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Abstract: Chiral substances occur naturally in abiotic and living systems. The recognition and de-
tection of chiral substances in the natural environment or their analysis and detection in biological
systems are crucial. Chiral recognition is a research hotspot in clinical medicine, pharmacology, bio-
chemistry, and other fields. Indeed, many researchers have developed various sensors with different
functionalized materials for detecting and analyzing enantiomers. Supramolecular systems have
important applications in the development of molecular recognition technologies, and the develop-
ment of supramolecular chemistry is closely related to research on molecular devices. Therefore, this
review summarizes the principle of chiral supramolecular sensors for the detection of enantiomers
from the perspective of various sensor types, including optical, electrochemical, electrochemical
luminescence, photoelectric, and supramolecular chemical sensors. This review also summarizes
the relevant reports on chiral supramolecular sensors in the last five years. Finally, we highlight the
prospects of supramolecular chiral sensors in future research.

Keywords: chiral matter; optics; electrochemistry; electrochemical luminescence; photoelectric
chemistry; chiral supramolecular sensors

1. Introduction

Chiral compounds occur naturally in living organisms. In general, naturally occurring
enantiomers have no adverse effects on the environment and living organisms. However,
several enantiomers present in the ecosystem can pollute the environment and cause health
risks [1–3]. Chiral substances, similar to invasion by foreign bodies, have become a threat
in terms of tracing their degradation and particularly, for example, in the contamination of
chiral drugs [4,5], as most drugs have chiral configurations. Although the other isomeric
configuration in chiral drugs has opposite toxicological and pharmacokinetic properties, it
has the same physicochemical properties [6]. As a result, chiral drugs containing hazardous
substances can enter the natural environment during production, leading to considerable
damage to the environmental matrix and uncontrollable risks [7]. Therefore, monitoring
and analyzing chiral substances in recycled wastewater and biosolids is indispensable [8,9].

Chiral drugs have potential application values in clinical medicine. In particular,
chiral compounds are the active ingredients in some traditional Chinese medicine formu-
lations [10], but the purification process of these natural drugs is complex and tedious;
therefore, only pure chiral compounds with medicinal values are synthesized. Among the
different chiral compounds, small chiral molecules such as amino acids are intermediates
or chiral inducers of many chiral drugs [11,12]. Thus, the specific recognition of certain
amino acid enantiomers is necessary. In addition, due to technological limitations and
cost, several chiral drugs are synthesized in the form of a racemic mixture [13]. However,
since the pharmacological activities of the two isomers of chiral drugs are different, it is
necessary to mitigate undesirable physiological effects through the cyclic metabolism of
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the toxic structure in the enantiomer. Regardless of the chiral drugs used to treat diseases,
it is crucial to detect chiral drug residues in organisms [14]. Furthermore, the hormones
secreted by living organisms are chiral structures, and the specific recognition of these chiral
molecules is required to interpret routine results of vital signs and implement dynamic
monitoring [15,16].

Supramolecular chemistry involves multiple scientific fields and is an interdisciplinary
science involving chemistry, biology, physics, materials science, and other disciplines. Since
supramolecular chemistry was proposed about 55 years ago, research in this scientific
field has mainly focused on host–guest chemistry and ordered supramolecular assem-
blies [17,18]. In the 1990s, Silva et al. combined the concepts of host–guest chemistry and
fluorescence and applied supramolecular chemistry in the field of optical sensing to detect
ions in blood [19]. However, in recent years, researchers have focused on the molecular
recognition of supramolecular species and directly used the interaction of supermolecules
to build sensors [20]. Molecular recognition is the selective binding of the subject (receptor)
to the object (ligand) to produce certain specific functions [21]. The host–guest interactions
mainly include hydrophobic interaction, hydrogen bonding, electrostatic interaction, π–π
stacking, and ion–dipole interaction. Among the various supramolecular compounds,
macrocyclic compounds are often used as classical host molecules to recognize ligand
molecules due to their cage cavity advantageous [22]. Macrocyclic compounds mainly
include cyclodextrin, cucurbituril, pillararene, calixarenes, and crown ether. Moreover,
due to their size and complexity, macrocyclic compounds exhibit larger spatial distribu-
tions to achieve host–guest interaction. Thus, the binding affinity and selectivity can be
increased [22]. Through further examinations, a series of excellent host molecules were de-
veloped based on supramolecular interaction and used as sensors to achieve fast and simple
chiral molecular recognition [23,24]. They include supramolecular self-assembly [25–27],
supramolecular polymer [28,29], metal–organic complexes [30], supramolecular gels [31],
chiral porphyrinoids [32], conducting polymer [33], molecularly imprinted polymer [34],
and acyclic cucurbit[n]urils and molecular tweezers [35].

Chiral compounds have been detected and identified using traditional methods, in-
cluding liquid chromatography [36] and mass spectrometry [37], which require complex
sample pretreatment and tedious operation of instruments. Supramolecular chiral sen-
sors can be used to rapidly and sensitively analyze and detect chiral compounds without
complex preliminary work through the combined use of instruments and can achieve
real-time data monitoring [38]. Supramolecular chiral sensors are classified into optical,
electrochemical, electrochemical luminescence, and photoelectrochemical (PEC) sensors.
This article reviews the relevant literature on chiral supramolecular sensors used in enan-
tiomer detection and analysis over the past five years. Supramolecular systems play a
crucial role in the development of molecular recognition technologies. Among the different
analytical methods, the optical analysis method has the longest history of detailed studies
and numerous advantages. The electrochemical analysis method has played an important
role in chiral molecular recognition. Although there are few methods using electrochemilu-
minescence (ECL) and PEC analysis, most of them have achieved better results. All types of
chiral supramolecular sensors were constructed based on the functional design of receptor
molecules and host–guest interactions to achieve the molecular recognition of enantiomers.
Therefore, it is essential to study auxiliary materials to improve the sensitivity, stability,
and reproducibility of the sensor.

