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Abstract: A novel flexible humidity sensor incorporating gold nanoparticles (Au NPs) and a tri-
functional organosilica compound has been developed through the integration of sol–gel pro-
cessing, free radical polymerization, and self-assembly techniques. The trifunctional organosilica
was initially synthesized by modifying (3-mercaptopropyl)trimethoxysilane (thiol-MPTMS) with
3-(trimethoxysilyl)propyl methacrylate (vinyl-TMSPMA). Subsequently, a hydrophilic polyelec-
trolyte, [3(methacryloylamino)propyl]trimethyl ammonium chloride (MAPTAC), was grafted onto
the MPTMS-TMSPMA gel. The Au NPs were assembled onto the thiol groups present in the MPTMS-
TMSPMA-MAPTAC gel network. The compositional and microstructural properties of the Au
NPs/MPTMS-TMSPMA-MAPTAC composite film were investigated utilizing Fourier transform
infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The presence of thiol groups
and mesoporous silica skeletons ensured the stability of the humidity-sensing film on the substrate
under highly humid conditions, while the hydrophilic groups functioned as humidity-sensitive
sites. This innovative humidity sensor demonstrated high sensitivity, acceptable linearity, minimal
hysteresis, and rapid response time across a broad range of working humidity levels. Based on
the complex impedance spectra analysis, hydronium ions (H3O+) were determined to govern the
conductance process of the flexible humidity sensor.

Keywords: flexible humidity sensor; organosilica; Au NPs; composite; water resistance

1. Introduction

Fabricating flexible sensors has emerged as a critical area of interest, particularly in
the context of portable handheld consumer electronics, which are utilized in applications
such as smart textiles, smart packaging, radio frequency identification (RFID) tags, and
the Internet of Things (IoT) [1–4]. The measurement and control of humidity is necessary
in maintaining the excellent quality of products in a variety of manufacturing processes,
as well as in maintaining human health and performing daily activities. Therefore, hu-
midity sensors have attracted much attention and have found wide use in various fields
such as industrial process control, agriculture, health monitoring, and environmental
monitoring [5–7]. Consequently, the development of flexible humidity sensors and wear-
able devices has gained significant traction [8–10]. To achieve high accuracy and precision
in flexible humidity sensors that cater to the diverse needs of various applications, it is
imperative to enhance the properties of humidity-sensing films in terms of cost efficiency,
ease of fabrication, sensitivity, hysteresis, linearity, mechanical stability, response/recovery
times, and working range [7,11,12]. As a result, an array of materials including poly-
mers [13–19], carbon-based nanomaterials [20–26], ceramic materials [27–29], and diverse
composite materials [30–38] has been employed in flexible humidity-sensing films. In com-
parison to polymers, ceramics demonstrate superior sensitivity, rapid response/recovery
times, and enhanced stability under high humidity conditions.

Mesoporous silica has garnered considerable interest for humidity sensor applications
due to its exceptional properties such as non-toxicity, high internal specific surface area, and
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ordered pores [39–42]. However, a lack of sufficient hydrophilic groups and low conductiv-
ity restricts its humidity-sensing capabilities across a wide humidity range. To enhance the
hydrophilic properties of silica materials, a common method involves modifying them with
polymer electrolytes, as these exhibit significant conductivity changes when exposed to
varying relative humidity (RH) environments [43–47]. Various researchers have developed
resistive and capacitive-type humidity sensors using different materials and methods,
such as in situ polymerization and thiol–ene click reactions [43–47]. Additionally, incor-
porating materials such as Au nanoparticles (Au NPs), single-walled carbon nanotubes
(SWCNTs), or graphene oxide (GO) into silica has been used to improve conductivity
and flexibility, thereby enhancing humidity-sensing properties [11,48–50]. In a previous
study [11], a flexible humidity sensor comprising Au nanoparticles, GO, and silica was
fabricated using a sol–gel process and a self-assembly technique. However, there have
been no attempts to utilize organosilica-containing polyelectrolyte-based materials in the
fabrication of a flexible humidity sensor. In this study, Au NPs/organosilica-containing
polyelectrolyte ((3-mercaptopropyl)trimethoxysilane (MPTMS)-3-(trimethoxysilyl)propyl
methacrylate (TMSP-MA)-[3(methacryloylamino)propyl]trimethyl ammonium chloride
(MAPTAC) (MPTMS-TMSPMA-MAPTAC) composite films were fabricated on a polyethy-
lene terephthalate (PET) substrate to create flexible resistive-type humidity sensors by
combining sol–gel processing, free radical polymerization, and self-assembly. Fourier
transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used
to analyze the composition and morphologies of the Au NPs/MPTMS-TMSPMA-MAPTAC
composites. The electrical characteristics of the Au NPs/MPTMS-TMSPMA-MAPTAC
composite films were investigated as functions of RH. The water resistance, flexibility, and
humidity-sensing properties encompassing sensitivity, hysteresis, influence of ambient
temperature, effect of applied frequency, response/recovery times, and stability were also
examined. The humidity-sensing mechanism of the Au NPs/MPTMS-TMSPMA-MAPTAC
composite film was studied by using complex impedance spectra.

