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Abstract: This study involved the creation and assessment of a microwave sensor to measure glucose
levels in aqueous solutions without invasiveness. The sensor design utilized a planar interdigital
capacitor (IDC) loaded with a hexagonal complementary split-ring resonator (HCSRR). The HCSRR
was chosen for its ability to generate a highly intense electric field that is capable of detecting
variations in the dielectric characteristics of the specimen. A chamber tube was used to fill glucose
solutions at the sensor’s sensitive area, and changes in the device’s resonance frequency (Fr) and
reflection coefficient (S11) were used to measure glucose levels. Fitting formulas were developed to
analyze the data, and laboratory tests showed that the sensor could accurately measure glucose levels
within a range of 0–150 mg/dL. At a concentration of 37.5 mg/dL, the sensitivity based on S11 and
Fr reached maximum values of 10.023 dB per mg/dL and 1.73 MHz per mg/dL, respectively. This
implies that the sensor put forward has the possibility of being utilized in medical settings for the
monitoring of glucose levels.

Keywords: microwave sensor; planar interdigital capacitor; hexagonal complementary split-ring
resonator (HCSRR); non-invasive monitoring; glucose levels

1. Introduction

The World Health Organization (WHO) states that there are over 400 million individu-
als suffering from diabetes globally, and the number has been increasing in recent years.
Developing countries are disproportionately affected by diabetes, which has become a lead-
ing cause of death, resulting in an estimated 1.6 million fatalities annually [1,2]. Diabetes is
a chronic condition caused by inadequate control of blood sugar levels. If left at a chronic
high level (hyperglycemia), serious and life-threatening complications can develop; it can
lead to severe complications, such as stroke, heart attack, heart failure, kidney failure, and
blindness in adults [3]. Additionally, numerous patients experience seriously low blood
sugar levels (hypoglycemia), which, if not treated promptly, can be life-threatening [4]. The
most widely used glucose sensing technology today is the index finger glucose strip, which
requires multiple daily sampling and the use of single-use and continuous consumption
strips. This can make it difficult for patients to consistently comply with regular glucose
testing. Furthermore, utilizing continuous, real-time monitoring of blood glucose levels
can assist in detecting variations in blood sugar levels for individuals with diabetes [5,6].
In order to tackle this problem, recent advancements in glucose detection by implanting a
needle sensor under the skin for the accurate measurement of body glucose has been pro-
posed [7]. However, the sensors are expensive and need to be replaced every 10–14 days [8].
As a result, many patients are unable to take advantage of this technology due to its cost
and the frequent replacement requirements.
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Diabetes can cause numerous disorders in the body and treatment can be painful.
Therefore, people with diabetes require painless, accurate blood glucose measurement tech-
nology that can be displayed in real time [9]. There has been significant research focused on
developing the most effective non-invasive real-time glucose detection technologies [10,11].
Detection in [12,13] is based on near-infrared and impedance spectroscopy. In [14–16], the
proposed methods are Raman spectroscopy, tomography, and photoacoustic. Measurement
of glucose using reverse iontophoresis has also been proposed, where a chemical sensor is
used to measure the concentration of glucose [17,18]. While these systems are non-invasive,
the sensors are expensive and may deteriorate over time. In addition, a heat-emitting
infrared temperature measurement technique that uses the body temperature to estimate
blood sugar levels is also expensive and not very accurate in measuring blood sugar lev-
els [19]. Attempts are currently being made to use alternative techniques such as saliva [20],
breath [21], sweat [22–24], and tear analysis [25] for glucose measurement. However, each
of these methods has its own set of problems and limitations. Monitoring blood glucose
using electromagnetic (EM) methods has been proposed as a promising option [26,27].
This technique is based on the fact that when blood sugar levels change, the electrical
conductivity of blood or muscle tissue also changes. The EM wave method has several
advantages, including ease of design, fabrication, and use; durability, and cost-effectiveness.
Research has proposed using electromagnetic waves in the microwave frequency range for
glucose sensing [28,29]. Glucose monitoring techniques were standardized in the 1960s and
conventional glucose detection methods were divided into point-of-care and continuous
methods [30,31]. Point-of-care testing involves an enzymatic method that uses a fingerstick
to obtain a blood sample or a urine sample. Microwave responses are sensitive to changes
in the permittivity and conductivity of blood samples as the glucose concentration changes.
It is possible to use the measurement of the changing electromagnetic signals to assess
blood glucose levels. At microwave frequencies, a variety of non-invasive and invasive
methods have been used to estimate blood sugar levels.

