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Abstract: Molecular recognition based on non-covalent interactions between two or more molecules
plays a crucial role in biological systems. Specific biological molecule recognition has been widely
applied in biotechnology, clinical diagnosis, and treatment. The efficiency and affinity of molecular
recognition are greatly determined by the spatial conformation of biomolecules. The designability
of DNA nanotechnology makes possible the precise programming of the spatial conformation of
biomolecules including valency and spacing, further achieving spatial pattern recognition regulation
between biomolecules. This review summarizes recent achievements with DNA-based molecular
spatial pattern recognition systems, the important factors affecting spatial pattern recognition, and
their applications in biosensing, bioimaging, and targeted therapy. The future challenges in and
development of this field are discussed and prospected. This review will provide valuable guidance
for the creation of new DNA tools to enhance the efficiency and specificity of biomolecular recognition.
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1. Introduction

In living organisms, molecular recognition based on the specific interaction between
molecules is a crucial foundation for maintaining life, as mutual recognition and interaction
between biomolecules are essential for processes such as cell signaling, metabolism, cell
proliferation, and differentiation [1]. For example, cell-surface receptor molecules can
interact with signaling molecules, triggering intracellular signal transduction to regulate
cellular physiology and metabolism [2,3]. Enzymes can recognize their substrate molecules,
catalyzing the conversion of the substrate [4,5]. In the field of biotechnology, specific
molecular recognition also has a wide range of applications in the diagnostic and biosensing
fields. For example, the recognition of specific proteins on the surface of tumor cells can
facilitate early diagnosis and targeted treatment of tumors [6,7]. Biosensors leverage
molecular recognition principles to identify particular molecules, harnessing the specificity
of enzymes to detect their corresponding substrates [8,9].

In biomolecular recognition, non-covalent interactions such as hydrogen bonds, ionic
interactions, and van der Waals forces between molecules in the binding site are usually
involved. These non-covalent interactions usually occur based on the spatial conformation
of biomolecules [10]. For example, proteins on the cell surface cluster into a specific pattern
and interact with ligands through specific structural domains, triggering downstream bio-
logical processes such as immune response and cell adhesion. Therefore, the conformation
of biomolecules plays an important role in biomolecular recognition. Recently, by linking
biomolecules to organic/inorganic or biological scaffolds, researchers have constructed ex
vivo molecular recognition systems. Various spatial conformations were constructed by
adjusting the valence and spacing of biomolecules on the scaffold [11]. Efficient biomolecu-
lar spatial pattern recognition and relevant applications, including targeted diagnosis, can
ultimately be achieved.
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In addition to polymers [12], nanoparticles [13], and dendritic polymers [14], nucleic
acids have emerged as novel scaffold materials for biomolecule coupling. With the de-
velopment of DNA chemical synthesis technology, various chemical groups, including
fluorescent dyes, thiols, and biotin, can be modified on DNA chains. Directional coupling
and the precise spatial arrangement of various biomolecules can be achieved. In addition,
DNA molecules have excellent biocompatibility and biological stability. In particular, DNA
technology enables a class of one-dimensional to three-dimensional nanostructures formed
by the precise Watson–Crick base pairing of DNA [15]. DNA nanostructures exhibit unparal-
leled monodispersity and atomic-level precision when compared to other nanoparticles [16].
Excellent chemical addressability, precise assembly, and highly ordered conformation make
DNA nanostructure the perfect template for a variety of nanoscale molecules, such as
small molecules, proteins, liposomes, and nanoparticles [17,18]. Thus, biomolecular spatial
pattern recognition can be easily programmed by DNA [19]. This review provides a compre-
hensive overview of DNA-based molecular spatial pattern recognition systems and DNA
biomolecule conjugation chemistry. We emphasize the crucial factors influencing spatial
pattern recognition and explore their applications (Scheme 1). Furthermore, we examine
the challenges encountered in the advancement of DNA-programmed biomolecular spatial
pattern recognition and propose future directions for this field.
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2. Biomolecular Systems Based on Spatial Pattern Recognition

Specific recognition between antibodies and antigens is a common molecular recogni-
tion in biological systems and is typically used to recognize and clear foreign substances or
abnormal cells in living organisms (Figure 1a). Antibodies, which are proteins generated
by the immune system, possess the ability to identify and attach themselves to particu-
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lar antigen molecules, creating a complex interaction with the antigen. The recognition
and binding between antibodies and antigens are highly specific, with only antigens that
precisely match the antibody being capable of recognition and binding [20]. In addition,
antigen molecules on the surface of tumor cells or viruses are often multivalent and ar-
ranged into specific graphic patterns. For example, the number and arrangement of spikes
on the surface of enveloped viruses differ among various viral species, leading to distinct
characteristics in terms of infection mechanisms and behaviors. Therefore, multivalent
antibodies are often designed to match the spatial conformation of antigens to enhance
the affinity of antigens and antibodies through molecular spatial pattern recognition in
antibody-based virus neutralization and tumor therapy [21]. For example, the conformation
of complementary-determining regions (CDRs) of natural antibodies can be reconstructed
on gold nanoparticles to achieve a high binding affinity with target antigens [22].
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Receptor–ligand recognition is another ubiquitous molecular recognition in vivo
(Figure 1b). Receptors are proteins on the cell membrane that can bind to specific ligands,
triggering biological reactions inside the cell. Ligand molecules often include metal ions,
nucleic acids, proteins, etc. [23]. The recognition between receptor and ligand molecules is
highly selective. Ligands with specific chemical and structural features bind to specific re-
ceptors. This selectivity ensures the specificity and effectiveness of biological reactions [24].
Since the receptor molecules often cluster on the cell membrane, spatial pattern recogni-
tion between receptor and ligand has been applied in the studies of receptor-mediated
biological processes. Palma’s group proposed a biomimetic nanoscale array fabrication
strategy based on triangular origami. By assembling integrin-specific binding ligands and
epidermal growth factor (EGF) in a multivalent form in patterned nanoscale arrays, they
studied receptor–ligand recognition in the spread of cancer cells with nanoscale spatial
resolution and single-molecule control. They demonstrated that the synergistic effect of
integrin and EGF in the spread of melanoma cells is related to the number and ratio of
the two ligands [25]. Dutta et al. designed a six-helix DNA origami tension probe by
customizing different numbers of ligands on DNA origami. They used single-molecule
force spectroscopy to measure the tension signal of platelets and found that the total tension
signal of the platelets increases with the number of modified ligands on the probe [26].