2. Experimental Methods
2.1. Materials

Tetraethoxysilane (TEOS, 99%, Sigma-Aldrich, St. Louis, MO, USA), (3-mercaptopropyl)
trimethoxysilane (MPTMS, 95%, Sigma-Aldrich, St. Louis, MO, USA), 3-(trimethoxysilyl)pro-
pyl methacrylate (TMSPMA, 98%, Sigma-Aldrich, St. Louis, MO, USA), [3(methacryloy-
lamino)propyl] trimethyl ammonium chloride (MAPTAC, 50%, Sigma-Aldrich, St. Louis,
MO, USA), ethanol (95%, Sigma-Aldrich, St. Louis, MO, USA), hydrochloric acid (0.1 mol/L,
Sigma-Aldrich), sodium citrate (99%, Sigma-Aldrich, St. Louis, MO, USA) and hydrogen
tetrachloroaurate(III) hydrate (HAuCl4·xH2O, 99.9%, Sigma-Aldrich, St. Louis, MO, USA)
were purchased. All the used deionized water (DIW) was prepared using a Milli-Q Millipore
(Bedford, MA, USA) purification system.

2.2. Fabrication of Au NPs

The Au NPs were synthesized following the procedure described in our previous
publication [11]. The colloidal Au NPs were prepared by incorporating 38.8 mM sodium
citrate into 1 mM HAuCl4 aqueous solution, heated to boiling, and maintained at this
temperature for 15 min with continuous vigorous stirring. Subsequently, the mixture was
allowed to cool to room temperature and stored at 4 ◦C prior to utilization.

2.3. Fabrication of Flexible Humidity Sensor Based on Au NPs/MPTMS-TMSPMA-
MAPTAC Composite

Figure 1 provides a schematic representation of the flexible humidity sensor structure.
Interdigitated Au electrodes on a flexible PET substrate were fabricated by initially sput-
tering Cr (50 nm of thickness) followed by Au (250 nm of thickness) at 120 ◦C. The gap
of electrode measured 0.25 mm. Figure 2 illustrates the fabrication process of a flexible
resistance-type humidity sensor employing sol–gel processing, free radical polymerization,
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and self-assembly. Initially, 0.56 M MPTMS and 0.56 M TMSPMA were dissolved in 60 mL
of 0.1 M HCl and ethanol solution (0.065 mole) under stirring at room temperature using a
one-pot method. Subsequently, 0.08 M MAPTAC and 0.01 g AIBN were introduced into
the as-prepared TMSPMA-MPTMS sol solution, and the mixture was heated at 70 ◦C for
24 h with continuous stirring. The resulting MPTMS-TMSPMA-MAPTAC sol–gel solution
was then deposited onto a PET substrate and dried at 60 ◦C for 4 h. Finally, the MPTMS-
TMSPMA-MAPTAC sol–gel was immersed in an Au NPs solution for 5 h at 4 ◦C, yielding
a flexible resistive-type humidity sensor. In comparison to the organosilica-based material,
a pristine SiO2 film was also synthesized via the hydrolysis of TEOS.
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2.4. Instruments and Analysis

