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Abstract: Identifying the main byproducts of SF6 decomposition proves to be an effective strategy
for determining the nature and severity of internal discharge faults in gas-insulated switchgears
(GISs). In this research, it was suggested to utilize the coordination polymer Zr-MOF-808 as a
sensor for the main byproducts of SF6 decomposition. This study examined the adsorption of SF6

and its main decomposition products (CF4, CS2, SO2, SO2F2, and SOF2) on Zr-MOF-808, utilizing
Gaussian16 simulation software through a method anchored on quantum chemistry. Adsorption
parameters were calculated and analyzed, including binding energy, charge transfer, adsorption
distance, along with variations in bond length, bond angle, density of states, and frontier orbital of
gas molecules. Our research indicated that the Zr-MOF-808 cluster demonstrated varying degrees of
chemical adsorption for the six gases, leading to differential conductivity changes in each system
following adsorption. Consequently, the detection of resistance value alterations in the materials
would allow for the identification of the gas products.

Keywords: SF6 decomposition products; MOFs; gas sensing materials; quantum chemistry

1. Introduction

Metal–organic frameworks (MOFs), a novel class of coordination polymer materials,
have seen extensive research over the past twenty years since their initial conceptual intro-
duction [1–4]. They have emerged as excellent foundations for a variety of high-performing
materials and applications [5–8]. The unique structures and properties of MOFs derive
from the versatility in their design [9,10], their structural diversity and malleability [11–13],
their customizable pore size, and their high specific surface area and pore volume [14,15].
These characteristics render them significant for applications in gas storage and separation,
catalysis, energy storage for batteries, bio-medicine, among others [16–23]. Typically, MOFs’
distinctive properties show promise for addressing industrial application challenges such
as CO2 capture, flue gas scrubbing, and enhancing natural gas (NG) and refinery off-gas
(ROG) [24–28]. Nevertheless, limited research exists on the use of MOFs in power systems,
particularly concerning the adsorption behavior of SF6 decomposition products like CF4,
CS2, SO2, SOF2, SO2F2, and other gases, on MOFs materials.

SF6 gas finds extensive use as an arc-quenching medium in GISs. Unforeseen internal
malfunctions in GISs usually stem from insulation defects, with early insulation failures
potentially leading to partial discharges (PDs). During the operation of the equipment,
these faults could instigate the decomposition of SF6 into lower fluorine sulfides (SFn,
n = 1–5) [29–31]. Given the presence of minute amounts of O2 and H2O, these lower fluorine
sulfides could further react to yield SO2, SOF2, SO2F2, and other primary products [32–34].
Should surface discharges occur in the basin insulator, SFn might produce CF4, CS2,
and the like [35,36]. As such, detecting the types and concentrations of discharged SF6
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decomposition products becomes critical for an early identification of equipment fault types
and for a prompt evaluation of the GISs’ insulation level and operational status [37–39].

Gas sensors serve as efficient instruments for detecting SF6 decomposition products.
Gas-sensitive materials, forming the core of this method, have garnered considerable in-
terest from researchers over the past two decades. A study conducted by Yang, A. et al.
revealed that infusing different noble metals into CeO2 nanoparticles can be an effective
approach for engineering high-performance gas sensors for identifying SF6 decomposition
products [40]. Research by Wang, Y. et al. demonstrated that the (101) polyhedron of the
metal oxide TiO2, when altered with Pt(III), significantly enhanced the adsorption of SO2,
SO2F2 and SOF2 [41]. Investigating the modification of the metal sulfide MoS2, Liu, H. et al.
performed a comprehensive study on the adsorption properties and sensing behavior of an
Ir-modified MoS2 monolayer for H2S, SO2, and SO2F2 using Density Functional Theory
(DFT) [42]. Wang, X. et al. discovered that a Rh-doped HfSe2 monolayer exhibited good
adsorption performance for SO2 gas [43]. Chen, D. et al. confirmed that graphene doped
with different elements displayed effective adsorption performance for SF6 decomposition
component gases [44,45]. Despite the impressive gas-sensing properties of these modified
nanomaterials, the design and flexibility of inorganic materials are somewhat restricted,
thereby limiting their potential for further development. As a novel category of coordina-
tion polymer, MOFs materials, thanks to their superior properties, are anticipated to offset
the deficiencies of the aforementioned materials.