2. Optical Chiral Supramolecular Sensor

Spectroscopy has broad application prospects in chiral research and chiral drug anal-
ysis [39,40]. Optical fluorescence sensors have the advantages of high sensitivity, good
selectivity, less sampling requirement, and are not affected by external electromagnetic
fields [41]. Moreover, large cyclic compounds with conjugate structures are suitable for
modifying fluorescent probes [42], and most biomolecules exhibit photoluminescent prop-
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erties [43]. Therefore, supramolecular fluorescent transducers have wide applications in
chiral substance recognition [44].

The absolute adherence of circular dichroism to the structure of chiral substances
enables the high-throughput screening of chiral substances. Additionally, chiral macrocyclic
compounds or self-assembled chiral hosts are used for the specific recognition of chiral
molecules through host–guest interactions [45]. In recent years, the emergence of a new
concept, namely “chiral induced amplification”, has made the construction of chiral sensors
simpler and more diversified [46–52], thus enabling chiral amplification [53–55] or chiral
transfer [56,57] to the host of the non-chiral cage through chiral guest molecules.

In addition to the above-mentioned optical sensors, other methods have been used,
such as a colorimetric method based on the Lambert–Beer law, a room-temperature phos-
phorescence method, and a new surface plasmon resonance (SPR) method, in part of the
construction and application of supramolecular chiral sensors. Colorimetric sensors are
characterized by desirable selectivity, high stability, and low cost, and can be used as
paper-based sensors [58]. The room-temperature phosphorescence method is characterized
by high sensitivity, wide linear range, simple operation, and fast detection [59]. SPR sensors
have high sensitivity and can achieve real-time and unlabeled detection [60].

2.1. Fluorescence Sensor for the Detection of Enantiomers

Recently, compared with traditional fluorescent nanoprobes, the new fluorescent
nanoprobes based on noble metal nanoclusters and nanocomposites are characterized by
excellent luminescence performance, simple and controllable preparation, easy function-
alization, and good biocompatibility. In 2018, Chen et al. constructed papain-stabilized
gold nanoclusters (papain@AuNCs) and then complexed the fluorescently quenched Cu2+

to form fluorescent probes (Figure 1) [61]. Since the nanomaterials generated using D-
penicillamine easily form complexes with Cu2+, the fluorescence signal response is recov-
ered, and a highly sensitive chiral sensor to recognize D-penicillamine can be constructed.
Protease substances are added to the sensor to enhance the biocompatibility of the probe.
In 2018, Yu et al. prepared 11-mercaptocapric acid (MUA)-capped gold nanoclusters
(AuNCs@MUA) with good water solubility [62] and also constructed a Cu2+-switched fluo-
rescent probe to detect penicillamine, which exhibits higher photostability and quantum
yield than other Cu2+ coordination compounds. In 2021, Liu et al. constructed a fluores-
cence sensor to detect D-penicillamine and also prepared a composite material composed of
DNA-templated silver nanoclusters (DNA-AgNCs) [63], which can identify D-penicillamine
via aggregation–fluorescence quenching. The detection method using precious metal as a
medium has been shown to be faster and more environmentally friendly. In 2018, Yuan et al.
labeled a DNA sequence with carboxyfluorescein (FAM), and then functionalized gold
nanoparticles (AuNPs) to form composite nanomaterials (aptamer-AuNPs), and quenched
the fluorescence of aptamers [64]. The subsequent addition of arginine enantiomers to the
specific binding of aptamer resulted in varying degrees of aptamers released from AuNPs,
and corresponding fluorescence intensity signals were detected. The chiral fluorescence
sensor constructed using this method could specifically detect and identify both L-arginine
and D-arginine. This sensor uses DNA sequences as functional materials to reduce chemical
contamination. In 2021, Huy et al. prepared composite nanomaterials by functionalizing
CdTe quantum dots with β-cyclodextrin [65], where the cavity of β-cyclodextrin provides
an excellent environment for supramolecular interaction with aspartic acid, thereby pro-
moting the fluorescence quenching of the receptor to achieve the selective quantitative
detection of aspartic acid. Therefore, this composite material can be used to obtain a sensor
that is simple and easy to build.
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Xiao et al. functionalized the chiral S-1/R-1 UiO-66-(COOH)2 with L/D-amino propanol to 
construct homochiral metal–organic frameworks (HMOFs) (Figure 3) [68]. The incom-
patibility of the HMOF assembly was simplified, and the fluorescence sensors con-

Figure 1. Schematic diagram of Papain@AuNCs-Cu2+ sensor recognition of D-penicillamine. Adapted
from Ref. [61]. Copyright 2018 ELSEVIER.