The infrared (IR) spectra of the MPTMS, MPTMS-TMSPMA, and MPTMS-TMSPMA-
MAPTAC films were studied using a Fourier transform infrared spectrometer (Nicolet 380).
The surface microstructures of the pristine SiO2, MPTMS-TMSPMA-MAPTAC, and Au
NPs/MPTMS-TMSPMA-MAPTAC composite films coated onto PET substrates were studied
by using a scanning electron microscope (SEM, TM 4000, Hitachi, Ibaraki, Japan). Figure 3 illustrates
the humidity sensor measurement system within a temperature-controlled chamber. A di-
vided humidity generator system was employed to produce the required test humidity
conditions by adjusting the proportion of dry and humid air under a total flow rate of 10
L/min. The required RH values were determined using a standard humidity hygrometer
(with an accuracy of ±0.1% RH). An LCZ meter was utilized to measure the impedance values
of the flexible humidity sensors as a function of RH. The maximum humidity atmosphere
(97% RH) for water-resistance testing was controlled by a saturated K2SO4 solution. The
measurement conditions for complex impedance analysis were set at an applied frequency
range of 50 Hz to 100 kHz, an applied voltage of 1 V, and a humidity range from 20 to 90%
RH at 25 ◦C.
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of flexible humidity sensors.

3. Results
3.1. Preparation and Characterization of Au NPs/MPTMS-TMSPMA-MAPTAC Composite

Figure 2 illustrates the fabrication process of a flexible resistive-type humidity sensor
composed of the Au NPs/MPTMS-TMSPMA-MAPTAC composite film. Initially, thiol-
containing organosilica (thiol-MPTMS) functionalized with vinyl-containing organosilica
(TMSPMA-vinyl) was synthesized using a hydrolyzed sol–gel process via crosslinkable
silanol groups. Subsequently, a hydrophilic organic unit (MAPTAC) was chemically modi-
fied onto the thiol-MPTMS-TMSPMA-vinyl utilizing a free radical polymerization method.
Additionally, some methoxy groups are still present on the final network, but certainly
not one per monomer. Finally, the Au NPs were incorporated into the MPTMS-TMSPMA-
MAPTAC using self-assembly. The as-prepared MPTMS-TMSPMA sol includes trifunc-
tional groups, namely the vinyl head group, the siloxane middle group, and the thiol tail
group. The vinyl head groups can be chemically modified with hydrophilic MAPTAC,
generating a strong force to bind the host and guest materials together, thus enhancing
the response of the MPTMS-TMSPMA-MAPTAC film to humidity. The siloxane middle
groups form a three-dimensional (3D) network, not only providing stereo sites for Au
NPs attachment, but also improving stability in high humidity environments. The thiol
tail groups serve a dual purpose: they can chemisorb onto the Au electrode surface and
participate in the assembly of the Au NPs by forming Au-S bonds, ultimately enhancing the
adhesion strength on the PET substrate, and improving the stability of the flexible sensors.
Self-assembling Au NPs on the organosilica gel offers conduction paths that enhance the
conductivity of the MPTMS-TMSPMA-MAPTAC film.
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3.1.1. IR Analysis

Figure 4a,b display the FT-IR spectra of the as-prepared MPTMS-TMSPMA and
MPTMS-TMSPMA-MAPTAC sol–gel, respectively. The peak appearing at 852 cm−1 indi-
cates the presence of the stretching of -C-S- group in the MPTMS structure. Two peaks
emerging at 1014 and 1042 cm−1 correspond to the stretching vibrations of the cross-linked
-Si-O-Si- framework. The peaks at 1084 and 1164 cm−1 signify the respective stretching
of O-C-C and C-C-O of the ester groups in the TMSPMA structure. Another crucial band
of TMSPMA is confirmed at 1634 cm−1, attributed to the mixture of stretching vibrations
of C=O and C=C groups [51]. These results verify that the vinyl-containing organosil-
ica (TMSPMA-vinyl) was successfully functionalized with thiol-containing organosilica
(thiol-MPTMS). Regarding the IR spectrum of MPTMS-TMSPMA-MAPTAC (Figure 4b), the
characteristic peaks at 1650 and 1542 cm−1 correspond to the C=ONH and CON-H groups,
respectively, in the MAPTAC structure. Additionally, the IR spectrum of MPTMS-TMSPMA-
MAPTAC exhibits the same primary characteristic absorption peaks of MPTMS-TMSPMA
in the 1200–800 cm−1 range. These results suggest that MAPTAC was successfully incorpo-
rated into the MPTMS-TMSPMA sol–gel.

