
Citation: Crnjar, R.; Solari, P.; Sollai,

G. The Human Nose as a Chemical

Sensor in the Perception of Coffee

Aroma: Individual Variability.

Chemosensors 2023, 11, 248.

https://doi.org/10.3390/

chemosensors11040248

Academic Editor: Andrea Ponzoni

Received: 8 March 2023

Revised: 31 March 2023

Accepted: 15 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

chemosensors

Article

The Human Nose as a Chemical Sensor in the Perception of
Coffee Aroma: Individual Variability
Roberto Crnjar, Paolo Solari and Giorgia Sollai *

Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
* Correspondence: gsollai@unica.it; Tel.: +39-070-6754160

Abstract: The flavor of foods and beverages is generally composed of a mixture of volatile com-
pounds, however not all the molecules that form an aroma are sensorially relevant. The odor-active
compounds present in a mixture are different for each subject, both in quantitative and qualitative
terms. This means that the ability of the human nose to act as a chemical sensor varies among
individuals. In this study, we used the headspace of roasted coffee beans as a complex olfactory
stimulus and, by means of the coupled Gas Chromatography-Olfactometry (GC-O) technique, the
single components of coffee flavor were separated. Each subject, previously classified for his/her
olfactory status (normosmic, hyposmic or anosmic) by means of the Sniffin’ Sticks battery (composed
of Threshold, Discrimination and Identification subtests), had to identify and evaluate each smelled
molecule. The results show that the individual ability to detect individual compounds during the
GC-O experiments and the odor intensity reported during the sniffing of pen #10 (the pen of the
identification test) containing coffee aroma were related to TDI olfactory status (based on the score
obtained from the sum composed of Threshold, Discrimination and Identification scores). We also
found that the number of total molecules and of molecules smelling of coffee is linearly related to
the TDI olfactory score. Finally, the odor intensity reported when sniffing pen #10 containing coffee
aroma is positively correlated with the number of molecules detected and the average intensity
reported. In conclusion, our findings show that the human perception of both individual compounds
and complex odors is strongly conditioned by the olfactory function of subjects.

Keywords: inter-individual physiological variations; olfactory function; VARU intensity; Sniffin’
Sticks test; olfaction

1. Introduction

All living organisms are able to sense the chemicals present in the environment where
they live to obtain useful information on the availability of energy-rich food sources,
potential mating partners and on the presence of predators [1–8]. All odorous molecules,
whether natural or synthetic and whether perceived as pleasant or unpleasant, are highly
volatile and can activate the olfactory receptors present in the human nose or in the olfactory
organs of all animals [8–14]. In particular, in humans the perception of odors has been
observed to affect the quality of life, exerting a relevant influence on eating habits of
individuals and consequently on their body weight, on the ability to perceive molecules
that signal the presence of dangers (e.g., toxic and/or harmful gases, smoke and spoiled
food) and in interpersonal relationships [15–20].

Most odors found in nature, such as those of food and drink, are rarely formed by
individual compounds; more commonly they are complex mixtures, composed of multiple
molecules, only some of which are sensorially relevant [21–23]. An important challenge
is therefore represented by the understanding of which molecules within a mixture are
perceived, and thus constitute the odor-active compounds, and which remain irrelevant
from a sensory point of view. This problem can be solved using the gas chromatography-
olfactometry (GC-O) technique which simultaneously uses the chromatographic column to

Chemosensors 2023, 11, 248. https://doi.org/10.3390/chemosensors11040248 https://www.mdpi.com/journal/chemosensors

https://doi.org/10.3390/chemosensors11040248
https://doi.org/10.3390/chemosensors11040248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/chemosensors
https://www.mdpi.com
https://orcid.org/0000-0001-8785-1438
https://orcid.org/0000-0001-7341-582X
https://doi.org/10.3390/chemosensors11040248
https://www.mdpi.com/journal/chemosensors
https://www.mdpi.com/article/10.3390/chemosensors11040248?type=check_update&version=1


Chemosensors 2023, 11, 248 2 of 15

separate the individual compounds within a mixture and the human nose as a chemical
sensor capable of perceiving and evaluating the volatiles coming out of the olfactometric
port [24–28]. In addition to understanding olfaction at a physiological level, many attempts
have been recently made to detect odorants and volatile organic compounds by means of
artificial olfactory sensor technology, which was widely introduced in many fields, such as
environmental monitoring, detection of food conditions and clinical diagnostics [29–31].
Semiconductor metal oxides such as SnO2 and TiO2, for instance, are largely employed
as gas sensors for a number of favorable functional properties like good stability and
sensitivity combined with low cost [32,33].