Nucleic acid aptamers, characterized by unique secondary and tertiary structures,
are single-strand nucleic acid oligomers that possess the capability to selectively bind
to specific target molecules (Figure 1c). These aptamers are commonly referred to as
chemical antibodies and offer several advantages over traditional antibodies due to their
high specificity [27]. First, the molecular weights of nucleic acid aptamers are relatively
small and their structures are simple. Therefore, they penetrate cell membranes more easily
and can bind to target molecules within the cell. Second, aptamers are generated from an
in vitro process known as the systematic evolution of ligands by exponential enrichment
(SELEX), which is more economical and can be prepared on a large scale. Last, nucleic acid
aptamers can maintain their structural stability over a wide range of temperatures and
pH. Their resistance to degradation by proteases makes them well-suited for utilization in
intricate biological systems [28]. In addition, aptamers can be easily modified with different
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functional groups. Therefore, nucleic acid aptamers have been increasingly used in the
research and application of biomolecular recognition [29]. Significantly, drawing inspiration
from natural multivalent interactions, researchers have ventured into exploring multivalent
aptamers that exhibit enhanced binding affinity, heightened specificity, and extended
circulation duration compared to monomeric aptamers [30]. The rational conformational
design of multivalent aptamers is key to their target recognition. For example, human
thrombin aptamers with defined distances and orientations were established to study the
effect of the aptamer geometry on binding properties. It has been proven that optimization
of the spatial pattern of the aptamers can improve the affinity of binding efficiently [31].

3. Approaches for the Construction of DNA-Based Multivalent Biomolecules

When establishing a DNA-based biomolecular recognition system, the conjugation
of DNA and biomolecules is the first and most important step. There are several highly
specific and efficient methods for modifying biomolecules on DNA, including biotin–avidin
interactions, and click chemistry reactions. The approaches are mainly divided into non-
covalent conjugation and covalent conjugation based on the mechanism of the reaction
(Table 1) [32,33].

3.1. Non-Covalent Conjugation

The non-covalent conjugation between DNA and biomolecules is realized through the
interaction between the connecting molecules on DNA and ligands such as biotin–avidin,
Ni2+–NTA–Histag, etc.

The non-covalent interaction between biotin and avidin is a highly specific and
high-affinity binding interaction, commonly employed in the conjugation of DNA with
biomolecules. With the maturation of solid-phase DNA synthesis technology, biotin-
modified oligonucleotides have been commercialized. The common strategy is to conjugate
biotin-modified DNA with biomolecules modified with tetrameric streptavidin protein
under mild conditions. Using this strategy, different ligands have been ligated to DNA
nanostructures [34–36]. However, this method has some drawbacks. For example, the large
size of tetrameric streptavidin may cause steric hindrance, which will affect the efficiency
of ligation. The structure of the tetramer may lead to uncertain stoichiometry between
DNA and biomolecules. These problems may be solved by using monomeric avidin, but
the binding affinity would be weakened accordingly.

Ni2+–NTA–Histag non-covalent interaction is another commonly used linking strategy.
In the presence of Ni2+ ions, molecules labeled with multiple histidine residues (Histags)
are bound to NTA-labeled DNA to construct DNA–biomolecule complexes [37]. This inter-
action is reversible in the presence of strong chelators such as ethylenediaminetetraacetic
acid (EDTA). As the protein labeled with multiple histidine residues can be easily fused
with the target protein through protein engineering, this method is more commonly used
for the coupling of protein and DNA [38].

In addition, non-covalent interactions between proteins are also used to construct
DNA–protein complexes. Protein A/G is a protein ligand that binds specifically to the Fc
region of antibodies. The binding between protein A/G and the Fc region of antibodies is
achieved through a combination of electrostatic interactions, hydrophobic interactions, and
hydrogen bonding. These forces enable the formation of a stable complex between protein
A/G and the Fc region of antibodies. A ProA/G-dRep fusion protein was developed for
the conjugation of DNA and antibody with precise stoichiometry. In addition, protein-
binding cyclic peptides can also bind to certain proteins through non-covalent interactions.
Gothelf’s group selected the FC-III, a 13-amino-acid cyclic peptide binder of the human
immunoglobulin G (Ig G) Fc domain, to direct DNA protein conjugation. Quantitative
conversion of DNA is achieved at low stoichiometries and the reaction can be performed in
complex biological matrixes, such as cell lysates [39]. Although the non-covalent interaction
between proteins can precisely control the ratio of DNA to protein in conjugation, it is not
universally applicable to other biomolecules because such interactions occur mostly in
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antibodies. Some DNA binding proteins that bind to the DNA of specific sequences non-
covalently, such as Zinc-finger protein and transcription activator-like effector nucleases
(TALEN), also have potential in DNA biomolecule conjugation [40,41].

3.2. Covalent Conjugation

Compared with non-covalent conjugation, covalent conjugation provides a much
stronger binding between DNA and biomolecules, further improving the stability of DNA–
biomolecule complexes and promoting their applications in physiological environments.