Compared with traditional labeling materials, quantum dots are characterized by
high fluorescence intensity, diverse luminous colors, and a wide spectrum range. More-
over, quantum dots are suitable for multiple spatial and spectral transmission, effective
attenuation, and elimination of background fluorescence effects. Due to their superior prop-
erties, quantum dots have become highly effective fluorescent probes used for numerous
applications. In 2019, Lu et al. constructed a fluorescence sensor to identify nitrophenol
isomers using a chiral carbon-point hybrid porous organic cage nanocomposite (CD@RCC3)
(Figure 2) [66]. This nanocomposite has a large void volume, stable fluorescence, and good
solubility in organic reagents. In addition, the chiral isomers can be directly identified by
simple host–guest interactions, and as a result, a quick and simple detection is achieved. In 2019,
Masteri-Farahani et al. modified chiral colloidal CdSe quantum dots (CdSe-QDs) with cysteine
enantiomers to regulate the optical properties of the quantum dot core and functionalize it [67].
The composite material has strong interactions with L-morphine and can quench its fluorescence,
enabling the novel fluorescence sensor to selectively identify L-morphine.
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Metal–organic frameworks (MOFs) are novel supramolecular materials with large
surface areas, abundant structures, and adjustable pores, and their abundant luminescence
center has a good application prospect in fluorescence sensing analysis. In 2020, Xiao et al.
functionalized the chiral S-1/R-1 UiO-66-(COOH)2 with L/D-amino propanol to construct
homochiral metal–organic frameworks (HMOFs) (Figure 3) [68]. The incompatibility of
the HMOF assembly was simplified, and the fluorescence sensors constructed with S-1 (L-
AP@UiO-66-(COOH)2) and R-1(D-AP@UiO-66-(COOH)2), respectively, showed enhanced
fluorescence signal intensity with the phenylalanine enantiomer. This fluorescence sensor
exhibits significant enantioselectivity.



Chemosensors 2023, 11, 269 5 of 22

Chemosensors 2023, 11, x FOR PEER REVIEW 5 of 22 
 

 

structed with S-1 (L-AP@UiO-66-(COOH)2) and R-1(D-AP@UiO-66-(COOH)2), respec-
tively, showed enhanced fluorescence signal intensity with the phenylalanine enantio-
mer. This fluorescence sensor exhibits significant enantioselectivity. 

 
Figure 3. Composite material design diagram. 

Coordination polymers have spatial advantages similar to those of MOFs and are 
excellent hosts for supramolecular compounds. In 2022, Thoonen et al. designed and 
synthesized a novel topological coordination polymer using 1,1′-bi-2-naphthol (BINOL), 
trimesic acid, and Zn2+ [69]. The polymer exhibited an excellent chiral three-dimensional 
(3D) spatial structure. Through fluorescence quenching experiments on selected chiral 
analytes, the constructed fluorescence sensor showed high enantioselectivity for a series 
of chiral compounds. In 2022, Tang et al. used a simple hydrothermal method to synthe-
size the CdTe quantum dots of fluorescent molecularly imprinted polymer (MIP) parti-
cles (CdTe@MIPs) and self-absorbed them into the activated capillary tube (Figure 4) 
[70]. The interaction between the infrared capillary sensor and L-histidine enhanced the 
fluorescence of the material. Experiments showed that this fluorescence sensor can be 
used to determine L-histidine concentration in real samples. Therefore, the trace analysis 
of target molecules can be achieved. 

 
Figure 4. CdTe@MIPs were synthesized to construct chiral sensors for L-histidine recognition. 
Adapted from Ref. [70]. Copyright 2022 ELSEVIER. 

It is well known that nucleic acids with high affinity and specificity can be used as 
chiral aptamers to bind to target substrates (through base pairing), so as to achieve chiral 
recognition. In 2019, Chovelon et al. reported the measurement of enantiomers using the 
aptamer kissing complex (AKC) (Figure 5) [71]. In this case, the arginine vasopressin 
enantiomers processed L/D-DNA as an aptaswitch and L/D-RNA labeled with Texas red 

Figure 3. Composite material design diagram.

Coordination polymers have spatial advantages similar to those of MOFs and are
excellent hosts for supramolecular compounds. In 2022, Thoonen et al. designed and
synthesized a novel topological coordination polymer using 1,1′-bi-2-naphthol (BINOL),
trimesic acid, and Zn2+ [69]. The polymer exhibited an excellent chiral three-dimensional
(3D) spatial structure. Through fluorescence quenching experiments on selected chiral
analytes, the constructed fluorescence sensor showed high enantioselectivity for a series of
chiral compounds. In 2022, Tang et al. used a simple hydrothermal method to synthesize
the CdTe quantum dots of fluorescent molecularly imprinted polymer (MIP) particles
(CdTe@MIPs) and self-absorbed them into the activated capillary tube (Figure 4) [70]. The
interaction between the infrared capillary sensor and L-histidine enhanced the fluorescence
of the material. Experiments showed that this fluorescence sensor can be used to determine
L-histidine concentration in real samples. Therefore, the trace analysis of target molecules
can be achieved.
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It is well known that nucleic acids with high affinity and specificity can be used as
chiral aptamers to bind to target substrates (through base pairing), so as to achieve chiral
recognition. In 2019, Chovelon et al. reported the measurement of enantiomers using
the aptamer kissing complex (AKC) (Figure 5) [71]. In this case, the arginine vasopressin
enantiomers processed L/D-DNA as an aptaswitch and L/D-RNA labeled with Texas
red and luciferin as hairpin probes (aptakiss). As shown by the results, the fluorescence
anisotropy signal was enhanced when the aptaswitch and the hairpin loop–loop interacted.
The sensor simultaneously monitored L/D-arginine vasopressin and detected enantiomer
impurities as low as 0.01%. This study successfully extended the range of kiss assembly
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strategy to DNA-based chiral analysis and provided a very valuable strategy for the
construction of supramolecular chiral sensors.
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2.2. Circular Dichroic Sensor for the Detection of Enantiomers