An important aspect that should not be underestimated is that the ability to perceive
individual compounds is directly correlated with the olfactory function of individuals
who, as known, present a great variability [34–36]. In fact, as a result of physiological,
genetic, behavioral and environmental factors, humans can be classified as normosmic
(normal olfactory function), hyposmic (reduced olfactory function) or functionally anosmic
(olfactory blindness, which can be general or specific) [16,37–50]. It is known that the
human olfactory system has a high potential in terms of discrimination and sensitivity
even if, at present, the number of stimuli that humans are able to perceive has not yet
been quantified [51]. Furthermore, the information available on the potential of the human
nose as a chemical sensor in relation to the olfactory function of individuals is still lacking,
in terms of odor-active compounds, in the intensity at which they are perceived and in
our ability to identify and/or associate them with the aroma of the mixture to which they
belong [26,36,52].

Based on these considerations, this study had three different but interconnected objec-
tives, with the aim of better understanding the relationship between the olfactory function
of individuals, in terms of normosmia or hyposmia, and the ability of the human nose to
act as a chemical sensor of individual molecules belonging to a complex mixture, both
in quantitative (number of molecules perceived) and qualitative (intensity of perception)
terms. The first objective regards the effect of the olfactory function of individuals on their
ability to smell the individual compounds of the complex aroma of coffee as they are eluted
from the chromatographic column and the correlation between the number of odor-active
compounds and the TDI olfactory score obtained by each subject. With the second objective
we evaluated whether the intensity reported by subjects for the odor of coffee contained
in the pen #10 of the identification test (one of the subtests of the Sniffin’ Sticks battery)
was correlated with the number of odor-active compounds and with the average intensity
with which they were perceived. Finally, we investigated the effect of olfactory status
(normosmic vs. hyposmic) on perceived intensity for pen #10 and its correlation with the
TDI olfactory score obtained by each participant.

2. Materials and Methods
2.1. Subjects

Thirty-eight Caucasian healthy non-smoking volunteers (24 females, 14 males, 28.8± 1.61 y),
recruited in Cagliari (Sardinia, Italy), took part in this study. To estimate the ability to detect
the odor-active compounds, during the GC-O analysis we used the detection frequency
method, which does not require the presence of qualified evaluators and the results it
produces represent the inter-individual variability [24,28,53–55].

All participants fasted for at least 90 min prior to testing and were free of perfume.
Before starting the olfactory tests, the experimental protocol approved by the local Ethical
Committee was read to them and they were asked to sign an informed consent (Prot.
PG/2018/22 of 2 January 2018).

2.2. Olfactory Sensitivity Screening

The olfactory function of each individual was evaluated by means of the TDI
olfactory score given by the sum of the scores obtained with the tests of Threshold
(T-test), Discrimination (D-test) and Identification (I-test), which represent the sub-
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tests of the Sniffin’ Sticks test (Burghart Instruments, Wedel, Germany), based on
odor-containing felt-tip pens [56]. According to the reference values reported by
Hummel et al. [57], based on the total TDI olfactory score obtained, and on sex and
age, each participant was classified as normosmic, hyposmic or functionally anos-
mic. For each olfactory test the score is between 0 and 16. For the T-test, the score is
given by the average of the last 4 reversals out of 7, while for the D-test and I-test the
score is given by the number of correct discriminations and identifications (for details
visit: https://www.uniklinikum-dresden.de/de/das-klinikum/kliniken-polikliniken-
institute/hno/forschung/interdisziplinaeres-zentrum-fuer-riechen-und-schmecken/
neuigkeiten/downloads).

For the coffee-odor of pen #10 presented during the I-test, the subjects must also give
a personal evaluation of the perceived intensity, marking a sign on the “Visual Analogue
Rating Units” (VARUs) scale, ranging from 0 to 20 VARUs [58].

2.3. Dynamic Headspace Sampling

The dynamic headspace method, as described by Rizzolo et al. [59] and Nuzzi et al. [27],
was used to collect the volatile compounds. In terms of volatiles, the dynamic headspace
method is considered the most appropriate for obtaining an extract whose composition is
closely linked to the quality of the scent as assessed by the consumer [60]. In addition, it
has the ability to acquire extracts for GC-MS and sensory assessment via GC-O analysis by
a human assessor [27].

In detail, approximately 100 g of roasted coffee beans were placed in a 0.5 L airtight
glass vessel, with a flow-through system fitted to a Porapak Q (150/75 mg, 50/80; Supelco;
St. Louis, MO, USA) in a glass adsorption tube (5 mm Ø) inserted into the collection port
at the top of the vessel. By flushing the system with purified air for three hours at a rate
of 30 L/h (500 mL/min), volatiles were recovered at room temperature. Using 1.5 mL of
1-hexane, trapped volatiles were released from the Porapak Q tube, resulting in a solution
containing the isolated volatile chemicals. Samples were then stored at −20 ◦C until used.
By performing three GC runs 24 h after sample preparation and before they were used
for GC-O experiments, the effectiveness of the extraction and the reproducibility of the
chromatogram were confirmed. Besides, to verify that the sample was not altered, before
each section of the GC-O experiment, a GC-run without any sniffing session was made.
The fact that the volatile chemical profile observed in this study is remarkably comparable
to the headspace volatile profiles published in the literature data provides evidence of its
validity [61–69].