Non-invasive methods for estimating aqueous and blood glucose levels include patch
resonators [32–37], microstrip band pass filters, open-ended patch resonators, microstrip
lines with a complementary split-ring resonator (CSRR), oval-shaped patches with sand-
wiched T strips inside, and microstrip patch antennas. Cavity resonators [38], such as dis-
crete double split-ring resonators, rectangular waveguide cavity resonators, and cylindrical
cavity resonators, have also been used for non-invasive glucose estimation. Microstrip-
loaded resonators have additionally been used for non-invasive glucose estimation [39–43],
as well as coplanar waveguide (CPW)-loaded resonators [44–47]. Other non-invasive meth-
ods for estimating glucose levels include ultrawideband [48], dielectric resonators [49], IDC
with a quarter wave-length stub [50], distributed MEM transmission lines (DMTL) [51],
open-ended coaxial probes [52], epsilon negative (ENG) resonators [53], IDC with inter-
twined spiral inductors [54], T-shaped stub-loaded symmetric square open loops [55],
inductively coupled resonators [56], dual-mode microstrip sensors [57], glucometers [58],
center-loaded circular finger-based IDC [59], closed-loop enclosed split-ring resonators [60],
Hilbert-shaped resonators [61], cross-coupled stub-loaded meandered-line SIRs [62], rect-
angular meandered line (RML) resonators [63], ground signal ground (GSG) patterns [64],
CSRR driven by an ISM radar [65], triple-pole CSRR [66], WGM [67], circular CSRR [68],
millimeter-wave metamaterial-inspired resonators [69], and NSRR with PLL [70]. It is
evident from the above research review that microwave sensors have the potential to detect
glucose levels, but further study and development is needed to increase their accuracy
and precision.

In this work, a sensor-type IDC added to a HCSRR was constructed. The properties
and parameters of this sensor were investigated using an aqueous solution of glucose.
The precision of values and sensitivity are discussed. The proposed sensor structure is
characterized by its simplicity, compactness, and ease of manufacture, as well as its abil-
ity to achieve high sensitivity with small specimens. Notably, it is capable of measuring
in the liquid phase without the need for an acceptor molecule. Simulation results show
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that the IDC with a HCSRR structure can produce strong electric fields, leading to in-
creased sensitivity. The proposed sensor has potential for use in medical applications
due to its non-destructive, non-invasive, and non-contact nature; non-chemical reaction;
real-time measurement capabilities; low cost; small size, and the ability to work with
small-volume specimens.

2. Materials and Methods
2.1. Design and Fabrication of Prototype Sensors

The proposed planar microwave sensor using an IDC loaded with a HCSRR is shown
in Figure 1a. The IDC generated in the patch region is depicted on the left side of Figure 1a,
while the HCSRR generated in the ground region is shown on the right side. The right side
of the HCSRR has a high concentration of fringing electric fields at resonance, as shown in
Figure 1b. A cylindrical polypropylene chamber tube with a diameter of 8.8 mm is installed
to cover the sensor’s maximum sensitive area, as shown in Figure 1c. Glucose aqueous
solution is introduced into the cylindrical polypropylene chamber, where it is measured
by the proposed sensor. This figure also shows a cross-sectional view of the sensor, and
the chamber tube is filled with a sample. Figure 1d shows the equivalent circuit model of
the proposed microwave sensor [71]. The patch with the interdigital capacitor and feed
line can be modeled as a series LC circuit (LPI and CPI). The hexagonal-shaped CSRR slot
is modeled as a parallel LC circuit (LR and CR). CC represents the coupling capacitance
between the patch with IDC and the hexagonal-shaped CSRR slot ground plane. The
resonance frequency (Fr) of the proposed device is determined by the following equation:

Fr =
1

2π
√

LR(CR + CC)
(1)

The sensor is fabricated on a DiClad880 substrate (εr = 2.2, tan δ = 0.0009) with a
thickness of 1.6 mm. The dimensions of the sensor structures are as follows: W1 = 40 mm,
W2 = 20 mm, W3 = 0.8 mm, W4 = 1.2 mm, W5 = 5 mm, L1 = 45 mm, L2 = 30 mm, L3 = 7.3 mm,
L4 = 9.6 mm, L5 = 9.25 mm, S = 0.6, R = 6.4 mm, C = 0.6 mm, G = 0.4 mm, and θ = 60◦.

