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Abstract: The development of sensitive and affordable testing devices for infectious diseases is
essential to preserve public health, especially in pandemic scenarios. In this work, we have developed
an attractive analytical method to monitor products of genetic amplification, particularly the loop-
mediated isothermal amplification reaction (RT-LAMP). The method is based on electrochemical
impedance measurements and the distribution of relaxation times model, to provide the so-called
time-constant-domain spectroscopy (TCDS). The proposed method is tested for the SARS-CoV-2
genome, since it has been of worldwide interest due to the COVID-19 pandemic. Particularly, once
the method is calibrated, its performance is demonstrated using real wastewater samples. Moreover,
we propose a simple classification algorithm based on TCDS data to discriminate among positive and
negative samples. Results show how a TCDS-based method provides an alternative mechanism for
label-free and automated assays, exhibiting robustness and specificity for genetic detection.

Keywords: impedance spectroscopy; electrochemical sensor; distribution of relaxation times; data an-
alytics; isothermal amplification; SARS-CoV-2

1. Introduction

Pathogens are one the main causes of human diseases. Recently, the world popula-
tion experienced a pandemic of the SARS-CoV-2 virus causing COVID-19, which brought
serious human, social and economic consequences [1]. From it, we have learned that fast,
affordable and decentralized diagnostic tests are mandatory to detect new outbreaks to
mitigate the spread rate and for early diagnosis. Classical diagnostic methods are based
on molecular techniques, the polymerase chain reaction (PCR) being the gold standard [2].
On the other hand, rapid assays based on the detection of antigens and antibodies are
an alternative to PCR, but have some inherent drawbacks such as less sensitivity and
specificity [3]. Although molecular techniques have been used in clinical settings with
appreciable sensitivity, these tools require specialized infrastructure and qualified per-
sonnel, whose availability is limited during a pandemic. In this sense, it is necessary to
have technological alternatives to overcome the disadvantages of conventional analytical
methods. For example, it has been shown that new sensitive materials and transduction
methods [4] make it possible to develop rapid and affordable diagnostic tests at large
scales, especially in regions with limited resources. On the other hand, novel paradigms
for epidemiological surveillance, such as the so-called wastewater-based epidemiology
(WWBE) [5], work around molecular analysis. Wherein, the sophisticated infrastructure
causes a bottleneck when trying to perform tests, thus limiting its versatility [6].
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Isothermal amplification techniques have emerged as an alternative to PCR because the
reaction is performed at a constant temperature in a relatively short-time [7]. Particularly,
the loop-mediated isothermal amplification (LAMP) has demonstrated promising results in
diagnosis tests for infectious diseases [8]. In the case of SARS-CoV-2, it has been shown that
its genetic material can be detected by a reverse transcriptase-LAMP (RT-LAMP) reaction
with enough sensitivity and specificity. Furthermore, since the COVID-19 pandemic, the use
of isothermal reactions coupled with automated and portable sensing, pave the road to
develop innovative analytical devices. For instance, for emergent pathogens one can find
recent developments based on optical detection [9], electrochemical transduction [10],
nanomaterial-based sensors [11], colorimetric assays [12] and field-effect devices [13],
to mention only a few. Jointly, there is a current need to provide solutions not only for viral
particles, but also for easy-to-use and rapid molecular tests.

Electrochemical sensors and biosensors are useful devices to capture biological and
biochemical events, and directly translate the results into electrical signals encoding useful
information [14]. Its potentiality has been demonstrated in detecting several pathogens
such as Escherichia coli [15], H1N1 [16] and Mycobacterium tuberculosis [17], to mention only
a few. Recently, the performance of electrochemical sensors has been enhanced by using
novel nanomaterials [18] and advanced surfaces [19]. These trends has demonstrated its
versatility as signal amplification strategies for pathogens detection [20]. In particular,
electrical impedance spectroscopy (EIS), is a powerful, non-destructive and label-free tool
for assessing several physicochemical processes involved in sensing devices [21]. Hence,
EIS-based sensors are a current trend due to their features performance [22]. Nonetheless,
impedance measurements should be interpreted by sophisticated models, which complicate
their usage as analytical devices [23]. Classically, such a procedure is performed by fitting
the experimental data to an equivalent circuit model (ECM), whose parameters are related
with the underlying phenomena [24]. Though the ECM is the rule-of-thumb method for
analyzing EIS data, its structure should be selected with prior knowledge of the experiment,
thus limiting its performance in real-time or automated measurements [25]. Thereby,
the selection of an adequate model to interpret EIS data shunts the versatility of the method
to provide quantitative results.