2.4. Mass Spectrometry/Gas Chromatography–Olfactometry (MS/GC-O) Analysis

An Agilent 6890N gas chromatograph (GC; Agilent technologies; Santa Clara, CA,
USA) was simultaneously connected with an Agilent model 5973 series mass spectrometer
(MS) and with an olfactometry detection system (Gerstel ODP3; Mülheim an der Ruhr,
Germany) to perform the analyses. A constant flow of 1.2 mL/min of He was used as
carrier gas. The flow was split 1:1 between the olfactometry and the MS detector at the
outlet of the chromatographic column and the injection volume was 1 µL [36].

The chromatographic column was a 30 m HP-INNOWax, 0.25 mm internal diameter×
0.50 µm film thickness (Agilent 19091N-233; Agilent technologies, Santa Clara, CA, USA).
The temperature of the injector and the MS interface temperature were set at 250 ◦C and
260 ◦C respectively. The oven temperature was maintained at 40 ◦C (0.2 min), 40 ◦C/min
to 90 ◦C (0.50 min), 2 ◦C/min to 150 ◦C, 30 ◦C/min to 230 ◦C (12 min). The injector mode
was splitless; the temperatures for the ion source and the quadrupole mass filter were
230 ◦C and 150 ◦C, respectively. Chromatograms were recorded by monitoring the total ion
current in a 40–550 mass range. The transfer line to the GC-ODP3 sniffing port was held at
220 ◦C [36].

To identify the volatiles, we used the mass spectrum found in the MS Standard
Library NIST2014 (US National Institute of Standards and Technology; Gaithersburg,
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MD, USA). In accordance with Gonzales-Kristeller et al. [70], the Good Scents Company
Information System (www.thegoodscentscompany.com; 20 January 2023) was used to
obtain information regarding odorant natural occurrence, “odor type” (i.e., roasted, floral,
woody, etc.) and “odor descriptors” (i.e., coffee, fruit, cheese, wood, etc.).

The “Sniffin’ Sticks” test, as previously described, was used to characterize the ol-
factory function of each panelist, prior to testing. Participants were asked to assess the
volatile strength and duration during elution for the GC-O analyses [27,71] by using a
PC-connected audio recorder and digital signaling system (GERSTEL ODP recorder 3 for
Windows 7). The signaling system is characterized by the presence of 4 keys that represent
a 4-point intensity scale: 1 = weak odor, 2 = distinct odor, 3 = intense odor, 4 = very intense
odor. The participant pressed one of the signaling system keys whenever he/she detected
an odor to express his/her subjective assessments of the aroma intensity (based on which
button was pressed), the stimulus duration, the degree of pleasantness or unpleasantness
and the description of the odor-active compound. The chromatograms were overlaid
with the obtained olfactograms after the PC automatically recorded the retention time and
sniffing time of each odor-active compound. The samples were presented completely blind
to avoid psychological conditioning.

2.5. Statistical Analysis

The Pearson correlation test was used to evaluate the relationship between: (a) the
total number of odor-active compounds (hereafter, total-compounds) or the number of
odor-active compounds smelling of coffee (hereafter, coffee-compounds) smelled by each
subject and his/her TDI olfactory score; (b) the intensity perceived by each subject for the
pen of the identification test containing the coffee aroma (hereafter, the coffee-odor pen)
and his/her TDI olfactory score, (c) the number of total- and coffee-molecules smelled and
the intensity perceived for the coffee-odor pen by each subject, (d) the reported average
intensity for total- and coffee-molecules and the perceived intensity for the coffee-odor pen
by each subject. The correlation coefficient “r” was considered to measure the strength
of the linear relationship or straight-line between two variables: r < 0.3 means lower
correlation, 0.3 < r < 0.7 means medium correlation, r > 0.7 means higher correlation [72,73].
Statistical analyses were performed using GraphPad Prism 6 (GraphPad Software, San
Diego, CA, USA). A statistically significant correlation was defined with a p-value < 0.05.

One-way ANOVA was used to analyze the effect of the TDI olfactory status of the
subject on: (a) his/her ability to smell individual compounds during the GC-O analysis
and (b) the intensity referred for the coffee-odor pen. Post-hoc comparisons, following
one-way ANOVA, were conducted with the Fisher’s test of least significant difference
(LSD). Statistical analyses were performed using STATISTICA for WINDOWS (version 7.0;
StatSoft Inc., Tulsa, OK, USA). p values < 0.05 were considered significant.