The most commonly used strategy of covalent conjugation is to use the native func-
tional group on the biomolecules. For example, covalent reactions occur between the amine
group in lysine and different chemical groups modified on DNA, such as carboxyl. The
thiol group is also an active group for covalent reactions. In addition to direct reactions
such as acid–base condensation reactions, some heterobifunctional crosslinking agents,
such as succinimide 3 (-2-pyridyl dithionyl) -propionate (SPDP) and sulfonyl succinimide 4-
(n-maleimide methyl) cyclohexane-1-carboxylate (Sulfo-SMCC) were also introduced in the
conjugation of two different chemical groups [42,43]. The use of a native chemical group of
biomolecules for conjugation is simple but lacks selectivity. When more than one functional
group used for ligation exists in biomolecules, it is difficult to control the valency and
direction of the coupled DNA. Therefore, click chemistry with high selectivity, fast reaction
rates, and few side reactions has been more and more applied in the conjugation of DNA
and biomolecules [44,45]. Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC), the first
widely accepted click reaction, was first proposed by Sharpless in 2001 [46]. Alkyne-labeled
DNA strands have been conjugated with the genetically incorporated azide group on glyco-
proteins or enzymes to form DNA–biomolecule complexes. However, the requirement for
copper ions as a catalyst limits its application in vivo. Later, a copper-free click reaction was
proposed by Bertozzi and widely used for biomolecule conjugation [47]. One of the most
commonly used reactions is strain-promoted alkyne–azide cycloaddition (SPAAC), which
conjugates azide and dibenzocyclooctyne (DBCO). Knappe and colleagues developed a
versatile DNA origami functionalization platform based on SPAAC, realizing the in situ
conjugation of carbohydrates, small molecules, peptides, polymers, and proteins to DNA
scaffolds [48].

Another method for covalent linkage is to introduce a tag protein on the biomolecules,
which provides a self-catalytic reaction site for reaction with modified DNA. The com-
monly used tag proteins are O6-alkylguanine-DNA-alkyltransferase (SNAP-tag) [49] and
haloalkane dehalogenase (Halo-tag) [50]. SNAP-tag transfers the benzyl group on O6-
benzyl-guanine-modified DNA to cysteine, while phenylalanine in Halo-tag undergoes
displacement reaction with chlorine atoms on DNA, forming a covalent linkage between
the ligand and DNA. Since these two reactions are orthogonal, multiple biomolecules can
be simultaneously modified on DNA using different tags [51].

Table 1. Summary of approaches for the construction of DNA-based multivalent biomolecules.

Type Modification Reference

Non-covalent

Biotin–avidin interaction Biotinylated protein and
avidin-modified DNA [34]

Ni2+–NTA–Histag interaction
Protein bearing histidine clusters and

NTA-modified DNA [38]

Protein–protein interaction Protein A/G or protein binding
peptide-modified DNA [39]

Protein–DNA interaction Protein bearing Zinc-finger
protein/TALEN [41]

Covalent
Heterobifunctional crosslinking Amine and thiol modification [43]

Click chemistry Azide and alkyne modification [48]
Tag-protein-mediated conjugation Protein fused with SNAP-/Halo-tag [51]
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4. Factors Affecting Spatial Pattern Recognition

After conjugating DNA with biomolecules, the spatial conformation of these biomolecules
can be arranged precisely according to design. The interaction between receptor and ligand
molecules with different spatial conformations can be studied with the help of many tech-
niques including X-ray crystallography, nuclear magnetic resonance, and surface plasmon
resonance. So far, researchers have investigated several factors that influence spatial pattern
molecular recognition by leveraging the programmability of DNA. By optimizing these
factors, they have successfully achieved efficient molecular recognition.

4.1. Valency

Spatial pattern recognition often involves multivalent interactions between multi-
ple biomolecules. In nature, multivalent interactions are characterized by the binding of
multiple ligands on one biological entity with multiple receptors on another, exhibiting
characteristics that are not present in monovalent interactions [52,53]. In contrast to weak
monovalent binding, multivalent interactions substantially augment the molecular-level
binding between receptors and ligands. For example, the multivalent interaction between
a virus and its host cell allows the virus to stably adhere to the cell surface, achieving
efficient invasion [54]. Immunoglobulin M (IgM) is the first defense for the body against
foreign pathogens, typically binding to antigens in the form of pentamers, and subse-
quently activating the complement response [55]. Hence, through chemical synthesis that
mimics endogenous multivalent biomolecular arrays, researchers can investigate the piv-
otal role of multivalent interactions in molecular spatial pattern recognition. Moreover, it
becomes possible to construct novel multivalent biomolecular patterns that can alter the
efficiency of molecular recognition through mechanisms beyond the capabilities of natural
substances [56].

Low-valence multivalent biomolecules can be constructed by the site-specific conjuga-
tion of molecules on single- or double-strand DNA, which is also called DNA functional-
ization or modification. These multivalent biomolecules, such as proteins, small molecules,
and nucleic acids, can achieve the selective recognition and quantitative measurement of
the target molecules. In addition to single- and double-strand DNA, DNA nanostructures
are more widely used in the construction of multivalent biomolecules. DNA nanostructures
are self-assembled from multiple DNA strands with high precision and predictability, with
one-dimensional to three-dimensional sizes and geometries [15,16]. For example, the DNA
tetrahedron is a three-dimensional framework DNA nanostructure, usually formed by the
hybridization of four DNA single strands [57]. Small molecules, peptides, nucleic acids, and
other biomolecules can be ligated to the four DNA single strands through covalent or non-
covalent connections, forming multivalent biomolecules with different valencies (primarily
1–4 valence) [58–60]. Li et al. connected 1–4 unmethylated CpG oligodeoxynucleotide
sequences to the vertices of a DNA tetrahedron. The multivalent CpG specifically recog-
nizes Toll-like receptor 9 (TLR9) on the surface of macrophages and successfully activates
downstream immune regulatory functions [61] (Figure 2a). Other DNA nanostructures
composed of a few single-strand DNA materials such as DNA G-quadruplex and DNA tile,
can also be used as scaffolds for low-valence multivalent biomolecule construction. Liu
et al. designed trivalent and tetravalent nucleic acid aptamers based on the J1 connection
and 4 × 4 DNA tile structures, both of which showed strong affinity when binding to target
cells. Based on this, two types of nucleic acid aptamers were linked to the end of a DNA
tile dimer to construct an octavalent double-specific nucleic acid aptamer, which mediated
the connection between the two types of cells [62].

