules. The results showed
that its ionization efficiency is several times higher than the case of traditional MALDI
substrates without background noise in the low mass charge region (Figure 7) [58].
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Figure 7. Plasmon-assisted laser desorption/ionization [58]. (a) Principle of laser desorption/
ionization. (b,c) Porous plasmonic substrate before and after laser excitation. (d) Plasmonic substrate
leads to a strong and clean signal. (e) No signal can be observed without the substrate.

It is worth noting that the strong photothermal effect can also lead to the complete
dissociation of molecules and the formation of plasma. This allows plasmon structures to
be applied to atomic spectroscopy (LIPS, laser-induced plasma spectroscopy).

5. Metasurface-Based Chemical Sensing and Analysis

In the previous section, all the applications are based on the properties of the individual
nanostructures or uniform structure arrays. In this section, we will discuss the applica-
tion of nonuniform nanostructure arrays (i.e., metasurfaces). They can map the hidden
optical information into directly detectable intensity information, opening up many new
possibilities for simplification and miniaturization of conventional analytical techniques.

5.1. Plasmonic Gradient as a Miniaturized Bio-Sensor

With the development of information technologies, particularly the Internet of Things
(IoTs), people began to imagine that diagnostic equipment should be more personal-
ized and decentralized, utilizing smart miniaturized point-of-care testing (POCT) equip-
ment [144–146]. In recent years, the emergence of various new high-performance miniatur-
ized chemical and biochemical sensors is making this dream a reality. Especially, plasmonic
sensors (e.g., SPR and LSPR sensors) exhibit great potential for building such devices thanks
to their small size and high signal strength. Meanwhile, the fast growth of consumer elec-
tronics, smartphones, and smartwatches started to integrate communication, computing,
and advanced imaging functions together. It makes the integration of SPR/LSPR sensors
and mobile phones a very promising direction [146,147].

The major function of SPR and LSPR sensors is to convert the refractive index infor-
mation into absorption spectra or angular spectra that can be read by optical inspection
equipment [148]. However, reading both absorption spectra and angular spectra requires
additional equipment. To simplify the measurement, transmission or reflection signals
at a single fixed wavelength are often used instead of the full spectra, but it is at the
expense of measurement accuracy. To address the above issue, the authors propose an
image-based ultrasensitive sensing method using gradient plasmon structures (plasmon
metasurfaces), as shown in Figure 8 [149,150]. It is a 2D array of plasmonic nanorods whose
resonance wavelength continuously varies from the center to the edge. When illuminated
by a monochromic light source, the light will be absorbed at the position where the reso-
nance matches the wavelength of the excitation light, and this will lead to a dark resonant
ring. If the surrounding environment changes, the size of the ring will change too due to
the resonant wavelength shift of the plasmonic nanorods. Such pattern changes can be
accurately recorded and analyzed by mobile phones for ultrasensitive sensing purposes
(as shown in Figure 8b,c). The results show that its sensitivity is comparable to large
research-level instruments.
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Figure 8. Smartphone-based plasmonic sensors. (a) A patterned plasmonic gradient sensor and its
reader are capable of quantitatively measuring the environmental refractive index. (b) The size of
the resonance ring, Sres, changes when the refractive index of the surrounding medium, n, changes.
(c) Sres is linearly related to 1/n [150].

In addition to refractive index sensors based on local plasmon resonance, people have
also tried to combine handheld spectrometers and surface-enhanced fluorescence sensors.
In theory, this should lead to higher sensitivity compared to the LSPR-based sensors, but it
also requires expensive light sources, filters, and more complex optics.

5.2. Snapshot CD Spectroscopy with a Metasurface

With the emergence of metasurfaces, we are gaining unprecedented light manipu-
lation capability, leading to many new opportunities for the miniaturization of analysis
instruments, including optical imaging, polarization measurements, and spectral analysis.
Today, there have been a few reviews on optical imaging applications [30,59]; therefore,
and we limit our discussion on polarization analysis, more specifically, CD spectroscopy,
which is important for biochemical analysis.

CD spectroscopy measures the difference between optical interactions with left- and
right-handed circular polarized light. It is the most widely used characterization method for
measuring the chirality of molecules, having many important applications in chemistry, life
science, and medicine. Because the CD signals are several orders of magnitude weaker than
traditional spectroscopic signals, it requires complex optical modulation–demodulation
equipment to retrieve them [151]. This makes CD spectroscopy a complex and expensive
analytical technique.

Interestingly, with the help of polarization gratings, the measurement for CD spectra
can be greatly simplified. The polarization grating is essentially a metasurface, which
diffracts left-handed and right-handed circular polarized components of light into different
directions with equal efficiencies [152]. The CD measurement can therefore be performed
by simply collecting signals with different polarizations at the same wavelength and calcu-
lating their differences. In addition, polarization gratings can be coupled to microscopic
imaging systems, making it possible to collect signals from a single nanostructure, as shown
in Figure 9. Using this method, the authors and collaborators developed the snapshot CD
spectroscopy technique and demonstrated the CD spectroscopy of single DNA-assembled
3D nanostructures [35].