The input of the sensor is attached to an SMA connector for microwave excitation and
measurement. A printed circuit board (PCB) method was used to fabricate the sensor at
room temperature in a research unit laboratory, which is a low-cost and simple process, as
shown in Figure 2a,b.

1 
 

 
Figure 1. Cont.
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2.2. Sample Preparation

A range of water–glucose solutions of varying concentrations were created by blending
D-glucose powder from Sigma-Aldrich (Saint Louis, MO, USA) with distilled water. Four
sets of glucose solutions were prepared, containing concentrations of 35.7, 50, 75, and
150 mg/dL, respectively. The normal range for the blood glucose concentration, or blood
sugar, in the body is between 70 and 120 mg/dL. This value can vary slightly depending on
the specific laboratory that performs the test and the time of day at which the test is taken.
It is worth noting that the concentration of glucose in the body can also vary depending on
the time of day and whether or not a person has recently eaten. For example, blood glucose
levels tend to be higher after eating a meal. Additionally, the glucose concentration in the
body can be affected by various medical conditions, such as diabetes, which can cause
abnormal fluctuations in blood sugar levels. Our choice of glucose concentration range
was based on covering the levels present in normal, latent, and diabetic subjects. Glucose
solutions were prepared in triplicate for each concentration.

2.3. Setup of the Sensor and Measurement Equipment

The setup of the sensor and measuring device is depicted in Figure 3. The sensor
is mounted on a foam base and connected to a Vector Network Analyzer (VNA) using
a high-frequency cable. The S11 value is then measured and recorded. Before taking
measurements, Port 1 of the VNA is calibrated using the short-open-load (SOL) calibration
procedure. The measurements were taken at room temperature, starting with a low glucose
concentration and gradually increasing it to higher levels.
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The test solution is filled into the chamber tube using a micro-pipette. The results are
then measured and recorded. After each measurement is completed, the chamber tube is
washed and cleaned with DI water. In this study, to ensure reliability and consistency, three
measurements were taken for each glucose solution sample at every concentration. For
each measurement, 1601 data points were used in the frequency range of 1–5 GHz under
different sample tests, such as free space, an empty tube, DI water, and various glucose
concentrations. In the measurements, this resulted in a frequency resolution of 2.5 MHz.
The measurement results were drawn to compare the Fr and S11 magnitudes at different
glucose concentrations and for DI water in the frequency range of 2.9–3.3 GHz.

3. Results
3.1. Reflection Coefficient of Sensor

The proposed microwave sensor’s S11 spectra, as depicted in Figure 4, were found to
be in good agreement with both simulations and measurements across the frequency range
of 1–5 GHz. At the first resonance frequency, the experimental and simulated magnitudes of
S11 were −12.30 dB and −9.77 dB, respectively, with a difference of −2.53 dB, representing
20.55%. The experimental and simulation values of resonance frequency are 2.48 GHz
and 2.49 GHz, respectively, which is a 0.0125 GHz difference, representing 0.50%. At the
second resonance frequency, the magnitudes of S11 in both experimental and simulated
data were −15.70 dB and −9.52 dB, respectively, indicating a difference of −6.18 dB, which
represents 39.37% of the experimental value. The resonance frequencies obtained from the
experimental and simulation data were 3.67 GHz and 3.69 GHz, respectively, showing a
difference of 0.02 GHz or 0.55%. The first resonance frequency depends on the values of
radian (R) and gap width (C) in the HCSRR, whereas the second resonance frequency is
determined by the IDT structure. Figure 5 shows the S11 spectra under different sample
tests, such as in free space, an empty tube, DI water, and various glucose concentrations.
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Figure 5. The reflection coefficients of the microwave sensor were measured for free space, an empty
tube, DI water, and glucose concentrations of 37.5, 50, 75, and 150 mg/dL in the solution.