The synthesis of chiral macrocyclic compounds has been a challenge because the vari-
ous synthesis methods are still limited by low yield, unsatisfactory stereoselectivity, and
the use of equivalent chiral accelerators. In 2019, Ohishi et al. developed a BINOL-derived
chiral macrocycle for the chiral recognition of native saccharides [72]. The experimental
process of specific recognition was completed through the measurement of the circular
dichroism spectrum; therefore, chiral macrocyclic compounds are used in circular dichro-
ism sensors for more highly selective detection. In 2020, Chai et al. synthesized a new
water-soluble chiral macrocyclic compound, a chiral naphthalene tube [73]. The hydropho-
bic cavity of this macrocyclic compound has a different affinity for chiral neutral molecules;
thus, it has a certain application prospect in terms of biological compatibility. Supramolec-
ular compounds are used in the construction of circular dichroism sensors to achieve ideal
selective enantiomeric recognition. In 2020, Huang et al. inserted secondary amine groups
into non-chiral naphthalene tubes with hydrophobic cavities (Figure 6). The functionalized
large rings were shown to be able to selectively identify chiral substances such as carboxylic
acids in an aqueous environment through the non-covalent bonding of the salt bridge effect
and showed different signal responses in the form of chiral transfer for circular dichroism
detection [74].
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Currently, chiral nanomaterials are mainly fabricated via the introduction of chiral
ligands, the construction of helical structures, and other electric dipole moment control
methods. However, due to their environmental stability and electrical conductivity, chiral
materials have limited practical applications. Therefore, exploring new regulatory mech-
anisms and constructing novel chiral nanofunctional materials is challenging. In 2018,
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Liu et al. used poly(2-oxazo-line) to self-assemble chiral nanomicelles (CPOx2) with a
strong circular dichroism signal [75]. The amphiphilic copolymer was used as a chiral
probe to selectively detect histidine enantiomers in aqueous solutions. In 2019, Guo et al.
synthesized a pair of water-soluble chiral 2,6-helic [6] arene derivatives, which was used as
a supramolecular assembly with 4-[(4′-n, N-diphenylamino)styryl]-n-methylpyridinium
iodide in a one-to-one host–guest interaction, showing that the chirality of the receptor
is continuously transferred to an achiral guest molecule [76]. This supramolecular ma-
terial has certain application potentials in the construction of chiral circular dichroism
sensors. In 2019, Bao et al. independently constructed a chiral supramolecular pump
containing aromatic compounds (Figure 7) [77]. The aromatic compounds were 3D-rotated
into left-handed and right-handed solid fibers with significant circular dichroism signals.
The abundant tubular pores of the supramolecular pump can absorb a large number of
enantiomer compounds to purify chiral pollutants in an aqueous environment. In 2023,
Hirao et al. developed supramolecular helical polymers constructed using a tetrakis (por-
phyrin) frame with different branched chains, which produced obvious electronic circular
dichroism (ECD) signals, to build supramolecular chiral sensors for pinene enantiomers [78].
This finding contributed to the establishment of supramolecular chiral sensors for pure
hydrocarbons based on ECD probes, and few cases have been presented to date.
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2.3. Other Optical Sensors for the Detection of Enantiomers

Besides the two reported optical sensors, we reviewed research on intuitive colorimet-
ric and room-temperature phosphorescent sensors. In 2018, Zor et al. prepared inherently
chiral silver nanopolymers by embedding silver nanoparticles (AgNPs) into nanopaper,
which were developed into disposable cubets for the selective recognition and detection
of D-cysteine [79]. In 2019, Copur et al. used L-cysteine-functionalized carbon quantum
dots to synthesize chiral carbon quantum dots, which showed strong phosphorescence and
could interact with L-lysine [80]. Eventually, the material was developed into a disposable
nanopaper-based chiral sensor to recognize lysine enantiomers (Figure 8). The disposable
chiral sensor is characterized as a low-cost, simple process, with high sensitivity and high
practical application value.

In addition, SPR is an optical sensing technique commonly used for biological analy-
sis. In most cases, SBR does not require sample pretreatment and dynamically monitors
biomolecular interactions without the need for labeled samples. In 2018, Xu et al. used L-
tryptophan as a template to crosslink graphene oxide (GO) with self-polymerized dopamine
to prepare a MIP and modified the composite material (Gr/MIP) on the modified chip to
produce an SPR sensor to recognize tryptophan enantiomers [81].
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3. Electrochemical Chiral Supramolecular Sensors

An electroanalytical method is a fast, sensitive, and accurate method for trace analysis.
Electrochemical sensors in analytical chemistry are usually based on a three-electrode
system used to detect target molecules. These electrode processes include the chemical
steps that occur, new phase generation, and surface diffusion steps in a solution or on the
electrode surface. The unique molecular structure of supramolecules can be combined
with numerous organic, inorganic, and biological molecules to form inclusion complexes
on the electrode surface or in the solution for molecular recognition and the selective
pre-enrichment of analytes [82], which can be used to build new molecular selective
electrochemical sensors. A series of chiral electrochemical sensors with supramolecular
compounds as the core device are constructed using the interaction and inclusion mode
between the achiral host compounds and chiral guest molecule [83,84], thus improving the
sensitivity and selectivity of the sensors and providing multivariate and rapid detection
methods for identifying chiral compounds [85–88]. Among the various sensors, optimized
electrode modification materials and a functionalized supramolecular host can be used in
modified chiral electrochemical sensors. The methods of electrochemical determination
based on relevant reports are cyclic voltammetry and differential pulse voltammetry with
high enantioselectivity.