Zr-MOF-808, a novel coordination polymer material, employs Zr4+ as the central ion
and 1,3,5 tribenzoic acid as the ligand. A detailed investigation conducted by Furukawa, H.
et al. elaborated on the preparation methodology and structural analysis of Zr-MOF-808.
Their research demonstrated that acid radical ions coordinated with Zr atoms, presenting
themselves in an unordered manner as monodentate and bidentate ligands. Zr-MOF-808
exhibits a 6,3-connected three-dimensional structure, forming a tetrahedral cage with an
interior pore size of 0.48 nm (Figure 1a). The unique design of these tetrahedral cages
allows Zr-MOF-808 to establish a large adamantane cage, having an internal pore size of
1.84 nm (Figure 1b) via vertex sharing [46]. Its crystal structure is presently documented
in the Cambridge structure database (DOI: 10.5517/cc12nc8c). A review of the crystal
structure information file (CIF) in CCDC1002672 determined that the metal ion/ligand
ratio in a Zr-MOF-808 unit cell stands at 39:8.
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As this is a gas-sensing material, its crisscross pore structure with pore sizes of 0.48 nm
and 1.84 nm creates a structural basis for the entry of six gas molecules—SF6, CF4, CS2, SO2,
SO2F2, and SOF2—into the pores of the material (Figure 2). In these pores, the unsaturated
coordination transition metal Zr4+ allows gas adsorption. This study explored the applica-
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tion of MOFs materials from a new perspective. For the first time, the coordination polymer
Zr-MOF-808 was used as a gas-sensing material. The adsorption behaviors of discharged
SF6 decomposition products on this material were studied and analyzed with a simula-
tion method based on the principles of quantum chemistry. The application prospects of
Zr-MOF-808 as an online gas-sensitive material for detecting SF6 decomposition products
were theoretically predicted, which provided new ideas for research on the engineering
applications of MOFs materials.
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2. Calculation Methods

The modeling involved in this study was completed in the GaussView software, and
the structural optimization and single-point adsorption calculation were performed with
the Gaussian 16 software. In the application of Gaussian series in quantum chemistry
simulation software, Sciortino, G. et al. found that PBE0 had a higher accuracy than those
of B3LYP, BP86, and other functionals in the calculation of Ni (II) complexes. Def2-tzvp
performed better than the LANL2DZ basis set [47]. The research on Debefve conducted
by L.M. et al. showed that a combination of the PBE0 functional and def-tzvp performed
best in the geometric optimization of mononuclear platinum complexes based on the DFT
principle. In this study, we use the same exchange-correlation functional, basis set, and van
der Waals action correction algorithm as in our previous research study [48]. We set the
charge to 0 and the spin multiplicity to 1.

According to the .cif file in CCDC, there are 3800 atoms, 6272 chemical bonds, and
96 polyhedrons in each periodic structural unit of Zr-MOF-808. In order to simplify the
calculation, Cluster 1 (Figure 3a) and Cluster 2 (Figure 3b) were extracted from the periodic
structure of Zr-MOF-808 to simulate the adsorption states of gas molecules in pores with
sizes of 0.48 nm and 1.84 nm, respectively. Then, we deleted one carboxyl group from each
of the two saturated Zr atoms on the two clusters to simulate the unsaturated coordination
metal sites generated during the synthesis of Zr-MOF-808.

Cluster 1 is a shared vertex of two tetrahedral cages. The core of Cluster 1 consists of
six Zr atoms in an octahedral shape, and each Zr atom is connected to two benzene rings
by carboxyl groups. The central region, which is wrapped in three benzene rings, forms the
0.48 nm pore of the tetrahedral cage. Upon deleting one of the carboxyl groups connected
to the benzene ring and two Zr atoms, we analyzed the adsorption characteristics of gas
molecules in the 0.48 nm pores. Cluster 2 is an octahedral cage comprising six Zr atoms
and adjacent carboxyl groups. Upon deleting a carboxyl group near the 1.84 nm pore,
the adsorption characteristics of gas molecules in the macropores of Zr-MOF-808 were
simulated. The optimized clusters and molecular gas models are shown in Figure 4.
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We calculate the binding energy (Ebinding) to reflect the changes in the total energy of
each system during the adsorption process, which can reflect the strength of the adsorption
interaction between the gas molecule and the Zr-MOF-808 cluster.