Sometimes, it is necessary to construct tens or even hundreds of multivalent biomolecules
for molecular recognition, where DNA origami serves as a good candidate for a multivalent
scaffold. DNA origami is a type of bottom-up synthesized nanostructure ranging in size
from tens of nanometers to sub-micrometers. A typical DNA origami structure contains
about 200 staple strands with unique sequences and positions. By conjugating biological
molecules to these staple strands, multivalent biomolecules with hundreds of valencies can,
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in principle, be constructed [63]. Song’s group precisely arranged 10 to 90 SARS-CoV-2
RBDs (receptor binding domains) on a ~74 nm DNA soccer-ball origami structure and stud-
ied the multivalent molecular recognition between RBD and ACE2 (angiotensin-converting
enzyme 2) on the host cell. It was found that both the affinity and the rate of the DNA-based
multivalent RBDs binding to the host cell increase with the RBD number [64] (Figure 2c).
Furthermore, certain DNA nanostructures, such as DNA tetrahedra, can serve as funda-
mental units for constructing higher-order nanostructures. By attaching biomolecules to
each DNA nanostructure monomer, multivalent molecular recognition can be achieved,
thereby expanding the capabilities and applications of these DNA-based architectures.
Yang’s group arranged sub-10 nm DNA tetrahedrons on a microfluidic chip and ligated
nucleic acid aptamers (SYL3C) to them. The multivalent nucleic acid aptamer formed on
the interface increased the affinity with human colon cancer cells (SW480) by about four
times compared to free nucleic acid aptamers [65]. DNA nanostructures self-assembled
via the hybridization chain reaction (HCR) or rolling circle amplification (RCA) can also
serve as multivalent nanoscaffolds. Tan’s group designed and constructed several nanos-
tructures with multivalent aptamers such as “nanocentipede” and “nanoflower”, which
specifically bind to target cells with high affinity through multivalent recognition [66,67]
(Figure 2b). Nonetheless, molecular recognition based on these structures can only be
studied qualitatively due to the unpredictable nature of the reactions.
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In general, a higher number of valence states in biomolecules provides an advantage
in molecular recognition due to the multivalent synergistic effect. Nevertheless, several
studies have indicated the presence of a valence threshold in specific molecular recognition
systems, wherein the affinity no longer improves beyond a certain number of valence
states, despite an increase in their quantity. Consequently, it becomes desirable, from both
economic and practical perspectives, to determine the precise threshold of valence states
for optimal molecular recognition. In the DNA-based multivalent biomolecular systems
mentioned above, the structures formed through HCR and RCA result in a substantial
amplification of valence states due to the repetitive units of the structure. However, the
lack of control in their reactions hinders the assurance of precise and uniform valence
states. Conversely, multivalent biomolecules based on DNA tetrahedra and DNA origami
provide accurate manipulation of valence states, offering greater advantages in research on
biomolecular recognition that relies on spatial conformation.

4.2. Distance

The distances between molecules play a crucial role in molecular recognition, partic-
ularly in spatial pattern recognition, as they provide valuable information about specific
interaction patterns. Biomolecules, in particular, can exhibit even distribution on the cell
membrane or localize in microdomains due to the fluidity of the phospholipid bilayer. Con-
sequently, the distances between biomolecules can vary depending on the cellular state [68].
Understanding and analyzing these distances is essential for deciphering molecular recog-
nition processes and spatial patterns [69]. DNA nanostructures enable precise localization
of biomolecules. Among them, DNA origami with strong designability, span scales from
nanometers to hundreds of nanometers, perfectly matching the scale range of molecular
arrangements on the cell surface. In addition, the remarkable spatial addressability of
DNA origami allows for the precise anchoring of biomolecules at the nanometer scale.
These capabilities enable researchers to investigate biomolecular networks with controlled
distances, facilitating in-depth studies in distance-dependent molecular recognition.

In 2008, Yan’s group first utilized the spatial addressing ability of self-assembled
DNA nanoscaffolds to construct bivalent aptamers with different distance intervals for
recognizing thrombin protein and visualized this interaction at the single-molecule level.
The bivalent aptamers with the highest thrombin binding activity were found to have
a distance of 5.8 nm between the two aptamers [70] (Figure 3a). Similarly, Shaw et al.
modified DNA origami with the Eph receptor tyrosine kinase ligand ephrin-A5, and
constructed a series of “nano-rulers” with different ligand spacing to study the role of
distances between ephrin-A5 in Eph receptor recognition and receptor-mediated signal
transduction [71]. Furthermore, various biomolecules such as caspase-9 monomers and
cell-binding ligand RGD have been strategically positioned on diverse DNA nanostructures.
These investigations aim to elucidate the impact of spacing on the molecular recognition
capacity and the effectiveness of downstream signal transduction [72,73].