3.1. Enantioselectivity Using Cyclic Voltammetry

Most nanomaterials can increase electron transfer rates to enhance the conductivity
of the environment; thus, various functional nanocomposites have been synthesized to
optimize the electrochemical sensor. In 2018, Munoz et al. constructed a chiral electrochem-
ical sensor by solidifying a modified chiral magnetic nanobiofluid onto a nanocomposite
graphene paste electrode (Figure 9) [89]. They obtained magnetic nanobiofluids (mNBFs)
by loading β-cyclodextrins on AuNPs modified with cobalt ferrite nanoparticles. The
interaction between tryptophan enantiomers and mNBFs can generate different cyclic
voltammetry oxidation potentials and thus L/D-Trp can be identified. In 2020, Zhou et al.
modified AgNPs onto gold microelectrodes for host–guest interaction with cysteine enan-
tiomers, achieving different degrees of dynamic coupling for selective detections [90]. The
gold-coated glass nanofibers form a new sensing interface, which serves as a new guideline
for constructing chiral electrochemical sensors. In 2021, Yang et al. constructed a disposable
chiral electrochemical sensor using L-cysteine-functionalized carbon nanotube-modified
screen-printed electrodes [91]. The cyclic voltammetry signal of S-mandelic acid was sig-
nificantly higher than that of R-mandelic acid, thus achieving the selective recognition of
mandelic acid enantiomers. The sensor based on screen printing electrode is characterized
by low cost and potential commercial applications. In 2021, He et al. used aniline to
synthesize S/R-polyaniline with a bond shape using camphor sulfonic acid enantiomers,
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which are used for the highly selective recognition of tryptophan enantiomers solidified on
the electrode [92]. This chiral polymer material is easily synthesized and widely used.
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3.2. Enantioselectivity Using Differential Pulse Voltammetry