The attachment of the chamber tube to the sensor leads to a slight alteration in the
magnitude and resonance frequency of peaks 1 and 2, as shown by the measurement
results. The magnitude of S11 at peak 1 (2.48 GHz and 2.40 GHz) was −12.30 dB in
free space and −16.10 dB in the empty tube test, indicating a difference of −3.80 dB
or 30.89%. Additionally, the magnitude of S11 at peak 2 was −15.70 dB in free space
and −15.00 dB in the empty tube test, indicating a difference of −0.70 dB or 4.46%. The
resonance frequencies obtained from the free space and empty tube at peak 1 were 2.48 GHz
and 2.40 GHz, respectively, showing a difference of 0.08 GHz or 3.53%. The resonance
frequencies obtained from the free space and empty tube at peak 2 were 3.67 GHz and
3.64 GHz, respectively, showing a difference of 0.03 GHz or 0.82%. The results clearly show
that peak 1 has changed significantly more than peak 2, likely because peak 1 is generated
by the HCSRR and is more strongly influenced by the chamber tube contact in the gap
region of the HCSRR compared to the IDT. As shown in the gray circle in Figure 5, the
resonance frequency and magnitude of S11 at peaks 1 and 2 were shifted when measuring
DI water and glucose solutions at various concentrations. The results clearly indicate
that the resonance frequency at peaks 1 and 2 decreases when the sensor measures the
test liquid, as compared to the case of an empty space and empty chamber tube. The
measurement results reveal that peak 1 is characterized by a smooth signal, whereas peak
2 exhibits ripple characteristics. This is because both peaks are primarily influenced by
the responses of the different sensors. Peak 1 is predominantly influenced by the HCSRR
response to the sample solution, while peak 2 is mainly influenced by the response of the
IDT to the sample.

Figure 6 displays the response of the sensor signal in the form of the reflection coeffi-
cient for peak 1 when measuring DI water and glucose solutions at concentrations of 0, 37.5,
50, 75, and 150 mg/dL. Figure 6a shows the reflection coefficient spectra of the sensor when
detecting glucose solutions at various concentrations. The designed microwave sensor
uses mathematical sensing models developed through regression analysis to relate the
measured S11 level and resonance frequency to the glucose concentration at the peak 1. The
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magnitude of S11, determined from glucose solution measurements in the 0–150 mg/dL
range, was correlated with a three-parameter nonlinear regression model using the power
equation. The resulting fitting formula is

S11(dB) = −1.5404 + 0.0507ρ0.1728 (2)
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A nonlinear relation (R2 = 0.9861) of S11 with the glucose concentration (ρ) in the
solution with respect to the reference sample (DI water) is shown in Figure 6b. Meanwhile,
the Fr-based fitting formula was correlated with a three-parameter nonlinear regression
model using the exponential decay equation, resulting in the following fitting formula:

Fr(GHz) = 1.0247E9 + 42.7617E6e−0.0559ρ (3)

with R2 = 0.9998, as shown in Figure 6c.
Upon filling the liquid sample into the chamber tube, peak 2 exhibited a marked

change in magnitude and resonance frequency in relation to changes in glucose concen-
tration, as shown in Figure 7a. However, the signal of peak 2 (2.9–3.3 GHz) was uneven,
so we applied a smoothing method based on robust quadratic regression to smooth it out,
as shown in Figure 7a. The method involved dividing the input data into windows and
performing a separate regression on each one. This process was carried out to improve the
signal’s evenness. The S11 level and resonant frequency at various concentrations of glucose
were extracted from the smoothed signal and are plotted in Figure 7b,c, respectively.
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The developed microwave sensor utilizes mathematical sensing models, created via
regression analysis, to establish the relationship between the measured S11 level and
resonance frequency in peak 2, and the concentration of glucose. The fitting formula based
on the S11 level is

S11(dB) = −5.4641 + 0.4842ρ0.1705 (4)

Figure 7b displays a nonlinear relationship (R2 = 0.9956) between S11 and the glucose
concentration (ρ) in the solution, relative to the reference sample of DI water.

The fitting formula derived from the Fr value in peak 2 was correlated with a three-
parameter nonlinear regression model using the exponential decay equation. The resulting
fitting formula is

Fr(GHz) = 3.0519E9 + 88.1908E6e−0.0380ρ (5)

with R2 = 0.9979, as shown in Figure 7c.
The measurement results suggest that there is a similar fitting formula describing the

relationship between the glucose concentration with the magnitude of S11 and the resonance
frequency is obtained from peaks 1 and 2. Peak 1 exhibits a smoother signal compared to
peak 2. However, it has a lower signal magnitude and a narrower measurement range when
compared to peak 2. Thus, the researchers decided to utilize peak 2 as a basis for analyzing
the shift in the S11 magnitude and resonance frequency, as well as the sensor’s sensitivity.