An antibody molecule typically consists of two antigen-binding fragments (Fab),
with each Fab region capable of binding to an antigen. Consequently, a single antibody
molecule can simultaneously bind to two identical or different antigens. This bivalent
binding mechanism plays a vital role in enhancing the antibody’s affinity and specificity,
thereby increasing its effectiveness in immune responses. As a result, the distance between
antigens becomes crucial in immune reactions. By precisely controlling the spacing of
antigen molecules, it is possible to optimize antigen–antibody recognition and interactions,
enhance the efficacy and selectivity of immune responses, and provide guidance and
principles for the design and optimization of molecular vaccines. For example, Shaw et al.
used DNA origami to precisely control the distance between antigens and characterized
the binding of antibodies with identical antigen-binding domains. They found that the
antibodies bound to two antigens at distances of 3–17 nm, and the binding affinity varied
with the distance between the antigens, with the highest affinity observed for antigens at a
distance of approximately 16 nm [74]. Fan’s group constructed artificial antigen epitopes of
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3–20 nm by anchoring antigens onto triangular DNA origami and used high-speed atomic
force microscopy to image the antigen–antibody interaction at the single-molecule level,
providing dynamic evidence for the antigen-binding process of IgG from monovalent to
bivalent [75] (Figure 3b). In addition to antibody binding, antigens can also activate B-cell
receptor (BCR) signaling pathways to activate antigen-specific B cells. To further explore
the effect of antigen spacing on IgM–BCR activation, Bathe’s group conjugated the clinical
vaccine immunogen eOD-GT8 (an HIV-1 glycoprotein-120 external domain) to the surface
of icosahedral and six-helix bundle DNA origami at different numbers and distances. It was
shown that the activation of B cells was maximized with an antigen spacing of 25–30 nm.
This work provides optimization principles for the design of molecular vaccines based on
B-cell immune responses [76] (Figure 3c).

Overall, the influence of spacing on biomolecular recognition varies according to
the specific recognition system. It is necessary to investigate the optimal distance within
specific types of recognition biomolecules and environments to attain the highest efficiency
in molecular recognition, which can ultimately be applied in biomedical fields such as
disease diagnosis, vaccine design, and other related areas.
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4.3. Pattern Arrangement

Molecular recognition in the biological system is based on specific interactions between
ligands and receptors, which often occur on the cell membrane and exhibit topological
cluster characteristics. As an illustration, surface antigens found on viruses and bacteria
often exhibit a specific spatial topology [77]. Moreover, the response of T-cell receptors
(TCRs) to antigens is intricately linked to the precise positioning of the antigen in three-
dimensional space [78]. By orienting multiple biomolecules into a certain geometric pattern,
multivalent ligands with various topological structures can be formed and specifically
recognize target molecules. DNA nanostructures, ranging from one-dimensional to three-
dimensional architectures, offer unparalleled advantages over other materials when it
comes to the precise spatial arrangement of molecules. Through DNA structure design and
modification site engineering, biomolecular patterns of diverse shapes can be constructed.
Moreover, by precisely controlling the spatial arrangement of multivalent ligands on DNA,
the affinity with target molecules can be significantly enhanced.

The algebraic topology of biomolecules can be arranged on a DNA framework to match
the receptor patterns on the cell surface. Fan’s group topologically rearranged 1–3 aptamers
on a DNA tetrahedral framework including point, line, and surface configurations, targeting
overexpressed epithelial cell adhesion molecule (EpCAM) on tumor cell membranes. The
multivalent ligands distributed in a surface pattern showed the strongest ability to recruit
receptor aggregation on the cell membrane, with a 19-fold increase in affinity compared
to free aptamers [79] (Figure 4a). By utilizing DNA tetrahedral dimers, researchers were
able to broaden the topological configurations of the aptamers. This expansion resulted
in altered molecular recognition properties and binding strength by inducing receptor
aggregation on the cell membrane [80]. Shen and colleagues built a suite of nuclear pore
complex (NPC) mimics by programmably arranging multiple nucleoporin proteins on
DNA origami. They designed two octagonal-shaped DNA origami channels to mimic the
NPC’s eightfold rotational symmetry. Different numbers of nucleoporin proteins formed
different topologies in the structure and showed different binding affinity to the capsid
of human immunodeficiency virus 1 (HIV-1), which provides a mechanistic insight for
elucidating how viruses enter the nucleus [81] (Figure 4b).

Some biomolecules combine into unique shapes and configurations for the specific
recognition of target molecules. A noteworthy example is the diverse shapes of surface
antigens found on viruses. These epitope configurations serve as specific markers for
the viruses and play a vital role in enabling the immune system to recognize and mount
an attack against the viral pathogens. The precise design of DNA nanostructures can be
used to achieve a highly matched spatial conformation and achieve precise regulation of
molecular recognition. A star-shaped DNA nanostructure carrying 10 envelope protein
domain III (ED3) aptamers was developed to precisely match the trivalent and pentavalent
ED3 epitope on the dengue virus surface, which can be used for virus detection and
inhibition [82] (Figure 4c). The aptamers against the SARS-CoV-2 S protein were assembled
into a trimeric complex on a DNA nanocage to match the pattern of the S protein trimer in
the spatial arrangement, resulting in significantly higher affinity to the S protein trimer [83]
(Figure 4d).

Precisely modulating the spatial arrangement of multivalent biomolecules to match
the patterns of the target can maximize the strength of multivalent interactions and further
enhance the affinity between biomolecules. However, the precise spatial arrangement
of biomolecules on DNA nanostructures to achieve spatial pattern recognition can only
be accomplished when the exact distribution of target molecules is known. For target
molecules with unknown or imprecise distribution, a relatively flexible DNA scaffold
may be constructed to enable dynamic and adaptive matching of biomolecules, thereby
enhancing the affinity of biomolecular recognition.
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5. Application of DNA-Based Spatial Pattern Recognition

DNA scaffolds have been utilized to precisely attach diverse biomolecules, enabling
spatially controlled molecular recognition characterized by specificity and strong affinity.
Since molecular recognition is crucial in many biomedical fields, such as immunology
and drug development, emerging studies have focused on developing DNA-programmed
multivalent biomolecules for biomedical applications, such as biosensing, bioimaging, and
targeted therapy.