Like the specific recognition mechanism of biological antibodies and antigens, molec-
ular imprinting technology is used to prepare synthetic receptors for detecting target
molecules, namely, MIPs [93]. Compared with natural biomolecular recognition systems
such as monoclonal antibodies or receptors, MIPs are characterized by unique physical,
chemical, and mechanical properties, specific selectivity, high stability, and simple prepara-
tion [94]. Therefore, molecular imprinting is widely used in molecular recognition using
electrochemical sensors. In 2019, Duan et al. used a Prussian blue-functionalized carbon-
nanotube-modified electrode and then electropolymerized pyrrole on this composite ma-
terial using cysteine as a template to prepare MIPs [95]. The constructed electrochemical
sensor can selectively recognize cysteine enantiomers and detect dopamine in human
serum and pollutants in the environment. In 2020, Zhang et al. modified double-stranded
DNA as a functional unit on the gold electrode and then inserted D-carnitine to prepare a
MIP template (Figure 10) and showed that the cavity of MIPs had higher specificity [96].
The constructed electrochemical sensor enabled the selective ultra-trace determination of
D-carnitine in carnitine enantiomers. In 2022, Karadurmus et al. modified β-cyclodextrin
on a glass carbon electrode as a functional unit; then, they incorporated esomeprazole
through supramolecular interactions to obtain a MIP template and ultimately prepared a 3D
porous network with ethyl orthosilicate on the electrode surface to provide more binding
sites [97]. The sensor was used for the selective detection of esomeprazole enantiomers in a
serum environment. In 2022, Karadurmus et al. also reported the selective recognition of
pseudoephedrine enantiomers with MIPs prepared via the in situ electropolymerization
of o-phenylenediamine [98], and this electrochemical sensor has a high recovery rate in
pharmaceutical formulations and serum environments.
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Macrocyclic compounds are excellent receptor molecules used to produce supramolec-
ular effects. Among the various macrocyclic compounds, cyclodextrin has raised significant
research interest among many researchers due to its excellent host molecule properties
similar to those of enzymes. Various organic compounds can be embedded in the hydropho-
bic cavity of cyclodextrin to form an inclusion complex, which changes the physical and
chemical properties of the envelope [99]. Therefore, it is possible to crosslink cyclodextrin
molecules with various functional groups or polymers and perform chemical modifica-
tion or polymerization using cyclodextrin as a monomer [100,101]. In 2018, Liang et al.
constructed an electrochemical sensor on the electrode surface by coupling β-cyclodextrin
to form a composite material on 3D graphene [102]. Then, the cavity of β-cyclodextrin
was used as the binding site to establish host–guest interactions on the tryptophan enan-
tiomer. As the binding force of L-tryptophan is much higher than that of D-tryptophan,
the specific recognition of tryptophan enantiomers can be achieved. In 2019, Niu et al.
modified β-cyclodextrin to form a composite material through the self-assembly of fer-
rocene and GO to construct an electrochemical sensor [103] and identified phenylalanine
enantiomers through host–guest interactions, in which L-phenylalanine exhibited a higher
affinity than D-phenylalanine. In addition, Cu2+ was independently assembled into a
composite material after coordination with β-cyclodextrin and carboxymethyl cellulose,
and it was fixed on the electrode modified with N-mixed 3D reduced GO to construct an
electrochemical sensor [104] that recognized L/D-tryptophan through different degrees
of binding. In 2019, Yi et al. also constructed an electrochemical sensor (Figure 11) by
modifying carbon nanotubes coated with reduced GO on the electrode surface and then
fixing β-cyclodextrin coated with rhodamine B on the electrode surface [105]. Through the
competitive host–guest interaction between rhodamine B and phenylalanine enantiomers,
β-cyclodextrin was easily bonded to L-phenylalanine; thus, the selective recognition of
phenylalanine enantiomers was achieved. In 2020, Zou et al. prepared chiral composite
materials with 6-O-α-maltose-functionalized β-cyclodextrin and fixed them on an electrode
modified with a black phosphorus nanosheet [106]. The constructed sensor could recognize
L/D-tyrosine enantiomers. In 2021, Gong et al. modified ammonium chitosan and carbon
nanotubes on the electrode surface via self-assembly and then fixed Cu2+ on the electrode
after coordination with β-cyclodextrin to create a sensing interface (Figure 12) [107]. They
were able to selectively detect tryptophan enantiomers with the constructed electrochemical
sensor. In 2021, Ebrahimi et al. reported the construction of an electrochemical sensor using
β-cyclodextrin encapsulated in methylene blue composites [108], which could identify
naproxen enantiomers through competitive host–guest interactions between methylene
blue and the target molecule in chiral cavities. In 2022, Hou et al. reported a self-assembly
formed by the electrooxidation of β-cyclodextrin on an electrode modified with chiral
MOFs [109]. The constructed electrochemical sensor had multiple chiral recognition sites
and could recognize tryptophan and penicillamine enantiomers. In 2022, Gao et al. syn-
thesized a thiophene copolymer with cyclodextrin in a side chain (Figure 13) [110]. This
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copolymer has good conductivity and chiral selectivity and can be used to construct an
effective electrochemical chiral sensor to recognize amino acid enantiomers.
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Nanomaterials have been widely used in electrochemical sensing due to their unique
properties, including excellent electrochemical performance, high surface areas, and ad-
justable conductivity. In 2018, Yang et al. used a 10-camphorsulfonic acid enantiomer
for peroxidation polymerization to form polypyrrole, resulting in a spiral polypyrrole
chain with a left-handed and right-handed chiral microenvironment [111]. The constructed
electrochemical sensor can specifically recognize L/D-tryptophan enantiomers. In 2018,
Zhang et al. used cellulose nanocrystals as chiral units functionalized with multiwalled
carbon nanotubes to form a composite material to construct an electrochemical sensor [112].
The host–guest effect of the composite material on L-tryptophan was stronger than that of
D-tryptophan, which allowed the sensor to selectively recognize and identify tryptophan
enantiomers. In 2019, Pu et al. reported the enantiomeric separation of (6,5)-single-walled
carbon nanotubes to construct a single chiral electrochemical sensor to selectively recognize
3, 4-dihydroxyphenylalanine enantiomers [113]. In 2019, Stoian et al. constructed an elec-
trochemical sensor on a glassy carbon electrode modified with L-cysteine-functionalized
AuNPs [114]. Their results showed that compared with a single AuNP compound, the
functionalized nanocomposites enabled the selective recognition of the chiral drug pro-
pranolol as a result of the different degrees of host–guest interaction. In 2020, Lian et al.
synthesized a dendritic gold nanomaterial [115] and used it to construct an electrochemical
sensor that could amplify the chiral recognizability of guest molecules through a differ-
ential pulse method and specifically identify 3,4-dihydroxyphenylalanine enantiomers
(Figure 14). In 2021, Jiang et al. introduced the polymerization of non-chiral phthalocyanine
into L-lysine helical nanofibers to form a chiral microenvironment [116], and the electro-
chemical sensor constructed using the composite nanomaterials could identify tryptophan
enantiomers. In 2021, Liu et al. self-assembled synthetic chiral ionic liquid and N-doped
GO multiwall carbon nanotubes onto the electrode surface to prepare chiral composite
nanomaterials [117]. Compared with the electrode without composite multiwall carbon
nanotubes, the electrochemical sensor based on composite materials further amplified the
chiral recognition signal of the target molecule for the specific detection of tryptophan
enantiomers. In 2021, Yu et al. constructed a chiral composite material into N-acetyl-L-
cysteine-functionalized pillar[5]arene, and then solidified the composite material onto a
polycarbonate (PC) membrane to form nanochannels [118]. Ultimately, the modified PC
membrane was fixed on a gold electrode to construct an electrochemical sensor (Figure 15).
The chiral nanochannel had a stronger host–guest effect on S-propranolol that significantly
reduced the electrochemical signal of the constructed sensor; however, it had no significant
host–guest effect on R-propranolol and selectively recognized the propranolol enantiomer.
In 2022, Li et al. synthesized helical AuNPs with intrinsic chirality to construct electrochem-
ical chiral sensors [119]. L/D-helicoid Au nanoparticles specifically bound to L/D-tyrosine
to produce an enhanced electrochemical signal.
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4. Electrochemical Luminescence Chiral Supramolecular Sensors

ECL is a new analytical technique that combines electrochemistry and chemilumines-
cence for the detection of various analytes. ECL is characterized by high controllability,
high sensitivity, and simplicity [120]. ECL mainly generates luminescence through an
electrochemical reaction on the electrode surface to enable the quantitative and qualitative
analysis of some specific compounds [121]. Although relevant research on ECL sensors
has been conducted for nearly 50 years, due to the restriction of the electroluminescence of
host molecules, it still faces certain challenges in the chiral molecular recognition field [122].
Few reports exist on chiral ECL supramolecular sensors, but reports on related studies are
widely available.