Ebinding = EMOF-gas + EBSSE − EMOF − Egas, (1)

In Equation (1), EMOF-gas is the total energy of the system after Zr-MOF-808 adsorbed
the gas molecules, and EBSSE is the corrected value of the basis-set superposition error
(BSSE) throughout the counterpoise method proposed by Boys and Bernardi [49]. EMOF is
the total energy of the Zr-MOF-808 clusters before adsorption, and Egas is the total energy
of the gas molecules before adsorption.

We describe the gain and loss of electrons in the gas molecules and the Zr-MOF-808
cluster during the adsorption process by the transfer charge of the gas molecules.

∆Q = Q1 − Q2, (2)
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In Equation (2), ∆Q represents the charge transfer of the system, with Q1 signifying
the charge of the gas molecules post-adsorption and Q2 indicating the charge of the gas
molecules prior to adsorption. A positive ∆Q infers that the gas molecule has gained
electrons, while a negative ∆Q suggests electron loss by the gas molecule.

The definition of the adsorption distance lies in the gap between a gas molecule and a
Zr-MOF-808 adsorption site.

To obtain the density-of-states (DOS) curve, a Gaussian function was employed to
broaden the discrete orbital occupation diagram. Further analysis of the gases’ chemical
adsorption on Zr-MOF-808 was carried out using the total density of states, the gas density
of states, and the local density of states.

3. Results and Discussion

The adsorption point calculations in this study were conducted by bringing six gas
molecules perpendicularly close to the unsaturated Zr atoms in the Zr-MOF-808 clusters.
Once the calculations converged, the binding energy and charge transfer were extracted,
and the adsorption distance, bond length, and bond angle changes of the gas molecules were
quantified using GaussView. The discrete orbital occupation information was imported
into Multiwfn, broadened by Gaussian functions, and then plotted into continuous DOS
curves to analyze the hybridization phenomena between atoms.

3.1. Parameters of Adsorption

The adsorption energies, charge transfer, and adsorption distance in the adsorption
processes of the six gas molecules—SF6, CF4, CS2, SO2, SO2F2, and SOF2—on Zr-MOF-808
clusters are listed in Table 1.

Table 1. Adsorption energies, charge transfer, and adsorption distance.

Cluster Gas SF6 CF4 CS2 SO2 SO2F2 SOF2

Cluster 1
Adsorption energy (eV) −0.218 −0.223 −0.354 −0.544 −0.526 −0.399

transfer charge (e) 0.150 0.145 0.147 0.321 0.299 0.282
Adsorption distance (Å) 3.083 3.077 3.235 2.223 2.562 2.532

Cluster 2
Adsorption energy (eV) −0.225 −0.218 −0.338 −0.599 −0.518 −0.451

transfer charge (e) 0.150 0.145 0.147 0.321 0.299 0.282
Adsorption distance (Å) 3.083 3.077 3.235 2.223 2.562 2.532

According to the adsorption energy calculated with Formula (1) in this study, the
relationships between the adsorption capacities of Cluster 1 and Cluster 2 for each gas were
SO2 > SO2F2 > SOF2 > CS2 > SF6 > CF4. It can be seen from the slight difference in the
adsorption energy values that the benzene ring had little effect on the adsorption energy,
which is consistent with the results reported in the literature [50].

It can be seen in Formula (2) that the gas molecules lost electrons during the adsorption
process, and Clusters 1 and 2 gained electrons. The gas transfer charge for Cluster 1 and 2
were the same throughout the adsorption process. After adsorption, the distance between
gas molecules and metal sites in each system was also the same. Based on the comprehen-
sive adsorption energy values, it could be speculated that when there were unsaturated Zr
coordination atoms in the pores, the gas molecules were less affected by adsorption with
different pore sizes.

Therefore, in the following, we only use Cluster 1 as the adsorption substrate to show
the IGMH model and to analyze the changes in the bond length, bond angle, density of
states, and frontier molecular orbital of gas molecules.