3. Results
3.1. Volatile Compounds of Coffee Aroma

The 50 volatile compounds obtained from the extract of the roasted coffee beans by
means of the dynamic headspace method are listed in Table 1. Using the information from
“The Good Scent Company System” on the organoleptic properties, we classified each
volatile for its odor type and odor descriptors. On the basis of the odor type information,
we found nine nutty compounds, five fruity, two buttery, two bready, two fishy and one
for each of the following odor type: coffee, chocolate, sweet, potato, creamy, caramellic,
cheesy, roasted, winey, citrus, green, vegetable, waxy, musty, balsamic, aromatic, phenolic,
acidic and terpenic. Based on odor descriptors, 21 compounds were identified as smelling
of coffee, eight of which are of the nutty odor type, three are of the fruity odor type, two are
of the bready odor type, one is of the phenolic, fishy, coffee, balsamic buttery, caramellic,
roasted or vegetable odor type. In the Good Scent Company System, we did not find any
information regarding odor type for 11 compounds (no. 1, 2, 7, 18, 33, 35, 36, 38, 44 and 47
in Table 1) and for 7 regarding odor descriptor (no. 1, 6, 33, 35, 36, 44 and 47 in Table 1).

www.thegoodscentscompany.com
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Table 1. Volatile compounds found in the headspace of roasted coffee beans.

N. Compound RT a Odor Type b Odor Descriptors b

1 Octane, 3,5-dimethyl- 8.10 - -

2 Oxalic acid, isobutyl nonyl ester 8.33 - Bland, mild, caramellic

3 Toluene 8.54 Phenolic Solventy, woody, roasted, coffee

4 β-Pinene 10.20 Terpenic Sweet, fresh, pine, woody, hay, green

5 Ethylbenzene 10.69 - Petroleum-like odor

6 p-Xylene 10.90 Aromatic -

7 Oxalic acid, isobutyl pentyl ester 11.85 - Bland, mild, caramellic

8 Pyridine * 12.55 Fishy Sour, sickening, putrid, coffee

9 D-Limonene * 12.81 Citrus Citrus, orange, fresh, sweet

10 Furan,2-pentyl- * 13.30 Fruity Fruity, green, earthy, beany, vegetable,
metallic

11 Pyrazine, methyl- * 15.65 Nutty Coffee, cocoa, roasted, chocolate, peanut,
green, nutty brown, musty, earthy

12 Acetoin 16.50 Buttery Sweet, creamy, green, butter, dairy, milk, fatty,
buttery, creamy, sour, fatty, vanilla

13 2-Propanone, 1-hydroxy- 17.28 Sweet Pungent, sweet, caramellic, ethereal

14 Pyrazine, 2,5-dimethyl- * 18.11 Chocolate Cocoa, roasted nutty, beefy roasted, beefy,
woody, grassy, medicinal

15 Pyrazine, ethyl- * 18.67 Nutty Peanut, butter, musty, woody, roasted, cocoa,
coffee

16 Pyrazine, 2,3-dimethyl- * 19.30 Nutty Musty, nut skin, cocoa, powdery, caramellic,
roasted, potato, coffee, peanut, butter,

17 DL-2,3-Butanediol * 19.81 Creamy Fruity, creamy, buttery

18 Vinyl butyrate 20.02 - Organic solvent

19 Hex-4-yn-3-one, 2,2-dimethyl- 20.67 Winey Chemical, winey, fruity, fatty, terpenic,
cauliflower

20 Pyrazine, 2-ethyl-6-methyl- * 21.08 Potato Roasted, potato

21 Pyrazine, 2-ethyl-3-methyl- * 22.09 Nutty Nutty, peanut, musty, corn, raw, coffee,
bready

22 Pyrazine, 2-(n-propyl)- * 22.89 Green Green, vegetable, nutty

23 Pyrazine, 2,6-diethyl- * 23.59 Nutty Nutty, potato, cocoa, roasted, coffee

24 Pyrazine, 3-ethyl-2,5-dimethyl- * 24.08 Nutty Potato, cocoa, roasted, nutty, coffee

25 2-Propanone, 1-(acetyloxy)- 24.70 Fruity Fruity, buttery dairy, nutty

26 Pyrazine, 2-ethyl-3,5-dimethyl- * 25.01 Nutty Peanut, caramellic, coffee, cocoa

27 Furfural * 25.27 Bready Sweet, brown, woody, caramellic, bread
baked, coffee, almond

28 Pyrazine, tetramethyl- 25.71 Nutty Nutty, musty, chocolate, coffee, cocoa, brown,
lard, burnt, dry, vanilla

29 Pyrazine, 3,5-diethyl-2-methyl- * 26.66 Nutty Nutty, meaty, vegetable

30 Pyrazine, 2-ethenyl-5-methyl- 27.10 Coffee Coffee

31 Furan, 2-acetyl- * 27.67 Balsamic
Sweet, balsamic, almond, cocoa, coffee,
caramellic, nutty,
brown, toasted, milky, lactonic
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Table 1. Cont.