On the other hand, the distribution of the relaxation times (DRT) model offers an attrac-
tive alternative to analyze EIS data [26]. In general, DRT allows a detailed representation
of the underlying phenomena by deconvolving the impedance spectrum [27]. Thus, DRT
retrieves a distribution function in a time-constant domain, that straightforwardly isolates
and resolves the electrochemical processes. Solving DRT is an ill-posed mathematical
problem, for which several algebraic and numerical solutions have been proposed [28–32].
However, the applications of DRT remain limited, and are mainly focused on energy stor-
age devices, materials science and for studying interfaces. Interestingly, DRT has started to
gain attention for characterizing biological media such as tissues [33] and cells [34]. More
recently, DRT was proposed as the basis of the so-called time-constant domain spectroscopy
(TCDS). Thereby, the TCDS is an automated method to interpret impedance measurements
with applications in sensors and biosensors [35]. Nonetheless, its versatility requires more
research attention for real-world applications, such as the detection of pathogens using
molecular methods in sensing platforms. Hence, we hypothesize that the TCDS could be
an alternative method to characterize and analyze genetic amplification reactions, which
has not been previously reported in the state-of-the-art.

In this work, we introduce an automated analysis of RT-LAMP reactions using
impedance measurements and TCDS. We present, for the first time, the analysis of EIS data
using the DRT model for monitoring genetic amplification processes. Particularly, we show
how the TCDS has a twofold advantage compared with classical sensing platforms. Firstly,
the TCDS serves as an impedance-based analytical method to quantify RT-LAMP products.
This feature outperforms ECM analyses as the TCDS can be processed online. On the
other hand, the TCDS signals encode relevant features of the electrochemical process, such
that it can be used for classification purposes. That is, by means of TCDS, one can sense
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and simultaneously discriminate among positive and negative samples in an automated
way. To illustrate the performance of the proposed analysis, we consider the SARS-CoV-2
genome as a study case due its relevance in recent years.

Hence, the TCDS-based analysis aims to be a simple, but robust, spectroscopic method
for sensing and detection purposes. The proposal preserves the features of EIS-based
sensors, but provides smartness to the device, which is not straightforward to perform in
other detection methods due to instrumental or data constraints.

2. Theoretical Background
2.1. Electrochemical Impedance

The electrochemical impedance is given by the ratio of voltage and current phasors,
given by the discrete Fourier transform F of the applied voltage V(ωi) , F{v(t)} and the
measured current I(ωi) , F{i(t)}. Hence, at an arbitrary frequency ωi, for i = 1, 2, . . . , N,
the i-th impedance measurement is given by

Ẑ(jωi) ,
V(ωi)

I(ωi)
= Ẑre(ωi) + jẐim(ωi), (1)

where j =
√
−1, Zre(ω) is the real and Zim(ω) the imaginary component. In practice,

the measured impedance is fitted to an ECM [36], which generally considers the intercon-
nection of resistors, capacitors and/or constant-phase-elements (CPE). For fitting purposes,
the CPE has good performance as it deals with non-idealities; however, its physical interpre-
tation is not straightforward, even more for sensing purposes in biochemical processes [37].

2.2. Distribution of Relaxation Times Model

The DRT model has an associated impedance given by the following Fredholm integral:

ZDRT(jω) = R∞ +
∫ ∞

0

γ(ln τ)

1 + jωτ
d(ln τ), (2)

where R∞ is the high-frequency-related resistance, γ(ln τ) is a distribution function and τ
is the time-constant domain scale. However, solving for γ(·) in (2) is an inverse problem
with a non-trivial solution. Therein, the aim is to find the optimal function, γ(ln τ), such
that the impedance measurements well approximate the model, i.e., Ẑ(jωi) ≈ ZDRT(jω).
In this work, we establish that an estimate of the distribution function γ(ln τ) in a time-
constant-domain scale will be the retrieved spectrum encoding the relevant electrochemical
processes to monitor a RT-LAMP reaction.