3.2. IGMH Model of the System after Adsorption

In recent years, the independent gradient model (IGM) method has become more
and more popular in the visual analysis of intramolecular and intermolecular interactions.
However, when IGM maps are used to study weak interactions on graphs, the isosurfaces
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are usually too convex, which may lead to errors in the analysis conclusions. An IGM based
on the Hirshfeld molecular density partition (IGMH) was proposed by Tian, L. et al. to
replace the free-state atomic density involved in the IGM method [51].

We used the sign(λ2)ρ function to project the type and intensity of interaction onto
the isosurfaces of δg, δg_inter, and δg_intra with different colors. It can be seen from the
colors of the isosurfaces in Figure 5a–c that the F atoms and S atoms in the CF4, SF6, and
CS2 gases had weak interactions with the Zr atoms in the adsorbed substrate. There was a
strong interaction between O atoms in SO2, SO2F2, and SOF2 gases and the Zr atoms in the
adsorbed substrate (Figure 5d–f).
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3.3. Changes in Bond Length and Bond Angle after the Adsorption of Gas Molecules

The changes in bond length and angle of the SF6, CF4, CS2, SO2, SO2F2, and SOF2
gas molecules before and after adsorption are shown in the Supplementary Material
(Tables S1–S12).

There were slight changes in the bond lengths and bond angles of the six gas molecules
due to adsorption, and the obvious changes in the bond angle (the atomic numbers are
shown in Figure 4c–h are the following: The F(3)-S(1)-F(2) bond angle in SF6 decreased
by 1.2◦; the O(2)-S(1)-O(1) bond angle in SO2 decreased by 1.1◦; the O(1)-S(1)-F(2) and
O(2)-S(1)-F(2) bond angles in SO2F2 decreased by 2.21◦ and 2.24◦, respectively, while the
O(2)-S(1)-O(1) bond angle increased by 2.77◦; the F(2)-S(1)-F(1) and O(1)-S(1)-F(1) bond
angles in SOF2 increased by 1.43◦ and 1.46◦.

The changes in the bond length and bond angle before and after the adsorption of
these six gas molecules, together with the adsorption energy, adsorption distance, transfer
charge, and IGMH model of each system after adsorption, strongly proved that the gas
molecules and the adsorption substrate had different interactions.

3.4. The Changes in the Orbital Occupation of Each System before and after Gas Adsorption

Pomogaeva, A.V. et al. furnished a comprehensive account of how to transport the
orbital occupation computation outcomes from Gaussian 16 software into the wave function
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analysis tool Multiwfn, in order to acquire discrete orbital occupation data at varying energy
levels. Upon broadening with a Gaussian function, a continuous density of states (DOS)
map can be generated [52].

This method is applied in this paper to analyze the congruence of the DOS curves
of Zr’s 5s and 4d orbitals on Zr-MOF-808 with those of the outer orbitals of the active
site atoms of SF6, CF4, CS2, SO2, SO2F2, and SOF2 gas molecules. This analysis assists in
studying the hybridization occurrence between the cluster and gas molecules during the
adsorption process.

1. The changes in the DOS of Zr-MOF-808 Cluster 1 after SF6 adsorption are shown in
Figure 6a–c.
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The changes in the DOS of Zr-MOF-808 cluster 1 after SF6 adsorption are shown in
Figure 6a–c. Compared to the cluster before SF6 adsorption, a new DOS peak appears near
the −2.02 eV position of the TDOS curve after gas adsorption, and the curve shows minor
changes near energy positions such as 2.80 eV and 3.20 eV (Figure 6a). As combined with
Figure 6b, it is known that the aforementioned changes in the TDOS curve are contributed
by the SF6 molecules adsorbed by the cluster. Further comparison analysis of the PDOS
curves (Figure 6c) concludes that the PDOS curves of the 4d orbitals of Zr atoms overlap
with those of 2p orbitals of F atoms in −2.36~−1.70 eV section. This indicates that there is
an orbital hybridization effect between Zr atoms and F atoms, which further reveals the
chemical adsorption effect of cluster 1 on SF6.