N. Compound RT a Odor Type b Odor Descriptors b

32 2,3-Pentanedione * 28.21 Buttery Pungent, sweet, buttery, creamy, nutty,
caramellic, cheesy, coffee

33 2-Butanone, 1-(acetyloxy)- 28.52 - -

34 2-Furanmethanol, acetate * 28.81 Fruity Coffee, sweet, fruity, banana, horseradish,
roasted, cocoa

35 Pyrazine, 2-methyl-6-(2-propenyl)- 29.37 - -

36 2-Cyclopenten-1-one,
2,3-dimethyl- 30.12 - -

37 Acetic acid, diethyl- * 30.56 Acidic Acidic, fruity, whiskey, dry berry, dairy,
tropical

38 Pentanoic acid, 4-oxo-, methyl
ester 31.05 - Caramellic, flavouring agent

39 2-Furancarboxaldehyde, 5-methyl-
* 31.54 Caramellic Sweet, caramellic, bready, brown, coffee,

spicy, maple

40 2-Furanmethanol, propanoate * 32.16 Fruity Sweet, fruity, green, banana, oily, coffee, spicy

41 Furan, 2,2′-methylenebis- * 32.81 Fruity Rich, roasted, coffee

42 2-Furanmethanol * 34.17 Bready Sulfurous, estery, chemical, musty, sweet,
brown, caramellic, bready, coffee, alcoholic

43 Butanoic acid, 3-methyl- * 34.35 Cheesy Cheesy, dairy, acidic, sour, pungent, ripe, fatty,
fruity, stinky feet, sweaty, tropical

44 Furan,
2-(2-furanylmethyl)-5-methyl- * 34.68 - -

45 Pyrazine, 2-acetyl-6-methyl 35.33 Roasted Roasted, coffee, cocoa, popcorn

46 4(H)-Pyridine, N-acetyl- * 35.76 Fishy Sour, fishy, putrid, ammoniacal

47 Octaethylene glycol monododecyl
ether 36.21 - -

48 2-Hexadecanol 36.38 Waxy Waxy, clean, greasy, floral, oily

49 N-Furfurylpyrrole * 37.95 Vegetable Plastic, green, waxy, fruity, coffee, vegetable

50 2-Acetylpyrrole * 40.68 Musty
Musty, nut, skin, cherry, maraschino, cherry,
bready,
coumarinic, licorice, walnut

a RT = retention time in I-Wax column. b Odor type and odor descriptors from the Good Scent Company
Information System. (www.thegoodscentscompany.com). Asterisks indicate the molecules that have also been
found in other coffee extracts [56–64].

Table 2 shows that 47 compounds found in the extract were odor-active for at least two
of the participants; in fact, the “ethylbenzene” and “furan, 2-(2-furanylmethyl)-5-methyl”
(indicated with no. 5 and 44 in Table 1) was found to be active for just one individual; while,
the “2-Butanone, 1-(acetyloxy)-“ (indicated with no. 33 in Table 1) it was not perceived
by any of the participants. Furthermore, the panelists described 21 of the odor-active
compounds as smelling of coffee, even though the odor descriptors reported in Table 1
define only 17 of them as actually having a coffee odor.

www.thegoodscentscompany.com
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Table 2. GC-O analysis: odor-active compounds and odor descriptions by subjects.

N. Odor-Active Compound Odor Description df

1 Octane, 3,5-dimethyl- Woody, unknown 2
2 Oxalic acid, isobutyl nonyl ester Burnt, unknown 2
3 Toluene Coffee, smoked, solvent, roasted 8
4 β-Pinene Sweet, floral, vanilla 8
5 Ethylbenzene Petrol 1
6 p-Xylene Vanilla, medicinal, floral 5
7 Oxalic acid, isobutyl pentyl ester Floral, fruity, vanilla 6
8 Pyridine * Coffee, smoked, roasted, cheese 3
9 D-Limonene * Sweet, sour, citrus 6