3. Materials and Methods

Figure 1 shows the workflow of the proposed methodology. Firstly, the genome
target is extracted and the sample concentrated, using a custom and sensitive method [38].
Subsequently, the RT-LAMP mixture is mainly made up by specific designed primers
and methylene blue (MB) acting as a redox intercalating probe. Hence, a volume of
approximately 50 µL of the reaction mixture is drop-cast over the surface of the screen-
printed-electrodes (SPEs) acting as the sensitive element. Therein, the RT-LAMP reaction
takes place by regulating the local temperature at ∼63 ◦C. The transduction signal relies
upon the application of an electrical potential, while measuring the resulting density
current, which is enhanced by the presence of MB. Thus, as the RT-LAMP progresses,
the electrochemical impedance is measured to obtain the real Ẑre and imaginary Ẑim

components. These data encode the amount/number of RT-LAMP products, namely
amplicons, which can be straightforward quantified through the TCDS. Finally, the retrieved
TCDS data are useful for extracting relevant features of the reaction, which are used to
automatically classify samples as negative or positive. Jointly, the procedure takes around
2 h to succeed starting from the raw sample.
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Figure 1. Workflow of the proposed method for analyzing isothermal amplification using electrical
impedance spectroscopy (EIS) measurements and time-constant-domain spectroscopy (TCDS).

3.1. Chemicals and Materials

A QuantiTect Reverse Transcription kit and RNeasy Power Microbiome extraction kit
were obtained from Qiagen (Hilden, Germany). A 0.45 µm pore diameter nitrocellulose
membrane was purchased from Millipore (Burlington, MA, USA). Bst 2.0 enzyme, Bst
buffer, and MgSO4 were purchased from NEB (Northborough, MA, USA). dNTPs mix
10 mM, nuclease-free water and SYBR Safe DNA gel stain were obtained from Thermo
Fisher Scientific (Waltham, MA, USA). HCl, tris acetate buffer (TAE) and methylene blue
(MB) were purchased from Sigma-Aldrich (St Louis, MO, USA). All chemicals were of
analytical grade. Aqueous solutions were prepared with Milli-Q water. The electrodes
were fabricated using the screen printing method. Carbon conductive ink paste was
obtained from Nanochemazone (Edmonton, AB, Canada) to fabricate the working electrode
(WE) and the counter electrode (CE). Ag/AgCl ink was obtained from Creative Materials
(Ayer, MA, USA) to elaborate the reference electrode (RE). The electrodes were deposited
over a ceramic substrate to reach an active area of 12.56 mm2. Prior to its use, the SPEs were
prepared and cleaned by cyclic voltammetry (CV) in the range of 1.0 to−0.6 V, at 100 mV/s,
using TAE, and rinsed with deionized water. Electrochemical impedance measurements
and temperature control were carried out using a custom measurement system [35].

3.2. Sample Collection and Preparation

To test the proposed method, we used real wastewater samples taken from the effluent.
The raw samples should be prepared to extract and concentrate the genetic material as it is
highly diluted. Firstly, the concentration was carried out by adsorption onto a negatively
charged membrane [38]. The pH of the samples was set to 3.5 using 2 N HCl. Then,
the samples were filtered through a negatively charged nitrocellulose membrane of 0.45 µm
pore diameter. Afterwards, the membrane was stored at −20 ◦C, cut and used directly in
the RNeasy Power Microbiome kit for RNA extraction.

3.3. RT-LAMP Assay

After the extraction of SARS-CoV-2, 5 µL of RNA was reverse transcribed with the
QuantiTect Reverse Transcription kit according to the manufacturer’s instructions. For the
proposed detection, a volume of 50 µL of the RT-LAMP reaction mixture is made up of:
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5 µL of Bst buffer, 3 µL of MgSO4, 5 µL of 2 mM dNTPs, 2 µL of 10× primer’s core mix, 2 µL
of 10× primer’s loop mix, 10 U of Bst 2.0 DNA polymerase, 4 µL cDNA and nuclease free
water. The specificity of the detection is based on the RT-LAMP primers. These have been
designed for the N and ORF1ab fragments of the SARS-CoV-2 according to the methodology
described in [39]. The RT-LAMP primers were also validated using the PrimerExplorer
V5 tool (https://primerexplorer.jp/e/, accessed on 21 November 2022). Experimentally,
a custom control system was developed to regulate the temperature, at 63± 0.5 ◦C using an
adaptive scheme. This value was selected using a temperature ramp test in the range from
60 ◦C to 65 ◦C, where the Bst polymerase is able to be amplified. Hence, we found that the
RT-LAMP reaction was more efficient at 63 ◦C. All the reactions were run on 1% agarose
gel stained with SYBR Safe DNA Gel Stain for the presence of a visual ladder pattern.
Finally, the RT-LAMP products were also verified by sequencing to test its specificity
(Genbank OM522662).