Due to their physical and chemical properties, these nanomaterials have broad applica-
tion prospects in chemical sensing, and their color and luminescence characteristics change
with changes in particle sizes [123]. These characteristics and research findings can provide
new guidelines to construct chiral electrochemical luminescence sensors [124]. In 2018,
Wu et al. synthesized homoleptic cyclometalated iridium(III) complex nanowires and used
them as luminescent receptors modified into an indium tin oxide (ITO) sensor and added
the coreactant tripropylamine to the system to optimize the luminescence system [125].
Due to the differences in electronic transmission capacity between different free radicals,
ECL sensors are used for the high-performance recognition of proline enantiomers. As the
cyclometalated iridium(III) complex displays abundant three-wire states and excellent elec-
trochemical properties, it has great application potential in ECL sensors. In 2019, Zhu et al.
used cadmium-carbonate-modified g-C3N4 to construct a nanocomposite material as the
luminescent receptor and then produced different degrees of ECL signal quenching as
a result of the host–guest interaction with propranolol enantiomers to achieve specific
recognition [126]. Among the various carbon nanomaterials, g-C3N4, as a typical polymer
semiconductor, can effectively activate molecular oxygen to generate superoxide radicals,
which is conducive to the construction of ECL sensors. In 2021, Zhao et al. functionalized
Ag2S quantum dots with N-acetyl-L-cysteine to prepare chiral nanocomposites and solidi-
fied them on the surface of two-dimensional C3N4-modified electrodes to serve as chiral
recognition units and luminescent receptors [127]. The selective recognition of tyrosine
enantiomers can be achieved through supramolecular interactions. The special combination
of chiral molecules and quantum dots creates more possibilities for the construction of
chiral electrochemical luminescence materials.

ECL sensors consist of a three-electrode system similar to that of electrochemical sen-
sors. The macrocyclic compounds solidified on the electrode surface are also conducive to
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supramolecular molecular recognition. In 2021, Liu et al. synthesized a flexible molecular
universal joint (DPMUJ) based on functionalized chiral pillar[5]arenes with bipyridine
and then coordinated the DPMUJ enantiomers with luminous ruthenium ions to form
chiral receptors with an ECL signal response [128]. Experiments have shown that the chiral
host can selectively recognize ECL signals of different intensities after interactions with
amino acid enantiomers. A novel method to synthesize supramolecular assemblers with
chiral recognition ability was reported, providing new guidelines for designing chiral ECL
sensors constructed with macrocyclic compounds. In 2022, Wu et al. activated an achiral-
ity macrocyclic compound, benzo[3]uril, to produce a chiral microenvironment through
supramolecular interactions with chiral guest molecules. Since benzo[3]uril produces an
ECL signal response, the ECL signal changes can be directly generated through the compet-
itive interaction between chiral guest molecules and macrocyclic lumen [129]. Eventually,
the specific recognition of L-penicillamine enantiomers was achieved (Figure 16). Therefore,
a simple and universal method is used to construct chiral sensors and a series of ECL
sensors for molecular recognition.
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5. Photoelectric Chemical Chiral Supramolecular Sensors

Photoelectric chemical sensors represent a new technology in which light is used as
the excitation source, and photocurrent or photovoltage is used as the detection signal
to quantitatively analyze the relationship between the target and the photocurrent or
photovoltage for electrochemical and biometric identifications [130]. The photochemical
process refers to the transfer of charge generated through electron excitation due to photon
absorption by molecules, ions, and semiconductor materials, thus achieving the conversion
of light energy into electric energy [131]. According to the operating principle of the sensor,
light is irradiated on the photoactive material, the electrons in the photoactive material
become excited under irradiation, and the recognition probe on the material captures the
target analyte, leading to the change in photocurrent or photovoltage [132]. Although the
application of PEC technology in the field of molecular recognition has become a research
hotspot, it is still hard to find a suitable chiral photoreceptor.

Since the constructed PEC sensor used in analysis and detection is still a common
three-electrode system, in this review, we focus on the design of photosensitive electrode
materials. In 2020, Liu et al. synthesized a titanium dioxide nanochannel array as a
photosensitive substrate and then modified β-cyclodextrin as a chiral recognition unit by
coupling it on the nanomaterial and ultimately achieved photoelectric chemical detection
triggered through ion current rectification with the composite nanomaterial-modified work-
ing electrode [133]. The constructed sensor enabled the specific recognition of L-histidine
enantiomers. In 2021, Zhou et al. reported the construction of an L-histidine-functionalized
pure chiral metal–organic skeleton using titanium dioxide nanotubes [134]. Then, by study-
ing host–guest interactions, they found that the photocurrent signal response intensity of
the nanocomposite to L-dopa was significantly lower than that of D-dopa, thus achieving



Chemosensors 2023, 11, 269 15 of 22

the selective recognition of dopa enantiomers. In 2021, Yang et al. reported the preparation
of chiral nanofibers through the electropolymerization of thiophene-modified pillar[5]arene
monomers [135]. The obtained polymer showed a significant circular dichroism signal,
and the constructed photoelectric chemical sensor could selectively identify ascorbic acid
enantiomers. In 2021, Zhao et al. used graphitic carbon nitride quantum dots as the
photocurrent material and solidified them on the ITO electrode, and then modified the
layer-by-layer of chiral multifarene[3,2,1] as the chiral recognition unit [136]. Through
supramolecular interaction between chiral macrocyclic cavities and guest molecules, the
photocurrent decreases to varying degrees. A super-sensitive chiral photoelectric sensor
was constructed to selectively recognize thyroxine enantiomers (Figure 17).
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6. Conclusions

The analysis results of various methods used for detecting materials in the above-
mentioned reports are summarized in Table 1. The detection range and detection limit are
also listed in Table 1. We intuitively compared the characteristics of different analytical
methods and the advantages of different strategies for the construction of sensors. The
electrochemical analysis methods mostly have wider detection ranges and lower detec-
tion limits than optical analysis methods (Table 1). However, few reports exist on the
construction of ECL and PEC sensors, the general detection range is over several orders
of magnitude, and the detection limit can reach 1.0 nM or lower. Therefore, ECL and PEC
detection methods have certain application potential.