It should be noted here that the polarization grating used here is made of liquid crystals
instead of metallic nanostructures because liquid crystals are adjustable, transparent, and
convenient to process. It is also possible to fabricate polarization gratings with dielectric or
metallic nanostructures, but the nanofabrication is much more expensive than the case of
liquid crystals.

Finally, it is worth noting that with the emergence of the metasurface technique, the
boundaries between imaging, spectrometry, and polarimetry in conventional optical design
are becoming blurred. One can map the spectral and polarization information from any
spatial point in a sample onto intensity distributions on any given plane, which then can
be recorded with imaging devices. This unique capability is particularly important today
because high-quality imaging devices with a large format have become available in our
daily life. For instance, the pixel number of the CMOS sensor in a smartphone has reached
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100 million. One can therefore expect that high-performance and ultracompact spectropo-
larimetric imaging devices will be integrated into consumer electronic products in the near
future. This will dramatically change the landscape of chemical sensing and analysis.
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6. Applications in Life Science and Theranostics

As discussed above, plasmons can be used as nanoscale optical sensors, energy con-
verters, and spectral signal amplifiers. These properties offer great potential applications
for plasmons in life sciences and diagnostics.

Intracellular plasmonics is a cutting-edge field focusing on the use of plasmonic
nanostructures within living cells. By introducing these nanostructures, researchers can
enhance imaging contrast, enable targeted therapies, and probe cellular processes at the
nanoscale [153–156]. For example, one work reports that by using multifunctional gold
nanoparticles, these intracellular sensors can monitor actin rearrangement in live fibrob-
lasts [157]. Another work shows an electrochemical impedance microscope based on surface
plasmon resonance that resolves local impedance with submicrometer spatial resolution
and monitors the dynamics of cellular processes with millisecond time resolution [158].
Intracellular plasmonics offers novel insights into cell biology and holds great potential for
revolutionizing cell-based research and personalized medicine.

In recent years, plasmonic nanoparticles have emerged as key players in advanc-
ing theranostics. These nanoparticles enhance imaging contrast in techniques like SERS
and photoacoustic imaging while serving as efficient carriers for site-specific drug re-
lease [159,160]. Additionally, plasmons enable novel treatments like photothermal therapy,
where localized heating selectively destroys cancer cells [20,161,162]. Nowadays, many
novel plasmonic nanoparticles have been applied to theranostics. For example, plasmonic
nanobubbles lead to rapid heating and vaporization of the surrounding medium, which
has been explored for targeted drug delivery and tumor ablation [163]. Another example is
gap-enhanced Raman tags (GERTs), which are a class of nanoscale structures that signifi-
cantly amplify the Raman scattering signal of molecules attached to or within their nanogap
regions. These GERTs have been applied as the second near-infrared window (NIR-II) SERS
tags and achieved successes from biodetection to theranostics owing to their simultane-
ous extra-high SERS response, ultra-photostability, and multiplexing capability [164,165].
The development of plasmons in theranostics holds great promise for personalized and
effective healthcare.
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7. Summary and Outlook

From the above review, it can be seen that optical nanostructures, especially plasmon
nanostructures, can significantly enhance the optical effects at the nanoscale, which are
otherwise extremely weak. These nanostructures can therefore function as a bridge that
connects the nanoscale chemical information in its near field to the far-field propagating
waves, allowing researchers to collect and analyze the spectral information from trace
amounts of samples or even a single molecule. In the last decade, the field of nano-optics
has become mature. With the development of computational electromagnetic technology
and nanofabrication technology, the design and fabrication of plasmonic sensors have
become standard processes. The focus of research has begun to shift from conventional
surface-enhanced spectroscopies to applications that involve complex multi-physical effects,
such as LSPR-based sensing and SALDI. The former is associated with the near-field
optical trapping phenomenon, and the latter relies on the nanoscale temporal photothermal
processes of plasmonics.

Another important trend for nanostructure-based chemical analysis is integration and
miniaturization. Today, sensing techniques for physical signals have matured, but there is
still a lack of biochemical sensors which are small, integrated, and highly selective. At the
same time, information techniques, especially IoT techniques, are growing at a breathtaking
speed, and the demand for real-time and reliable monitoring methods of biochemical
information for the environment, public safety, and health is becoming increasingly urgent.
Optical nanostructures, such as plasmonics and metasurfaces, provide an attractive solution
for high-performance, miniaturized, and low-cost sensors. We believe that driven by the
market, the development of reliable, highly selectable, and integrable nanostructure-based
biochemical sensors will be an important trend in the next decade.

Finally, it is worth mentioning that optical measurement methods have made sig-
nificant progress in the last decade. Nonlinear optics and quantum optics technologies
have begun to make their way from basic research to various application fields, including
sensing [166,167]. It has been experimentally demonstrated that nonlinear and quantum
effects can improve the performance of optical nanostructure-based sensors, such as the
signal-to-noise ratio and accuracy [168–171]. We believe that this will bring many new
opportunities in the future.
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