5.1. Biosensing

Based on the interactions between biosensors and the target substance, biosensing
technology finds extensive application in the detection and analysis of target molecules
within biological systems. Efforts have been made to improve the efficiency and sensitivity
of the biosensor, such as developing new construction materials, optimizing the biorecog-
nition element, and introducing a signal amplification strategy [84–87]. Among them,
DNA-based biomolecular recognition can be conducive to highly sensitive biosensors in
detecting cancer biomarkers [88]. The overexpression of distinct membrane proteins in
tumor cells, which can be specifically recognized by corresponding ligands, plays a vital
role in the early diagnosis of cancer. As an illustration, in liquid biopsy, various membrane
proteins, such as EpCAM, which are overexpressed on the surface of circulating tumor
cells (CTCs), serve as novel biomarkers, offering a broader understanding of the primary
tumor tissue for precision medicine. Yang’s group combined microfluidic chips and DNA-
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tetrahedron-conjugated EpCAM aptamers to ensure highly ordered and perpendicular
ligand orientation at the nanoscale, avoiding the non-specific binding and crowding effects
of traditional microfluidic interfaces (Figure 5a). The chip they developed improved the
capture efficiency of circulating tumor cells (CTCs) by nearly 60% compared to chips with
monovalent ligand modification. Additionally, 83% cell release can be achieved by DNase
I treatment, with a cell survival rate of 91% [65]. In addition, the spatial topology of the
EpCAM aptamer was optimized with DNA tetrahedrons, and a capture efficiency of up to
97% for MCF-7 cells injected into whole blood was achieved, which was higher than the
antibody capture method (~50%). CTCs from the whole blood samples of cancer patients
were successfully captured, with 3–10 CTCs per milliliter for non-metastatic patients and
38–44 CTCs per milliliter for metastatic patients [79] (Figure 5b). In addition to DNA
tetrahedra, DNA-origami-based multivalent aptamers were also developed, which match
the spatial distribution of target protein clusters and detect CTCs with high affinity [89]. In
comparison to DNA tetrahedra, DNA origami employed in CTC detection offers more bind-
ing sites. This enables the conjugation of recognition molecules with higher valence and
different types. As a result, the affinity for binding with CTC is significantly enhanced. The
binding equilibrium constant Kd is reduced from 7 nM (for DNA tetrahedra) to 260 pM (for
DNA origami). However, the smaller size and greater flexibility of DNA tetrahedra make
them more amenable to be modified at the interface. By combining with a microfluidic
system, the thermodynamics of molecular recognition at the modified interface were greatly
improved. The strategy can be used in a wide variety of areas, including non-invasive
testing, and the interfacial regulation of cellular behavior.
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of the chip with multivalent aptamers for clinical samples. Reprinted with permission from [65],
copyright 2020, John Wiley and Sons. (c) TK1 mRNA detection curve of a DNA-octahedron-based



Chemosensors 2023, 11, 362 13 of 21

fluorescence nanoprobe. Reprinted with permission from [90], copyright 2018, American Chemical
Society. (d) DNAzyme walking and amplification imaging of miRNAs within living cells. Reprinted
with permission from [91], copyright 2019, American Chemical Society.In addition to biosensors that
directly detect molecules on the cell surface, high-affinity molecular recognition also mediates the
entry of biosensors into cells for the efficient detection of intracellular biomolecules. After binding
to specific molecules on the cell surface, DNA-based multivalent biomolecules can enter cells via
endocytosis and detect target molecules inside cells. Lu et al. constructed a DNA octahedron with a
divalent AS1411 aptamer, which can simultaneously detect and image two tumor-related mRNAs
in living cells, distinguishing target cancer cells from normal cells. The fluorescence signal of the
octahedron with the divalent AS1411 aptamer was stronger than that of the octahedron without
aptamers, indicating that the DNA-based biosensor can be more effectively taken up by cancer cells
through modification with the AS1411 aptamer [90] (c). Xue et al. integrated a DNAzyme walker into
a triangular DNA scaffold functionalized with multivalent aptamers for highly sensitive detection
of cell miRNA. The movement of the DNAzyme walker was activated by the target miRNA and
produced signal amplification [91] (d).

Despite its polyanionic nature, DNA can cross the negatively charged membrane to
enter living cells by assembling into specific nanostructures. It was reported that DNA
nanostructures approach the membrane primarily with their corners to minimize electro-
static repulsion and their binding affinity and cellular internalization frequency depended
on the corner angle of the structures [92,93]. Therefore, three-dimensional DNA nanostruc-
tures with corner structures, such as tetrahedra and octahedra, offer greater advantages for
intracellular sensing applications than two-dimensional planar structures such as triangles
and squares.