Chemosensors 2023, 11, x FOR PEER REVIEW 5 of 14 
 

 

method. Additionally, some methoxy groups are still present on the final network, but 
certainly not one per monomer. Finally, the Au NPs were incorporated into the MPTMS-
TMSPMA-MAPTAC using self-assembly. The as-prepared MPTMS-TMSPMA sol in-
cludes trifunctional groups, namely the vinyl head group, the siloxane middle group, and 
the thiol tail group. The vinyl head groups can be chemically modified with hydrophilic 
MAPTAC, generating a strong force to bind the host and guest materials together, thus 
enhancing the response of the MPTMS-TMSPMA-MAPTAC film to humidity. The silox-
ane middle groups form a three-dimensional (3D) network, not only providing stereo sites 
for Au NPs attachment, but also improving stability in high humidity environments. The 
thiol tail groups serve a dual purpose: they can chemisorb onto the Au electrode surface 
and participate in the assembly of the Au NPs by forming Au-S bonds, ultimately enhanc-
ing the adhesion strength on the PET substrate, and improving the stability of the flexible 
sensors. Self-assembling Au NPs on the organosilica gel offers conduction paths that en-
hance the conductivity of the MPTMS-TMSPMA-MAPTAC film. 

3.1.1. IR Analysis 
Figure 4a,b display the FT-IR spectra of the as-prepared MPTMS-TMSPMA and 

MPTMS-TMSPMA-MAPTAC sol–gel, respectively. The peak appearing at 852 cm−1 indi-
cates the presence of the stretching of -C-S- group in the MPTMS structure. Two peaks 
emerging at 1014 and 1042 cm−1 correspond to the stretching vibrations of the cross-linked 
-Si-O-Si- framework. The peaks at 1084 and 1164 cm−1 signify the respective stretching of 
O-C-C and C-C-O of the ester groups in the TMSPMA structure. Another crucial band of 
TMSPMA is confirmed at 1634 cm−1, attributed to the mixture of stretching vibrations of 
C=O and C=C groups [51]. These results verify that the vinyl-containing organosilica 
(TMSPMA-vinyl) was successfully functionalized with thiol-containing organosilica 
(thiol-MPTMS). Regarding the IR spectrum of MPTMS-TMSPMA-MAPTAC (Figure 4b), 
the characteristic peaks at 1650 and 1542 cm−1 correspond to the C=ONH and CON-H 
groups, respectively, in the MAPTAC structure. Additionally, the IR spectrum of MPTMS-
TMSPMA-MAPTAC exhibits the same primary characteristic absorption peaks of 
MPTMS-TMSPMA in the 1200–800 cm−1 range. These results suggest that MAPTAC was 
successfully incorporated into the MPTMS-TMSPMA sol–gel. 

 
Figure 4. IR spectra of (a) MPTMS-TMSPMA and (b) MPTMS-TMSPMA-MAPTAC sol–gel. 

3.1.2. SEM Analyses 
Figure 5 displays the SEM images of the pristine SiO2, MPTMS-TMSPMA-MAPTAC, 

and Au NPs/MAPTAC-TMSPMA-MPTMS composite films. Figure 5a reveals that the 
pristine SiO2 film exhibits a fractured and cracked surface, which can result in instability 
of the flexible properties. In contrast, the SEM of the MPTMS-TMSPMA-MAPTAC film 

Figure 4. IR spectra of (a) MPTMS-TMSPMA and (b) MPTMS-TMSPMA-MAPTAC sol–gel.

3.1.2. SEM Analyses

Figure 5 displays the SEM images of the pristine SiO2, MPTMS-TMSPMA-MAPTAC,
and Au NPs/MAPTAC-TMSPMA-MPTMS composite films. Figure 5a reveals that the pris-
tine SiO2 film exhibits a fractured and cracked surface, which can result in instability of the
flexible properties. In contrast, the SEM of the MPTMS-TMSPMA-MAPTAC film (Figure 5b)
demonstrates a much smoother surface with numerous pores on the film’s surface. This
is because the organosilica tends to produce more organic sites homogeneously branched
to the pore walls, which better supports the film’s cohesion on a PET substrate. Com-
pared to the MPTMS-TMSPMA-MAPTAC film, the Au NPs/MPTMS-TMSPMA-MAPTAC
composite film (Figure 5c) indicates that the Au NPs are embedded within the MPTMS-
TMSPMA-MAPTAC matrix with no uncovered areas present on its surface. Moreover, the
Au NPs were randomly embedded into the composite film. The aggregation of the Au NPs
was observed. This phenomenon can be attributed to the thiol-containing organosilica gel
providing stereo sites for anchoring the Au NPs.
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3.2. Water-Resistance and Flexibility Properties of Au NPs/MPTMS-TMSPMA-MAPTAC
Composite Film