3.4. Electrochemical Impedance Measurements

A low-cost electrochemical cell based on screen-printed-electrodes (SPE) is used as
the sensing element. This configuration allows the sensor to be treated as a low-cost test
strip. Due to the features and performance of the cell, it allows reproducible results using a
sample volume of 50 µL in the form of a drop over the surface of the electrodes. Therein,
the RT-LAMP reaction takes place to retrieve the electrochemical impedance signal. EIS
measurements were performed using a custom-made potentiostat [35]. The input voltage
signal was a multisine with the form vi(t) = vdc + ∑F

k=1 Ak cos(ωkt + δk), with a constant
potential vdc = 0.28 V, amplitude Ak = ±5 mV, phase δk and ωk = 2π fk frequencies,
with F = 46 points, in the range form of 10 Hz to 150 kHz.

3.5. Time-Constant-Domain Spectroscopy

Once the EIS data are available, they should be transformed into the TCDS. For this
purpose, we adopt the regularized least-squares (RLS) method [40] to solve the integral
equation of the DRT model in (2). Specifically, the DRT solution is given by minimizing the
following cost function

V(θ) = ‖((R∞1) + Areθ)− Ẑre‖2
2 + ‖Aimθ− Ẑim‖2

2 + R, (3)

with 1 ∈ RL×1 a vector of ones, Ẑre ∈ RL×1 and Ẑim ∈ RL×1 the measurement vector of
the impedance real and imaginary parts, respectively. Additionally, (2) can be written in
matrix notation thus leading to ARe ∈ RL×M and AIm ∈ RL×M, the real and imaginary
components of the DRT model. The cost function in (3) includes a regularization term
R , λ‖θ‖2

2, with λ > 0, denoting the `2-norm of the vector θ, related with the amplitude of
the function γ(ln τ). Regularization allows to prevent overfitting and provides smoothness
to the solution of the problem θ? = arg minθ:θ≥0 V(θ), for which θ? is the optimal parameter
vector. Thereby, once θ? is retrieved, the TCDS is straightforward given by γ̂(ln τ; θ?).
Thus, the electrochemical phenomena encoded by γ̂(·) can be easily identified via the
local maxima centered at the characteristic time-constant τk. Finally, one can derive the
following hypothesis: the RT-LAMP reactions can be analyzed in an automated and robust
way by the TCDS, instead of fitting impedance data to an ECM whose interpretation is
not straightforward.

3.6. Classification Algorithm

In line with the device capacities, we propose a machine learning (ML) algorithm to
classify and discriminate among positive and negative samples. Particularly, a linear model
based on logistic regression is well-suited for the problem [41]. Briefly, the algorithm works
with a training data set D = {(x1, y1), . . . , (xm, ym)}, and the empirical risk minimization
problem is given by

https://primerexplorer.jp/e/
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w? = arg min
w∈Rd

1
m

m

∑
i=1

log(1 + exp(−yi〈w, bi〉)), (4)

which is equal to the well-known maximum likelihood estimator in statistics. The logistic
model is optimized using the gradient descent algorithm for solving (4). In this work, we
consider a binary classification problem for two categories of TCDS. This latter is assumed
to encode negative and positive results for the presence of the SARS-CoV-2 genome.

4. Results
4.1. Performance to Detect the SARS-CoV-2 Genome

As the first experiment, we characterized the specificity and the performance of the
TCDS as an analytical method to detect RT-LAMP reactions. For this purpose, a negative
template control (NTC) and a positive sample to SARS-CoV-2, previously labeled by a
classical PCR reaction, were used. For this latter, we performed 10× dilution series in the
range from 5000 to 0.05 pg/µL. A sample volume of ∼50 µL was placed over the SPE,
where the temperature control was held at 63± 0.5 ◦C for 35 min to complete the RT-LAMP
reaction. All the reactions were measured in triplicate by EIS, and further processed to
retrieve the TCDS. Thus, this latter aims to provide a specific method to analyze a genetic
amplification reaction specificity, which extends the previous usages of DRT [33] and
TCDS [35].