10 Furan,2-pentyl- * Smoked 2
11 Pyrazine, methyl- * Coffee, nutty, roasted, smoke 3
12 Acetoin Coffee, sweet, roasted, parfum 10
13 2-Propanone, 1-hydroxy- Sweet, pungent, fish, solvent, wet 10
14 Pyrazine, 2,5-dimethyl- * Coffee, citrus, medicinal, sweet, cocoa 7
15 Pyrazine, ethyl- * Coffee, nutty, egg 3
16 Pyrazine, 2,3-dimethyl- * Coffee, burnt, caramellic, fruity 5
17 DL-2,3-Butanediol * Sweet, caramellic, rose, wet 5
18 Vinyl butyrate Floral, parfum, bitter, solvent, pungent 7
19 Hex-4-yn-3-one, 2,2-dimethyl- Sweet, solvent 4
20 Pyrazine, 2-ethyl-6-methyl- * Coffee, sweet, smoked, medicinal, solvent, parfum, roasted 19
21 Pyrazine, 2-ethyl-3-methyl- * Coffee, cocoa, solvent, bitter, nutty, roasted 25
22 Pyrazine, 2-(n-propyl)- * Green, musty, woody, earthy, wet, herbs, floral 22
23 Pyrazine, 2,6-diethyl- * Coffee, roasted, earthy, musty, burnt, mushrooms 25
24 Pyrazine, 3-ethyl-2,5-dimethyl- * Coffee, nutty, roasted, floral, bitter 20
25 2-Propanone, 1-(acetyloxy)- Pungent, parfum 6
26 Pyrazine, 2-ethyl-3,5-dimethyl- * Coffee, musty, roasted, wet 21
27 Furfural * Coffee, sweet, solvent, floral, pungent 13
28 Pyrazine, tetramethyl- Coffee, roasted, burnt, vanilla 13
29 Pyrazine, 3,5-diethyl-2-methyl- * Floral, musty, wet, solvent, fresh 15
30 Pyrazine, 2-ethenyl-5-methyl- Coffee, nutty, bitter, plastic 14
31 Furan, 2-acetyl- * Parfum 2
32 2,3-Pentanedione * Floral, herbs, earthy, sweat, musk, cheese, pungent 24
34 2-Furanmethanol, acetate * Roasted, fruit, earthy, herb, woody, coffee 21
35 Pyrazine, 2-methyl-6-(2-propenyl)- Pungent, sour, bitter 6
36 2-Cyclopenten-1-one, 2,3-dimethyl- Sweet, floral, lavender 4
37 Acetic acid, diethyl- * Roasted, solvent, rotten, musty, herbs, wet earth 22
38 Pentanoic acid, 4-oxo-, methyl ester Sweet 4
39 2-Furancarboxaldehyde, 5-methyl- * Coffee, sweet, parfum 4
40 2-Furanmethanol, propanoate * Coffee, pungent, floral, musty, herb, sweet, burnt 14
41 Furan, 2,2′-methylenebis- * Coffee, nutty, popcorn, roasted, fish, sour 21
42 2-Furanmethanol * Coffee, smoke, popcorn, nutty, roasted 24
43 Butanoic acid, 3-methyl- * Cheese, smoke, stinky feet, acidic, fruity, putrid 16
44 Furan, 2-(2-furanylmethyl)-5-methyl- * Unknown 1
45 Pyrazine, 2-acetyl-6-methyl Putrid, musty, cheese 6
46 4(H)-Pyridine, N-acetyl- * Shoes, wet, sweat 7
47 Octaethylene glycol monododecyl ether Sweat, acidic 4
48 2-Hexadecanol Cheese, musty, putrid, plastic 29
49 N-Furfurylpyrrole * Solvent, cheese, musty 15
50 2-Acetylpyrrole * Coffee, roasted, almond, sweet, burnt, parfum, fresh 29

Odor-active compounds: list of compounds eluted from the chromatography column and smelled by at least one
participant. Odor description: personal description given by each subject for the odor smelled. df = detection
frequency (number of participants who smelled the compound). Asterisks indicate the molecules that have also
been found in other coffee extracts [56–64].
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3.2. Olfactory Function and Odor-Active Compounds