Figure 6 illustrates the deviation of flexible humidity sensors based on pristine SiO2,
MPTMS-TMSPMA-MAPTAC, and Au NPs/MPTMS-TMSPMA-MAPTAC composite films
after being placed in a highly humid (97% RH) environment for 5 days. The deviation was
determined by using the formula (logZ60% RH − logZ’60% RH)/logZ60% RH × 100%), where
logZ60%RH and logZ’60%RH represent the impedance values of the flexible humidity sensors
at 60% RH before and after the sensor was placed in the high humidity atmosphere (97%
RH), respectively. In comparison to the pristine SiO2 film, no noticeable deviation was ob-
served for the MPTMS-TMSPMA-MAPTAC and the Au NPs/MPTMS-TMSPMA-MAPTAC
composite films, indicating good water resistance due to the silica skeletons ensuring stabil-
ity in high humidity environments. Furthermore, the thiol-containing MPTMS-TMSPMA-
MAPTAC film can be anchored onto a gold electrode, thus improving the stability of
the sensing film in high humidity environments. Additionally, the incorporation of Au
NPs did not reduce the water resistance of the Au NPs/MPTMS-TMSPMA-MAPTAC
composite film.
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Figure 7 depicts the flexibility of humidity sensors based on pristine SiO2, MPTMS-
TMSPMA-MAPTAC, and Au NPs/MPTMS-TMSPMA-MAPTAC composite films. At
each bending angle, the sensor was exposed to 60% RH. The deviation of the impedance
of the flexible humidity sensors was determined by using the formula (logZ60% RH, f −
logZ60% RH, b)/logZ60% RH, f × 100%), where logZ60% RH, f and logZ60% RH, b represent the
impedance of the flat and bent flexible humidity sensor at 60% RH, respectively. The
deviation of the pristine SiO2 film reached up to 96% even at an angle of 5◦ due to its rigid
nature. In contrast, both the MPTMS-TMSPMA-MAPTAC and Au NPs/MPTMS-TMSPMA-
MAPTAC composite films exhibited strong flexibility at angles of up to 60◦, with deviations
within 10%. This outcome can be attributed to their soft organosilica skeleton structure.
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3.3. Electrical and Humidity-Sensing Properties of Au NPs/MPTMS-TMSPMA-MAPTAC
Composite Film

Figure 8 displays the log-impedance of the pristine SiO2, MPTMS-TMSPMA, MPTMS-
TMSPMA-MAPTAC, and Au NPs/MPTMS-TMSPMA-MAPTAC composite films as a
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function of RH. Table 1 summarizes the results of the sensitivities and linearities of the
linear fitting curve. The pristine SiO2 film had only a small change in impedance with
humidity over the studied range (20% to 90% RH) due to its insulating nature. The MPTMS-
TMSPMA film displayed only a small change in impedance with humidity over the studied
range (20% to 90% RH) because more crosslinkable silicol groups were modified onto
the MPTMS-TMSPMA film, resulting in hydrophobic and low-conductance properties.
The impedance of the MPTMS-TMSPMA-MAPTAC film decreased over a wider range
of RH (20% to 90% RH) than the MPTMS-TMSPMA film, because the highly hydrophilic
organic compound (MAPTAC) was chemically modified onto TMSPMA-MPTMS, thus
improving its sensitivity. The impedance of the Au NPs/MPTMS-TMSPMA-MAPTAC
film decreased more than that of the MPTMS-TMSPMA-MAPTAC film with humidity
over the studied range (20% to 90% RH), indicating that the Au NPs were anchored into
MPTMS-TMSPMA-MAPTAC, consequently generating a new conductive pathway and
enhancing the conductivity of this material. The flexible humidity sensor composed of the
Au NPs/MPTMS-TMSPMA-MAPTAC composite film had the greatest sensitivity (0.0533
log Z/%RH), good linearity (R2 = 0.9562) (Table 1), the greatest flexibility (less 10% at an
angle of up to 60◦), and good stability in a high-humidity environment. Accordingly, its
humidity-sensing properties were further studied.
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Figure 8. Impedance versus RH for flexible humidity sensors based on pristine SiO2, MPTMS-
TMSPMA, MPTMS-TMSPMA-MAPTAC and Au NPs/MPTMS-TMSPMA-MAPTAC composite films,
measured at 1 V, 1 kHz and 25 ◦C.