Figure 8a,b show the effect of the glucose concentration on the change in S11 and Fr
from their reference values in the range of 0–150 mg/dL, with DI water serving as the
reference sample. When examining the relationship between the changes in S11 and Fr from
their reference values and the glucose concentration in the range of 0–150 mg/dL, it was
found that the resulting relationship equations for both values had the same equation, as
shown in Equations (6) and (7), respectively.

∆S11 = 0.4792ρ0.1718 (6)

with R2 = 0.9955.
∆Fr(MHz) = 36.7121E6ρ0.1781 (7)

with R2 = 0.9893.
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The shifts in the magnitude of both the S11 and Fr parameters, as derived from
glucose solution characterization in the range of 0–150 mg/dL, were correlated with a
two-parameter nonlinear regression model under the power equation. This indicated that
the two parameters changed in the same direction, meaning that as the glucose concentra-
tion increased, the shift in the magnitudes of S11 and Fr also increased correspondingly.
Therefore, it is possible to select one of the analytical parameters to assess the glucose
concentration. The measurement results clearly indicate that the concentration range from
0 mg/dL (pure DI water) to 37.5 mg/dL exhibits the largest shift in the magnitudes of
S11 and Fr, compared to the other concentration ranges. This may be due to the compar-
atively higher variation in the complex dielectric constant of the glucose solution within
this concentration range. These findings provide clear evidence of the hydrogen bond
(HB) destructuring effect that glucose solutes have on aqueous solutions. Moreover, the
complex dielectric constant is subject to change in response to variations in frequency; the
frequency-dependent shift of the complex dielectric constant can be attributed to various
mechanisms, including glucose tumbling, the rotational polarization of the hydrated water,
the reorientation of the HB network water, the rotation of the non-HB water, the hindered
translation of water, and intermolecular liberation [72]. However, in this case, the shift in
the magnitude of S11 is slightly more accurate than using the shift in Fr due to its higher R2

value. The sensor’s response to the S11 and Fr magnitude values is affected by the complex
relative permittivity (εr) of the sample. At resonance, the shift in the magnitude of S11 is a
result of changes in the sensor impedance, which, in turn, are influenced by the imaginary
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component of the complex relative permittivity (ε′′r ). Conversely, the change in Fr is influ-
enced by variations in CR, as shown in Figure 1d, which, in turn, result from changes in the
real component of the sample solution’s complex relative permittivity (ε′r). The relationship
between the complex relative permittivity and the concentration of the glucose solution at
different frequencies (f ) can be expressed as follows: εr( f ) = ε′r( f )− ε

′′
r ( f ). The equation

uses the following variables: εr for the complex relative permittivity, ε′r for the real part
of the complex relative permittivity, and ε

′′
r for the imaginary part of the complex relative

permittivity. The imaginary component of the complex relative permittivity of conducting
samples can be decomposed into two contributions, as described by the following equation:
ε
′′
r ( f ) = ε

′′
rd( f ) − ε

′′
rσ ( f ). The two contributions are ε

′′
rd , which represents the dielectric

relaxation in glucose/loss, and ε
′′
rσ , which corresponds to the loss caused by ion drift. At

lower frequencies, the loss caused by ion drift can obscure the dielectric contribution, as
shown by the following equation: ε

′′
rσ = σ/(ε02π f ), where σ represents the conductivity,

ε0 represents the electric constant, and f represents the frequency. The dielectric constants
of electrolyte–water solutions can be described by the following equation: ε′r = ε′rw − αc,
where ε′rw represents the dielectric constant of deionized (DI) water, c is the concentration
of the electrolyte solution, and α is a phenomenological ion-specific parameter.

3.2. Sensitivity

Sensitivity is a critical factor in determining the response capability of a sensor, and it
can be calculated as the ratio of the change in the magnitude of S11 and Fr to the change in
glucose concentration. The higher the ratio, the better the sensor’s sensitivity. A high ratio
indicates that the sensor is highly sensitive and can detect even small changes in glucose
concentrations. The sensitivity calculations in this work, based on the S11 and Fr values,
are presented in Equations (8) and (9), respectively.

Sensitivity (SS11) =
∆S11

∆ρ
(8)

Sensitivity (SFr) =
∆Fr

∆ρ
(9)

We found that the sensor’s sensitivity, obtained by measuring S11 and Fr at varying
glucose concentrations, displays a nonlinear relationship, as depicted in Figure 9. The fitting
formulas for sensitivity based on S11 and Fr were correlated with three-parameter nonlinear re-
gression models using the exponential decay equation, as presented in Equations (10) and (11),
respectively. The R2 values for the models were 0.9921 and 0.9934, respectively.