One-way ANOVA showed that the number of molecules perceived for both total and
smelling of coffee is significantly higher for normosmic individuals than for hyposmic ones
(total-molecules: F (1,36) = 16.19, p = 0.0003; coffee-molecules: F (1,36) = 24.25, p < 0.0001)
(Figure 1).
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34 2-Furanmethanol, acetate * Roasted, fruit, earthy, herb, woody, coffee 21 
35 Pyrazine, 2-methyl-6-(2-propenyl)- Pungent, sour, bitter 6 
36 2-Cyclopenten-1-one, 2,3-dimethyl- Sweet, floral, lavender 4 
37 Acetic acid, diethyl- *  Roasted, solvent, rotten, musty, herbs, wet earth 22 
38 Pentanoic acid, 4-oxo-, methyl ester  Sweet 4 
39 2-Furancarboxaldehyde, 5-methyl- *  Coffee, sweet, parfum 4 
40 2-Furanmethanol, propanoate * Coffee, pungent, floral, musty, herb, sweet, burnt 14 
41 Furan, 2,2′-methylenebis- * Coffee, nutty, popcorn, roasted, fish, sour 21 
42 2-Furanmethanol * Coffee, smoke, popcorn, nutty, roasted 24 
43 Butanoic acid, 3-methyl- * Cheese, smoke, stinky feet, acidic, fruity, putrid 16 
44 Furan, 2-(2-furanylmethyl)-5-methyl- * Unknown 1 
45 Pyrazine, 2-acetyl-6-methyl  Putrid, musty, cheese 6 
46 4(H)-Pyridine, N-acetyl- * Shoes, wet, sweat 7 
47 Octaethylene glycol monododecyl ether  Sweat, acidic 4 
48 2-Hexadecanol Cheese, musty, putrid, plastic 29 
49 N-Furfurylpyrrole * Solvent, cheese, musty 15 
50 2-Acetylpyrrole * Coffee, roasted, almond, sweet, burnt, parfum, fresh 29 

Odor-active compounds: list of compounds eluted from the chromatography column and smelled 
by at least one participant. Odor description: personal description given by each subject for the odor 
smelled. df = detection frequency (number of participants who smelled the compound). Asterisks 
indicate the molecules that have also been found in other coffee extracts [56–64]. Volatile 
compounds described as molecules smelling of coffee are listed in red print. 

3.2. Olfactory Function and Odor-Active Compounds 
One-way ANOVA showed that the number of molecules perceived for both total and 

smelling of coffee is significantly higher for normosmic individuals than for hyposmic 
ones (total-molecules: F (1,36) = 16.19, p = 0.0003; coffee-molecules: F (1,36) = 24.25, p < 
0.0001) (Figure 1). 

 
Figure 1. Mean (±SEM) values on the number of total- and coffee-molecules smelled during the
GC-O experiments by each subject, according to their TDI olfactory status. Asterisk indicates
significant differences between individuals with normosmia or hyposmia (p < 0.0005; Fisher’s LSD
test subsequent to one-way ANOVA).

The Pearson correlation test was used to investigate for a correlation between the
number of odor-active compounds and the TDI olfactory score reached by each subject.
In detail, the results shown in Figure 2 indicated that TDI olfactory score was positively
correlated with both the number of total-molecules (Pearson r = 0.56, p = 0.0002) and of
coffee molecules smelled by each subject (Pearson r = 0.55, p = 0.0004).
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Figure 2. Correlation analysis between the number of total- and coffee-molecules smelled by each
subject and his/her TDI olfactory score.

Besides, a positive correlation was found between the intensity value that each sub-
ject attributed to the coffee-odor pen and the number of odor-active compounds (total-
molecules: Pearson r = 0.67, p < 0.0001; coffee-molecules: Pearson r = 0.65, p < 0.0001)
(Figure 3) and the average intensity referred for total- and coffee-molecules (total-molecules:
Pearson r = 0.56, p = 0.0003; coffee-molecules: Pearson r = 0.62, p < 0.0001) (Figure 4).
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The mean values ± SEM of the intensity perceived for the coffee-odor pen by panelists
classified by their TDI olfactory status are shown in Figure 5. One-way ANOVA revealed
that the intensity perceived by normosmic individuals was significantly higher than that of
hyposmic individuals (F (1,36) = 11.63, p = 0.0016).
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The Pearson correlation test also revealed that the intensity of the coffee-odor pen
reported by each subject was positively correlated with his/her TDI olfactory score (Pearson
r = 0.49, p = 0.0016) (Figure 6).
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4. Discussion

The main objective of this study was to evaluate the role of the human nose as
a chemical sensor, particularly, in relation to its ability to perceive the single odorous
molecules that make up a complex odor. It is known that the human nose has a vast
sensitivity and a high discriminative power, but the number of odorants it can perceive
is still unknown [51], especially when considering that among humans there is a great
inter-individual variability due to multiple factors: physiological, genetic, environmental,
cultural and behavioral [18,20,37,38,40,42–50]. Most of the odors that surround us, and
in particular those of food and drink, are composed by a mixture of volatile compounds
that can be separated by means of a chromatographic column and used as single olfactory
stimuli [24,25,53,71,74–77].

In this study, by means of the coupled Gas Chromatography-Olfactometry (GC-O) tech-
nique, the single components of the coffee aroma were separated, identified and verbally
evaluated by each subject, using their own nose as a chemical sensor. The number of odor-
active compounds (i.e., the number of sensory active molecules for the subject during the
GC-O experiment) was evaluated by means of the frequency detection method [36,54,71],
which has the advantage of not requiring qualified participants and of highlighting inter-
individual variability [28,54]. The results show that all compounds eluted from the chro-
matographic column were perceived by the participants and that 17 of the 21 compounds
commonly defined as smelling of coffee, were described as having coffee odor. This is
remarkable considering that the participants were unaware of the mixture injected into the
chromatographic column, so they did not have a mental representation of the odor, known
to exert a great influence on the formation of the perceived odor quality [78].