Table 1. Sensitivity and linearity of flexible humidity sensors based on pristine SiO2, MPTMS-
TMSPMA, MPTMS-TMSPMA-MAPTAC and Au NPs/MPTMS-TMSPMA-MAPTAC composite films.

Sensing Curve

Materials Sensitivity (log Z/%RH) a Linearity (R2) b

Pristine SiO2 –0.0003 0.9646
MPTMS-TMSPMA –0.0034 0.9609
MPTMS-TMSPMA-MAPTAC –0.0442 0.9694
Au NPs/MPTMS-TMSPMA-MAPTAC –0.0533 0.9562

a Sensitivity was defined as the slope of the logarithmic impedance versus RH plot in the range from 20 to 90%
RH. b Linearity was shown as the correlation coefficient of the logarithmic impedance versus RH plot in the range
from 20 to 90% RH.
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Figure 9a illustrates the hysteresis phenomenon observed in the flexible humidity
sensing device. The mean hysteresis remained within a 3.5% relative humidity (RH) mar-
gin throughout a dehydration-to-humidification cycle, which encompassed the complete
spectrum of relative humidity, ranging from 20% to 90% RH. In Figure 9b, the influence of
the surrounding temperature on the log Z for the flexible humidity sensor as a function
of RH is depicted. The temperature coefficient was approximately −0.55% RH/◦C for
temperatures between 15 and 35 ◦C, spanning a humidity range from 20% to 90% RH.
Additionally, as the temperature increases from 25 ◦C to 35 ◦C, the impedance of the flexible
humidity slightly changed over the studied range (20% to 90% RH). This phenomenon was
related to the fact that the intermediate backbone was inorganic silicon, resulting in the
vibration generated by the increase in temperature being slight, so the impedance drop was
not obvious. Figure 9c presents the consequences of varying the applied frequency on the
log Z for the flexible humidity sensor as a function of RH. Impedance measurements were
conducted at frequencies of 1, 5, 11, and 100 kHz with an applied voltage of 1 V. A distinct
decline in the impedance of the flexible humidity sensor was observed below 40% RH as
the applied frequency escalated. The curve representing the log Z versus RH exhibited the
highest degree of humidity-sensing linearity at a frequency of 1 kHz. Figure 9d illustrates
the response and recovery times for the flexible humidity sensor, assessed at a temperature
of 25 ◦C and a frequency of 1 kHz. The response time (Tres.90%) and recovery time (Trec.90%)
are characterized as the durations necessary for the impedance of the flexible humidity
sensor to undergo a 90% shift in its maximal variation, following humidification and desic-
cation processes ranging from 10% to 90% RH and 90% to 10% RH, respectively. Tres.90%
and Trec.90% were determined to be 15 s and 100 s, respectively. Figure 9e displays the
long-term stability of the flexible humidity sensor. No significant deviation in the log Z for
the flexible humidity sensor was detected over a 29-day period at the examined RH values
of 20%, 60%, and 90% RH. Table 2 juxtaposes the humidity-sensing characteristics of the
current flexible humidity sensor with those of sensors documented in prior reports [43–47].
In comparison to organosilica-based materials, such as SBA-15 [45,46] and MCM-41 [47],
the fabricated flexible humidity sensor, which utilizes an Au NPs/MPTMS-TMSPMA-
MAPTAC composite film, demonstrated superior flexibility, commendable water resistance,
and a comparable response time and hysteresis.
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Table 2. Comparison of performance of flexible humidity sensor developed herein with the literature
based on organicsilica materials and their composites.