2. The changes in the DOS of Zr-MOF-808 Cluster 1 after CF4 adsorption are shown in
Figure 7a–c.
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Compared to the cluster before CF4 adsorption, a new DOS peak appears near the
−2.02 eV position of the TDOS curve after gas adsorption, and the curve shows very
minor changes at energy positions of 4.08 eV and 4.88 eV (Figure 7a). As combined with
Figure 7(b), it is known that the aforementioned changes in the TDOS curve are contributed
by the CF4 molecules adsorbed by the cluster. After further comparison analysis of the
PDOS curves of the outer electrons of the atoms at the interaction points of the cluster and
CF4 molecules (Figure 7c), it can be concluded that there is no overlap in the PDOS curves
of the outer electron orbits of Zr atoms and F atoms in 21.76~5.44 eV section. This indicates
that there is no orbital hybridization effect between Zr atoms and F atoms, which further
reveals that there is basically no chemical adsorption effect of Cluster 1 on CF4.

3. The changes in the DOS of Zr-MOF-808 Cluster 1 after CS2 adsorption are shown in
Figure 8a–c.
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Compared to the cluster before CS2 adsorption, a new DOS peak appears near the
−2.32 eV position of the TDOS curve after gas adsorption, and the curve shows minor
changes at energy positions such as −8.00 eV, −2.32 eV, and −0.65 eV (Figure 8a). As
combined with Figure 8b, it is known that the aforementioned changes in the TDOS curve
are contributed by the CS2 molecules adsorbed by the cluster. After further comparison
analysis of the PDOS curves of the outer electrons of the atoms at the interaction points
of the cluster and CS2 molecules (Figure 8c), it can be concluded that the PDOS curves
of the 5s and 4d orbitals of Zr atoms overlap with the ones of 3p orbitals of S atoms in
−2.62~−2.10 eV section. This indicates that there is an orbital hybridization effect between
Zr atoms and S atoms, which further reveals the chemical adsorption effect of Cluster 1
on CS2.

4. The changes in the DOS of Zr-MOF-808 Cluster 1 after SO2 adsorption are shown in
Figure 9a–c.

Compared to the cluster before SO2 adsorption, a new DOS peak appears near the
−4.80 eV position of the TDOS curve after gas adsorption, and the curve shows minor
changes at energy positions such as −4.80 eV, 0.35 eV, and 2.79 eV (Figure 9a). As combined
with Figure 9b, it is known that the aforementioned changes in the TDOS curve are con-
tributed by the SO2 molecules adsorbed by the cluster. After further comparison analysis of
the PDOS curves of the outer electrons of the atoms at the interaction points of the cluster
and SO2 molecules (Figure 9c), it can be concluded that the PDOS curves of the 5s and 4d
orbitals of Zr atoms overlap with the ones of 2p orbitals of O atoms in −5.16~−4.45 eV
section. This indicates that there is an orbital hybridization effect between Zr atoms and O
atoms, which further reveals the chemical adsorption effect of Cluster 1 on SO2.
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5. The changes in the DOS of Zr-MOF-808 Cluster 1 after SO2F2 adsorption are shown
in Figure 10a–c.
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Compared to the cluster before SO2F2 adsorption, no new DOS peak appears in the
TDOS curve after gas adsorption, but the curve shows minor changes near energy positions
such as −1.33 eV, 0.28 eV, and 1.73 eV (Figure 10a). As combined with Figure 10b, it is
known that the aforementioned changes in the TDOS curve are contributed by the SO2F2
molecules adsorbed by the cluster. After further comparison analysis of the PDOS curves of
the outer electrons of the atoms at the interaction points of the cluster and SO2F2 molecules
(Figure 10c), it can be concluded that the DOS curves of the 4d orbitals of Zr atoms overlap
with the ones of 2p orbitals of O atoms in −1.72~−1.01 eV sections. This indicates that there
is an orbital hybridization effect between Zr atoms and O atoms, which further reveals the
chemical adsorption effect of cluster 1 on SO2F2.