5.2. Bioimaging

Molecular recognition has a wide range of applications in biological imaging, includ-
ing cell imaging, tumor imaging, and molecular localization. Fluorescent probes can be
used to detect specific receptors on the surface of tumor cells, assisting in tumor diagnosis
and treatment. For example, EpCAM aptamers with different numbers and directions were
assembled on a DNA framework to construct a series of probes for the imaging of tumor
cells. The directional-yet-flexible probe exhibited adaptability to the receptor distribution
on cell surfaces and high affinity against target tumor cells and has the potential of becom-
ing an excellent imaging probe for EpCAM-positive tumors [94] (Figure 6a). Multicolor
probes were constructed by arranging different fluorescent molecules and aptamers on
DNA tetrahedra. Molecular recognition facilitated the achievement of multiplexed cell
imaging and classification of various tumor cells by harnessing the programmability of
fractal DNA frameworks [95]. In terms of tumor imaging in vivo, Ding’s research group
has employed rational design to create DNA-based probes that feature precisely organized
tumor-targeting components along with imaging molecules such as fluorescent groups
and magnetic resonance contrast agents. Through this approach, they have successfully
achieved specific and non-invasive tumor imaging in mouse models using DNA nanostruc-
tures [96,97] (Figure 6b).

The biology and chemistry of cells can also be studied by probes based on biomolecular
pattern recognition. For example, introducing imaging molecules into specific cellular
structures can help in understanding the distribution and dynamic changes of molecules
within cells. Xu’s group developed DNA-programmed plasma rulers for imaging the
dimerization of the RTK on the cell membrane. The binding of aptamers to cell-surface
receptors was regulated by DNA, further mediating the dimerization and dissociation of the
receptors. Real-time imaging of RTK dimerization and dissociation processes was realized
by detecting the scattered signal caused by the plasma coupling effect of gold nanoparticles.
This method provides a more persistent and higher resolution tool for studying protein
oligomerization, transport, and dynamics processes, which is of great significance for the in-
depth interpretation and precise regulation of cellular signal transduction [98] (Figure 6c).
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Overall, in biological imaging systems, DNA origami has an advantage in multimodal
imaging due to its numerous modification sites, by simultaneous modifications such as
fluorescence and radiolabeling. Conversely, DNA double strands and DNA tetrahedra are
more suitable for dynamic imaging due to their structural flexibility.
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American Chemical Society.

5.3. Targeted Therapy

One of the main challenges in the treatment of diseases, especially tumors, is the
lack of effective and precise targeted delivery systems. Molecular recognition can be used
to identify target molecules that are related to the occurrence of diseases. Consequently,
there has been extensive research on utilizing modified DNA as drug carriers for targeted
therapy, aiming at specific molecules.

Commonly used chemotherapy drugs such as doxorubicin (DOX) can intercalate into
DNA base pairs. Nucleotide drugs such as siRNA and antisense oligodeoxynucleotide
(ASO) can be hybridized with DNA by Watson–Crick complementary base pairing [99].
After being conjugated with ligands for recognition, DNA specifically delivers these drugs
into target cells, without toxic side effects on normal cells. Lin’s group ligated the nucleic
acid aptamer AS1411 to DNA tetrahedra (t-FNAs) to target the overexpressed nucleolin
protein on tumor cells. Compared to tetrahedra without AS1411, AS1411–tFNA accumu-
lated in the nuclei of MCF-7 cells. Through the additional loading of 5-fluorouracil (5-FU)
onto t-FNAs, the successful induction of apoptosis in MCF-7 cells was achieved [100].
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In addition to AS1411, other nucleic acid aptamers such as Gint4.T and GMT8 (which
specifically recognize platelet-derived growth factor receptor beta and human glioblastoma
cells U87MG, respectively) were also ligated to t-FNAs, and the loaded chemotherapeutic
drug paclitaxel was target-released in tumor cells [101]. Ge and colleagues reported a
DNA origami nanostructure modified with targeting ligand DUPA as an antibody–drug
conjugate (ADC) analog for the targeted therapy of prostate cancer. The platform effi-
ciently delivers DOX to prostate-specific membrane antigen (PSMA)-positive cells, and
the therapeutic effect is dependent on the number of ligands connected [102] (Figure 7a).
Compared to other organic and inorganic nanomaterials, DNA nanostructures demon-
strate significant advantages in the targeted delivery of drugs because they can provide
large payload capacity and improve cellular internalization with high specific recognition.
However, the expression of surface biomarkers on cancer cells is heterogeneous, which
causes the inaccurate identification of cancer cells by a single biomarker. To address this
issue, Ju’s research group developed a dual-receptor-mediated DNA nanocarrier for siRNA
delivery. DNA is self-assembled into a double-lock structure with aptamers Sgc8c and
Sgc4f that bind to two specific receptors on the cell surface. The delivery system is active
only when both of the aptamers were recognized by cells, thus improving the accuracy of
cell identification and greatly reducing the off-target toxicity [103].

Functional molecules can be simultaneously modified on DNA frameworks, providing
a powerful platform for multimodal cancer therapy. Zhang et al. combined a DNA
tetrahedron modified with a nucleic acid aptamer and a metal–organic framework (MOF)
nanoparticle to design a hybrid nanocarrier for loading DOX. The chemotherapy drug
was released in cancer cells rich in adenosine triphosphate (ATP) or vascular endothelial
growth factor (VEGF). At the same time, a photosensitizer, Zn (II) protoporphyrin IX (Zn
(II)-PPIX), was introduced to produce high-intensity fluorescence efficiently and selectively
in tumor cells, inducing the production of reactive oxygen species (ROS) and conducting
photodynamic therapy on malignant tumor cells [104]. A nanomachine for DNA logic gate
operation across cell membranes was designed, realizing precise photodynamic therapy
for solid tumors in vivo. This DNA nanomachine consists of upconversion nanoparticle
cores (UCNPs), DNA assemblies, and sgc8 aptamer. The overexpressed PTK-7 protein
on the cancer cell membrane and the high-expressed miRNA-21 inside the cancer cell
serve as two signals trigging the production of intracellular ROS [105] (Figure 7b). A DNA
nanorobot was constructed based on a rectangular DNA origami structure for delivering
and releasing thrombin in tumors. Thrombin molecules were placed inside the lumen of
the tubular DNA nanorobot and then closed by a predesigned anchor chain containing the
nucleic acid aptamer AS1411. The nucleic acid aptamer on the outer surface can guide and
trigger the release of thrombin, activating clotting at the tumor site and ultimately resulting
in tumor necrosis and growth inhibition [96]. The DNA-modified biomolecules not only
act as guides for targeted delivery but also function as triggers for drug release or ROS
production, thereby significantly enhancing the spatiotemporal control of targeted therapy.