4.1.1. Impedance Measurements of RT-LAMP Reactions

Figure 2a shows the Nyquist plots of the mean impedance of the triplicate for the NTC
and the concentrations c1 = 5000, c2 = 500, c3 = 50, c4 = 5, c5 = 0.5, and c6 = 0.05 pg/µL.
Additionally, the Figure 2b depicts the ECM commonly used to describe the impedance
measurements. From the experimental data (circles) and the fitted model (solid line) shown
in Figure 2a, it was possible to perform the following analysis using the ECM parameters
of Figure 2b. The element CPE1 models the double layer capacitance arising from the
electrode–electrolyte interface. The element CPE2 is related to the diffusion process of
the species. The resistor Rct is associated with the charge transfer resistance of the redox
reaction. The element Rs is modeling the high-frequency conductivity. Furthermore, using
the impedance plots in Figure 2a, it is possible to identify two relevant electrochemical
processes. (i) At low frequencies (<100 Hz), the straight line is due to the diffusion process.
(ii) In frequencies above 100 Hz, the presence of an apparent semi-circle suggests changes in
the charge transfer resistance, Rct. This latter process is highly correlated with the amount
of products generated by the RT-LAMP reaction for each concentration. As a first approach,
one can notice that the larger the concentration, the higher the value of Rct is, as can be seen
in the semicircles shown in the impedance plots of Figure 2a. Nonetheless, a quantitative
analysis of the RT-LAMP reactions is not trivial from the raw EIS data and the ECM model.
Therefore, by means of TCDS in a sensing framework [35], it would be feasible to monitor
the electrochemical processes involved in the RT-LAMP reactions with enough sensitivity
and accuracy.

4.1.2. Time-Constant-Domain Spectroscopy of RT-LAMP Reactions

Herein, we report the TCDS as an analytical technique to circumvent the drawbacks
of the classical EIS analysis. Figure 2c shows the resultant mean TCDS in the triplicate
for the NTC and the six concentrations. As a result, the TCDS confirms the presence of
two dominant processes described by the maxima of the distribution function. Thereby,
the maximum value of γ̂, located at τ ≈ 10−1 s, is related to the diffusion process denoted
by D. On the other hand, in the range from 10−4 < τ < 10−2 there exists a second
maximum of small amplitude, but the location of which could be related with the charge
transfer process, CT. For the diffusion phenomenon, the maximum of γ̂ does not exhibit a
significant change in its location at τ. This indicates that the time-constant related to the
diffusion could not be highly sensitive to detect the RT-LAMP reactions. On the contrary,



Chemosensors 2023, 11, 230 7 of 13

the charge transfer mechanism shown in the inset of Figure 2c suggests that its amplitude
and location in τ is different for each concentration. Hence, it is convenient to perform
a detailed analysis of the TCDS in the range from 10−4 < τ < 10−2. For this purpose,
the maxima related to the diffusion D are filtered out from the spectra by attenuating
its amplitude.

CPE1

CPE2Rct

Rs

NTC

c6

c5

c4

c3
c2

c1

−
Ẑ

im
(k
Ω
)

Ẑre (kΩ)

(a)

D

CT

γ̂
(k
Ω
)

τ (s)

(c)

(b)

Figure 2. Impedance measurements and time-constant domain spectroscopy for six concentrations
of the SARS-CoV-2 genome, c1 to c6. (a) EIS measurements in a Nyquist plot after 35 min of the
RT-LAMP reaction. (b) Equivalent circuit model used for EIS data fitting. (c) TCDS retrieved
from the estimated distribution function γ̂(·) by processing EIS data using the DRT model. Two
electrochemical processes are highlighted, charge transfer: CT (inset), and diffusion: D.