6. The changes in the DOS of Zr-MOF-808 Cluster 1 after SOF2 adsorption are shown in
Figure 11a–c.

Compared to the cluster before SOF2 adsorption, a new DOS peak appears near the
−2.33 eV position of the TDOS curve after gas adsorption, and the curve shows minor
changes at energy positions such as −2.33 eV, −1.28 eV, and 1.74 eV (Figure 11a). As
combined with Figure 11b, it is known that the aforementioned changes in the TDOS curve
are contributed by the SOF2 molecules adsorbed by the cluster. After further comparison
analysis of the PDOS curves of the outer electrons of the atoms at the interaction points
of the cluster and SOF2 molecules (Figure 11c), it can be concluded that the DOS curves
of the 4d orbitals of Zr atoms overlap with those of 2p orbitals of O atoms and the 2p
orbitals of F atoms in the −2.65~−2.01 eV section. This indicates that there is an orbital
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hybridization effect between Zr atoms, O atoms, and F atoms, which further reveals the
chemical adsorption effect of Cluster 1 on SOF2.
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3.5. Conductivity Analysis

In this section, the change in conductivity of the cluster after gas adsorption is qualita-
tively analyzed by calculating the HOMO-LUMO gap of the Zr-MOF-808 cluster before and
after the adsorption process. Pham, H.Q. and other researchers have concluded that the
electronic band structure of the MOFs periodic system can be reflected by the first-principles
calculation of the organic linkers in a time-saving and simple way [53]. This conclusion is
drawn from the comparison between the calculated values of the HOMO-LUMO gap of the
organic linkers in MOFs materials and the experimental band gap values in the literature.

Therefore, we selected Cluster 1, which contains five benzene rings (organic linkers),
as the object of analysis. By comparing the changes in the HOMO-LUMO gap before
and after the adsorption process in each system, we can speculate on the impact of gas
adsorption on the conductivity of Zr-MOF-808 material.

The changes in the HOMO–LUMO gap showed that when the Zr-MOF-808 clusters
adsorbed these gases, the conductivity of each system had different degrees of change (as
shown in Figure 12). The HOMO–LUMO gap of the CF4 and SO2F2 systems increased,
and the conductivity decreased. The conductivity of the other systems increased, and the
increase in the SO2 system was the most obvious.
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Thus, it can be postulated that in real-world applications, when a resistance-type gas
sensor, having Zr-MOF-808 as the gas-sensitive material, is used to evaluate whether SF6
has decomposed, the composition of the gas could be analyzed. This can be accomplished
by comparing the resistance response variations of the material to the six gases under
identical sensor electrode preparation conditions, the same gas flow rate, and an equal
measurement temperature.

4. Conclusions

In this study, two clusters of Zr-MOF-808 material and six types of gas molecules
(SF6, CF4, CS2, SO2, SO2F2, SOF2) were modeled by using GaussView software. The
adsorption performance of the two Zr-MOF-808 clusters towards gases was simulated
using Gaussian16 software, which is based on the principles of quantum chemistry. The
main conclusions are as follows:

The Zr-MOF-808 cluster exhibits different adsorption characteristics for each gas
molecule. Among the factors affecting the adsorption properties, the unsaturated coordina-
tion Zr atom contributes the most, while the benzene ring contributes the least. The clusters
perform the same adsorption characteristics for the six gas molecules in the 0.48 nm and
1.84 nm pores of the Zr-MOF-808 structure. In addition, during the adsorption process,
Zr atoms in the cluster exhibit electron-gaining behavior, while gas molecules exhibit
electron-losing behavior. Furthermore, the adsorption effect causes minor changes in the
bond length and bond angle of the gas molecules.

It is concluded from the changes in TDOS and the overlap of PDOS curves that the
adsorption of Zr-MOF-808 clusters to CF4 belongs to the category of physical adsorption,
while the adsorption to the other five gases belongs to chemical adsorption.

Changes in the HOMO-LUMO gap indicate that the chemical adsorption of gases
by Zr-MOF-808 material leads to changes in the system’s conductivity. By comparing the
difference in response of this material to the mixed gas in GISs and pure SF6 gas, it can be
determined whether there is a fault inside the equipment.

Therefore, through detailed theoretical calculations in this study, Zr-MOF-808 is ex-
pected to become a gas-sensitive material for detecting SF6 discharge decomposition com-
ponent gases.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemosensors11070402/s1, Table S1: The bond length changes of
SF6 molecules after adsorption; Table S2: The bond angle changes of SF6 molecules after adsorption;
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