Tumor immunotherapy, as an emerging method for cancer therapy, activates the
immune system for better recognition and attacking of cancer cells, inhibiting the growth
and metastasis of tumors. Tumor-specific antigens specifically expressed by tumor cells
can be recognized by the immune system as foreign and trigger an immune response
to eliminate these tumor cells. For example, T cells acquire adaptive immunity through
the binding of T-cell receptor (TCR) to the major histocompatibility complex (pMHC) on
the surface of antigen-presenting cells (APCs). By designing a series of DNA nanoscale
junctions (DNJs) based on DNA tetrahedra with different sizes, the intermembrane distance
at the interface of APC and T cells was precisely controlled. It was demonstrated that the
axial distance of the immunological synapse plays an important role in T-cell recognition
and activation, providing a basis for T-cell immunology research [106]. Recently, researchers
constructed a set of self-adjuvant carriers known as framework nucleic acids (FNAs), which
possess regulated rigidity and size. These FNAs were utilized to investigate the impact
of epitope spacing on the efficacy of peptide vaccines. When epitopes were assembled
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on FNAs of appropriate size, the recognition between the epitopes and B-cell receptors
(BCRs) as well as the immunogenicity, could be efficiently enhanced [107] (Figure 7c). The
recognition and activation of T cells and B cells with antigen epitopes can be regulated and
optimized through the design of DNA nanostructures. However, current research focuses
primarily on regulating distances and there has been a lack of investigations into patterned
arrangement recognition for immune cell activation.

In addition to the targeted treatment of tumors, molecular recognition also plays an
important role in targeted antiviral therapy. By interfering with the specific molecular
interactions between viruses and host cells, the infection of host cells by viruses could be
prevented. SARS-CoV-2 infection was inhibited by anchoring neutralizing aptamers on a
DNA scaffold in a pattern that matches the spatial configuration of the viral S protein [83].
Dietz’s group conjugated antivirus antibodies to a DNA icosahedral shell in a modular
fashion. Viruses were recognized and trapped in the shell, realizing the neutralization of
hepatitis B virus and adeno-associated virus [108] (Figure 7d). The virus-trapping strategy
mediated by DNA provides a novel approach to antiviral therapy. The use of DNA-based
agents potentially circumvents neutralization, phagocytosis, and degradation by pathways
of the innate and adaptive immune system targeting protein structures. However, nucleic-
acid-specific reactions, such as the activation of pattern-recognition receptors recognizing
DNA, may occur in vivo. Thus, assessing the potential adverse effects in organisms remains
to be an important challenge in application.
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diagram of the transmembrane DNA computation and in vivo fluorescence imaging of mice based on
different inputs. Reprinted with permission from [105], copyright 2021, American Chemical Society.
(c) Immune responses induced by FNA-constructed COVID-19 epitope vaccines. The significance of
difference was evaluated by p value; * p < 0.05, *** p < 0.001. Reprinted with permission from [107],
copyright 2023, John Wiley and Sons. (d) Negative stain TEM images demonstrating the capture of
AAV2 virus particles within antibody-modified DNA origami half shells and fluorescent microscopy
images showing the anti-infective effect. Reprinted with permission from [108], copyright 2021,
Springer Nature.

6. Conclusions and Perspectives

Advancements in DNA-programmed biomolecular spatial pattern recognition have
led to the synthesis of multivalent biomolecules that demonstrate enhanced affinity to
receptors, both in vivo and in vitro. These biomolecules exhibit exceptional performance
in various applications, including biological detection and targeted therapy. However,
DNA-based biomolecular recognition still faces many challenges in future applications:
(1) Due to the small differences in the expression levels of some biomolecules in different
cells, it is necessary to further optimize the spatial arrangement of biomolecules on DNA
scaffolds to achieve precise control of recognition affinity and improve the sensitivity of
molecular detection. (2) Presently, DNA-based multivalent ligands are capable of precisely
targeting receptors with predetermined conformations on the cell surface. Nevertheless, the
cell membrane exhibits mobility, and the distribution of receptors on its surface undergoes
dynamic changes. Consequently, the development of adaptive multivalent biomolecules
that leverage the adjustability of DNA to accurately match molecules on the cell membrane
surface remains an ongoing challenge. (3) In the specific detection of membrane proteins
on the cell surface, the cellular uptake of DNA scaffolds may affect the detection sensitivity.
To address this issue, spatial pattern recognition can be designed on interfaces such as
microfluidic chips and microbeads to eliminate the influence of cellular uptake. (4) Matrices
are complex in the biological system and the biomolecular recognition in vivo can be
affected by heterogeneity, steric hindrance, and so on. The factors that influence molecular
spatial pattern recognition have not been fully elucidated. Computational simulations,
such as the simulation of dissipative particle dynamics, may help the construction of a
biomolecular recognition model.

Despite these challenges, the studies of DNA-programmed biomolecular spatial pat-
tern recognition have provided compelling evidence for the power of this approach to
reveal important physiological processes in cells and promoted the development of biosens-
ing and drug delivery. We believe that with further developments in DNA nanotechnology,
synthetic biology, microfluidics, and information technology, more accurate and adaptive
control over biomolecular recognition will be realized, providing a powerful tool for the
clinical diagnosis and treatment of diseases.
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