Sensing Material Working Range
(%RH)

Sensitivity
−(log Z/% RH)

Hysteresis
(% RH)

Flexibility (%)
(log Z Deviation)

Response
Time (s) References

SiO2-poly-AMPS 30–90 0.0571 2% - - [43]
APTOS a/n-butyl bromide 11–97 - 1% - 13 [44]
SBA-15/MATMAC b 11–95 - 2% - 11 [45]
SBA-15/sodium
p-styrenesulfonate 11–95 - - - 5 [46]

MCM-41/PEDOT 11–95 - 6 - 165 [47]
Au NPs/MPTMS-TMSPMA-
MAPTAC 20–90 0.0533 3.5% <10% 15 This work

a APTOS: 3-aminopropyltriethoxysilane. b MATMAC: methacrylatoethyl trimethyl ammonium chloride.

3.4. Humidity-Sensing Mechanism

Impedance spectroscopy is a powerful method to investigate the conduction mecha-
nisms of humidity sensors. Therefore, impedance spectroscopy is employed to explicate
the ion transport as the humidity-sensing mechanism for the flexible humidity sensor,
which is made of an Au NPs/MPTMS-TMSPMA-MAPTAC composite film. Figure 10
exhibits the complex impedance spectra for the flexible humidity sensor across an RH
range from 30% to 90% RH. The impedance evaluations were performed at frequencies
between 50 Hz and 100 kHz, an alternating current (AC) voltage of 1 V, and a tempera-
ture of 25 ◦C. The horizontal axis (Zr) represents real component of the impedance (Z),
while the vertical axis (Zi) shows the imaginary component of Z. At a low RH of 30%
(Figure 10a), a discernible semicircular curve was observed, primarily attributable to the
intrinsic impedance of the film. As the RH increased to 40% (Figure 10b), a distorted and
diminishing semicircle at elevated frequencies became evident. This suggests that some of
the physisorbed water molecules on the Au NPs/MPTMS-TMSPMA-MAPTAC composite
film started to gradually dissociate, forming H3O+ ions, resulting in diffusing from the
humidity-sensing film to the Au electrode. At a high RH of 90% (Figure 10c), only a straight
line is apparent, indicating the H3O+ ions predominate the conductance process within
the Au NPs/MPTMS-TMSPMA-MAPTAC composite film. An equivalent circuit of such
complex impedance plots is shown in Figure 10d. At low relative humidity, the semicircle
was modeled as an equivalent circuit of parallel association of resistor (Rf) and capacitor
(Cf). At high relative humidity, the complex impedance plot was modeled as an equivalent
circuit of the serial association of resistor (Rf) and the impedance at the electrode/sensing
film (Warburg impedance, Zw), which was caused by the diffusion of H3O+ ions across the
interface between the electrode and the humidity-sensing film. Finally, the sorbed water
acted as a plasticizer, increasing the mobility of the solvated H3O+ ions, which dominated
the conduction in the sensor. Therefore, according to the obtained complex impedance
spectra, the H3O+ ions are the dominant factor influencing the conduction characteristics of
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the flexible humidity sensor based on the Au NPs/MPTMS-TMSPMA-MAPTAC composite
film [52,53].
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4. Conclusions

A novel flexible impedance-based humidity sensor utilizing an Au NPs/MPTMS-
TMSPMA-MAPTAC composite film was engineered by integrating sol–gel processing,
free radical polymerization, and self-assembly techniques. Thiol groups and mesoporous
silica skeletons can be anchored to the Au electrode, creating a three-dimensional network
that offers stereo sites for the attachment of Au NPs, thereby enhancing the stability of
the humidity-sensing film in high-humidity environments. The hydrophilic organic units,
MAPTAC, underwent chemical modification on the mesoporous organosilica, augmenting
the sensitivity of humidity sensing. Furthermore, the self-assembled Au NPs supplied
conduction pathways, ameliorating the conductivity of the humidity-sensing film, and
consequently improving its sensitivity. The flexible humidity sensor, composed of the Au
NPs/MPTMS-TMSPMA-MAPTAC composite film, displayed excellent water resistance, su-
perior sensitivity, and satisfactory linearity (Y = −0.0533X + 8.2654; R2 = 0.9562) between the
log Z and the RH range from 20% to 90% RH. Additionally, it exhibited low hysteresis (less
3.5% RH) and a small temperature coefficient (−0.55% RH/◦C). Analysis of the complex
impedance spectra for this flexible humidity sensor, which utilized the Au NPs/MPTMS-
TMSPMA-MAPTAC composite film, revealed a transition from a semicircular curve at 30%
RH to a straight line at 90% RH. This observation underscores the dominant role of H3O+

ions in governing the conductivity variations within this humidity sensor.
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