In early chiral supramolecular systems, many studies focused on the advantages
of supramolecular methods and the structural diversity of components but ignored the
relevant studies on the mechanism and properties of chiral transfer, and as a result, many
control factors of microchirality have not been developed [137]. In the last five years, the
research on chiral supramolecular sensors has made a qualitative leap. Researchers have
examined more methods of supramolecular chiral memory and regulation, opened up more
new perspectives on molecular recognition mechanisms, and prompted research enthusi-
asm and extensive application of supramolecular chiral effect in this field. There are many
chiral supramolecular sensors for detecting small amino acid enantiomers, but there are few
sensors for the specific recognition of chiral drugs, indicating that chiral supramolecular
sensors cannot analyze complex chiral molecules, and a huge gap exists in the fabrication
process of these sensors. Although the relevant research on chiral supramolecular sen-
sors has been productive, the functionalization of materials is still challenging, and more
methods are needed to achieve the biological compatibility of materials. Finally, chiral
supramolecular sensors have broad application prospects for the detection of chiral drugs
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in organisms and chiral pollutants in the environment, as well as great potential for the
development of intelligent chiral sensing systems and their commercial application.

Table 1. Comparison of chiral supramolecular sensor analysis for identification of enantiomers.

Detection Method Targeted Substrates Linea Range (µM) Lod (nM) References

Fluorescence D-penicillamine 30.0–2.0 × 103 5.0 × 103 [61]
Fluorescence D-penicillamine 23.0–0 80.0 [62]
Fluorescence D-penicillamine 2.5 × 10−2–0.7 8 [63]
Fluorescence L/D-arginine 0–0.4/0–0.3 1.9/1.8 [64]
Fluorescence D-aspartic 3.0–31.0 14.3 [65]
Fluorescence L-morphine 2.8 × 10−2–0 60 [67]
Fluorescence L/D-phenylalaninol 1.0 × 102–1.0 × 104 3.02 × 102/3.97 × 103 [68]
Fluorescence L-histidine 1.0 × 10−7–1.8 × 10−6 8.0 × 10−5 [70]

CD L/D-histidine 5.0–50.0 1.0 × 104 [75]
Colorimetric D-cysteine 5.0–1.0 × 102 4.9 × 103 [79]

RTP
(solution/nanopaper) L-lysine 0.0–2 × 104/0.0–2.0 × 103 0.30/0.97 [80]

SPR L-tryptophan 0.15 × 103–2.5 × 103 0.1 × 106 [81]
CV D-cysteine 1.0 × 10−2–1.8 8.7 [90]

DPV L-cysteine 1.0 × 10−7–1.0 × 10−1 6.0 × 10−6 [95]
DPV D-carnitine 3.6 × 10−10–4.0 × 10−7 2.2 × 10−7 [96]
DPV esomeprazole (ESOM) 1.0 × 10−8–2.0 × 10−7 1.9 × 10−6 [97]

DPV (1S,2S)-
rseudoephedrine 1.0 × 10−9–1.0 × 10−8 2.9 × 10−7 [98]

DPV L/D-tryptophan 0.5–1.7 × 102 9.6/38.0 [102]
DPV L/D-phenylalanine 10.0–5.0 × 103 27.0/52.0 [103]
DPV L/D-tryptophan 10.0–5.0 × 103 63.0/3.5 [104]
DPV L-phenylalanine 0.2–13.0 80.0 [105]
DPV L/D-tyrosine 10.0–1.0 × 103 4.81 × 103/6.89 × 103 [106]
DPV L/D-tryptophan 1.0 × 102–4.0 × 103 1.85 × 104/1.34 × 104 [107]
DPV R/S-NaX 0.4–6.0 70.0 [108]

DPV L/D-tryptophan
L/D-penicillamine 10.0–0.5 × 103 9.8/23.0

18.0/79.0 [109]

DPV L/D-tryptophan 40.0–4.0 × 103 2.8 × 103/3.7 × 103 [112]
DPV L/D-tryptophan 10.0–5.0 × 103 24.0/55.0 [117]
DPV L-tyrosine 10.0–1.6 × 103 - [119]
ECL L/D-proline 10.0–1.0 × 105 1.0 [125]
ECL R/S-propranolol 1.0–1.0 × 103 3.3 × 102 [126]
ECL L-penicillamine 1.0 × 10−4–10.0 1.0 × 10−3 [129]
PEC L-histidine 0.2 × 103–1.0 × 103 6.75 × 104 [133]
PEC L/D-DOPA 1.0–10.0/20.0–1.0 × 102 2.4 × 102 [134]
PEC L-ascorbic acid 0.1–0 2.44 [135]
PEC L/D-thyroxine 1.0 × 10−4–1.0 × 10−2 6.7 × 10−2/8.5 × 10−2 [136]
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