Since little is known about the ability of the human nose to perceive individual
compounds as they elute from the chromatography column, we evaluated the effect of
subjects’ olfactory function on their ability to smell the individual molecules that make up
the complex odor of coffee. Our results show that the number of odor-active compounds
smelled by each individual depends on his/her olfactory status. In fact, for individuals
classified as normosmic the number of odor-active compounds was significantly higher
than that of those classified as functionally hyposmic. The TDI olfactory status represents
the general olfactory status of the individual attributed on the basis of the score obtained
from the sum of the olfactory threshold, discrimination and identification scores. This
means that a condition of hyposmia can be determined by reduced ability in all three
olfactory performances, or in two of them or only in one. We believe that the number of
odor-active compounds for hyposmic individuals is lower than for normosmic ones, due to
a reduced ability to perceive and discriminate odors. The olfactory threshold represents
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the minimum concentration that an odor must have in order to be perceived: hyposmic
individuals could present an increased olfactory threshold (i.e., to perceive odors, they must
have a higher concentration than that required by normosmic individuals) and consequently
they may not perceive those odors that are eluted at subthreshold concentrations for them.
Discrimination represents the ability to recognize different odors: hyposmic subjects show
difficulty in recognizing different odors that are similar, and this could reduce the number
of single compounds that they smell during GC-O experiments. This is compatible with
the fact that in our sample the general state of hyposmia is mainly determined by a low
score obtained with the threshold and discrimination tests. In addition, correlation analyses
showed that the number of odor-active compounds is directly correlated with the TDI
olfactory score achieved by each individual. Furthermore, results are similar whether we
consider the number of total perceived molecules or of molecules commonly defined as
coffee odorants. Within each complex odor there are both molecules that even individually
smell like the complex odor and molecules whose odor is completely different. This aspect
is noteworthy if we consider that the more sensorially active molecules are also those that
contribute more to the odor of the mixture [14,26,53]. Therefore, the individual perception
of a complex odor is strongly conditioned by its intensity, number and type of individual
compounds perceived, making the odor unique and characteristic for each person. This
means that the idea that each individual has of a complex odor, formed by a set of many
molecules, may be different from that of other individuals for whom the odor-active
compounds are different both quantitatively and qualitatively. This also explains, at least
in part, why the intensity with which an odor is perceived differs between individuals.

Based on these considerations, the second aim of our work was to evaluate whether
a correlation exists between the perceived intensity of the coffee-odor pen and both the
number of odor-active compounds and the intensity with which they are perceived. The
results we obtained show that the reported intensity for the coffee-odor pen is positively
correlated with the number of odor-active compounds, both total and coffee-smelling.
Moreover, a positive correlation was also found for the reported intensity of individual
compounds perceived during the GC-O experiments: the greater the intensity with which
each individual perceives each molecule, the greater the intensity with which the mixture
is perceived. These results are in agreement with the fact that in our sample the condition
of hyposmia of individuals is mainly determined by a reduced ability of odor discrimina-
tion and an increased odor threshold. Therefore, on the one hand the sensorially active
molecules are less numerous and on the other, the odor-active compounds are perceived
with less intensity, making the perception of the complex coffee blend less intense.

Finally, given the correlation between the number of odor-active compounds and the
TDI olfactory score and between the number of odor-active compounds and the intensity
of the coffee-odor pen, the last objective of this study was to look for a correlation between
the perceived intensity of the coffee-odor pen and the olfactory function of each individual.
The results show that the values of the coffee-odor pen intensity and those of TDI are
linearly correlated and that normosmic individuals report perceiving the odor of coffee
more intensely than hyposmic ones. These findings are in accordance with a previous
study in which a positive correlation was found between the subjects’ olfactory function
and their ability to detect individual compounds eluted from a chromatographic column
and between the perceived intensity of the complex odor of banana and the number of
odor-active compounds smelling of banana sniffed by each subject [36].

5. Conclusions

In conclusion, the results of this study show that the ability of the human nose as a
chemical sensor is strongly conditioned by the individual olfactory function and that the
intensity with which a complex odor is perceived depends on the number of odor-active
compounds and on the intensity at which they are perceived. Furthermore, the knowledge
of which compounds of a complex odor are odor-active could be of great interest not only
for the food and perfume industry, but also for developing electronic noses capable of
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identifying specific volatile molecules even in complex mixtures and/or reproducing the
functional organization of the olfactory system [14,53].
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