SS11 = 0.6986e−0.0935ρ + 0.0018 (10)

SFr = 11.81E6e−0.0512ρ + 24.3433E3 (11)
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3.3. Comparison of the Microwave Sensor for Glucose Sensing

In order to provide a clearer understanding of the performance data for the proposed
microwave sensors, we have included a comparison of their performance with that of
various other structural microwave sensors, as outlined in Table 1. The majority of mi-
crowave sensors proposed for glucose sensing are based on measurements of varying S11,
the transmission coefficient (S21), and Fr. The performance data being compared include
information on the sensor’s structure, concentration range (ρ), operating frequency, sen-
sitivity (S), and number of ports. The sensor structures in [32,33,36,65–70] are two-port
structures, with a resonator being utilized for sensing. Based on the data, the sensitivity
of the microwave sensor in measuring the glucose concentration ranges from 0.005 dB to
17.2 dB for the magnitude of the S-parameter, and from 5 Hz to 1.73 MHz for the resonant
frequency. However, these values vary depending on the operating frequency and specific
concentration range of the sample being measured. The NSRR structure with PLL and
triple-pole CSRR, as described in [66,70], exhibits high sensitivity while utilizing a low
sample volume. However, both structures require two ports and the NSRR structure with
PLL necessitates active control, which results in increased equipment and system complex-
ity. In contrast, the microwave sensors described in [34,35,37] operate using a single port,
which simplifies the system setup and reduces the overall complexity, but these sensors
still have low sensitivity and certain sensors still possess a lump component, making the
construction of the device more complicated. Compared to single-port-based structural
sensors, the sensors presented in this paper exhibit higher sensitivity, while also boasting a
simpler process and operation than two-port sensor structures.

Table 1. The comparison of microwave sensors for glucose level detection.

Ref. Structure ρ (mg/dL) Freq. (GHz) S (dB per mg/dL)
(MHz per mg/dL) No. Ports

[32] Patch resonator (S11) 72–216 0.3–20 N.A. 2
[33] Patch resonator (S11, S21) N.A. 0.5–2.5 N.A. 2
[34] Patch resonator (S11, Fr) 0–1000 1–6 N.A. 1

[35] CSRR resonator (S11, Fr) 0–500 2.4–2.6
S11: 0.005

1Fr: 5 × 10−6

[36] Metamaterial sensor (S21, Fr) 0–150 2–5 Fr: 1.23 2
[37] Microstrip antenna (S11, Fr) 0–500 1–3 N.A. 1

[65]
CSRR

driven by an ISM radar (Fr) 40–140 2.45
Fr: 0.45–0.95 (dispersed)

2Fr: 0.63–1.25 (compact)

[66] Triple-pole CSRR (S11, S21) 70–120 1–6
S21: 1.7–6.2

2S11: 0.6–3.45
[67] WGM (S21) 70–120 50–70 S21: 0.8–1

[68] Circular CSRR (S11, S21, Fr) 70–150 1–6

S11: 0.005–0.021

2
S21: 0.003–0.01

Fr (S11): 0.274–0.334
Fr (S21): 0.067–0.11

[69]
Millimeter-wave

metamaterial-inspired
resonator (S21)

50–120 25.56 S21: 0.027 2

[70] NSRR with PLL (S21) 0–250 0.743 S21: 17.2 2
This
work

HCSRR (S11, Fr) 0–150 1–5
S11: 0.023

1Fr: 1.73

4. Conclusions

This research presents the design and evaluation of a microwave sensor for the mea-
surement of glucose levels in aqueous solutions. The sensor utilizes a planar interdigital
capacitor that is loaded with a hexagonal complementary split-ring resonator, enabling the
generation of an intense electric field that can effectively detect changes in the dielectric
characteristics of the specimen being analyzed. The simulation and measured results of
the S11 spectra were in good agreement over the frequency range of 1 GHz to 5 GHz. The
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research showed a nonlinear relationship between the glucose concentrations and both S11
and Fr, with maximum sensitivity of 0.023 dB and 1.73 MHz per mg/dL, respectively. The
proposed microwave sensor operates using a single port, featuring a simple structure and
operation, small size, and high sensitivity, making it well-suited for measuring glucose
levels and other medical substances.
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