Figure 3 shows the results for monitoring RT-LAMP reactions using the TCDS. Firstly,
Figure 3a depicts the new representation of the TCDS signals, where the diffusion process
has been removed, and keeping only information of the charge transfer effect. For the
sake of visual representation, an arbitrary offset was added to amplitude in the spectra of
Figure 3a. This modification supposes no effect in the further analysis owing that it will be
focused in the time-constant scale. Hence, in Figure 3a it is worth noticing a shift, from left
to right, of the maximum in the distribution function γ̂(·). This shift, in turn, is related with
the concentration of each sample with respect to the NTC. More specifically, the MB in the
RT-LAMP mixture acts as a redox intercalating probe. Hence, whenever the amplification
reaction progresses, the MB binds to the dsDNA, becoming less electroactive at the electrode
surface. Likewise, the RT-LAMP does not generate amplicons for the NTC sample, so the
amount of electroactive species remain free in the electrodes. This situation is related to
the charge transfer resistance, promoted by the MB, which increases with the amount of
RT-LAMP products. Hence, the larger the number of amplicons, the higher the equivalent
electrical resistance. Likewise, this latter value influences the time-constant associated with
the CT process (see Figure 3a). To quantify the amount of RT-LAMP products generated in
a positive sample, we used the spectra of Figure 3a, and the time-constant shift parameter
is defined as

∆τ = τi − τNTC, (5)
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where, τi is the characteristic time-constant of each concentration, and τNTC is the constant
associated with the negative control. Thus, it is possible to establish a relationship among
the shift ∆τ and the nucleic acid concentration detected by the sensor.

τ (s)

γ̂
(u
.a
.)

NTC c1

∆τ

∆
τ
(m

s)

log[C] (pg/µL)

(a) (b)

Figure 3. (a) Time-constant-domain spectroscopy filtered signals preserving only the charge transfer
process. The spectra are normalized in amplitude for the negative template control (NTC) and six
concentrations. (b) Calibration curve using TCDS as the transduction signal. Sensor response ∆τ as a
function of the logarithmic concentration of SARS-CoV-2 genome.

Figure 3b depicts the calibration curve of the sensor using TCDS as the transduction
signal. Therein, the plot shows the experimental data (dots), the measurement uncertainty
in a triplicate (bars), and the best fitted model (solid line). From the curve of Figure 3b,
it is possible to confirm that the sensor exhibits a highly linear response, which increases
proportionally to the logarithmic concentration. Quantitatively, the sensor exhibits a
sensitivity of 0.93

(
ms

log(pg/µL)

)
, a limit-of-detection (LoD) of 0.045 pg/µL, and a linearity of

approximately 98%. Interestingly, with our proposal, the impedance data are represented by
a smooth spectrum, for which a shift in the characteristic time-constant is straightforward
related with the products of the RT-LAMP reaction. Moreover, the TCDS as an analytical
technique exhibits a high linear response, which interpretation is more easy than the
classical ECM commonly used for EIS data.

For comparison purposes, we contrasted the TCDS-based analysis with ECM shown
in Figure 2b, considering the charge transfer resistance Rct as the sensing parameter.
The LoD was obtained to investigate the performance of the TCDS and the ECM, achieving
0.045 pg/µL and 0.175 pg/µL, respectively. Hence, the TCDS exhibits superior perfor-
mance as the LoD is one order of magnitude below than for the ECM. On the other hand,
we evaluated the computation time for both methods when fitting the raw impedance
data to the models. As a result, the TCDS-based approach retrieved results afer ∼1.2 ms,
whereas the ECM required ∼25 ms. This situation is due to TCDS is an algebraic method
with a closed-form solution, whilst fitting to an ECM uses a non-linear-least-squares (NLLS)
alongside an iterative solver. Thus, the advantages of detecting genetic amplification via
TCDS could be attractive to develop label-free and portable sensing platforms to retrieve
fast and accurate results [42]. Additionally, the versatility of TCDS is confirmed because it
could be applied to sense both dielectric [35] and electrochemical processes, as reported in
this work.

4.2. Detecting SARS-CoV-2 Genome in Wastewater Samples

To test the specificity of the TCDS to detect the amplification reaction, three positive
samples to SARS-CoV-2, s1, s2 and s3 and a NTC were used. Firstly, the TCDS was retrieved
for each sample in an end-point configuration. That is, the TCDS was obtained after 30 min
of the RT-LAMP reaction. Figure 4 shows the results of the mean TCDS in a triplicate for
the three positive samples and the negative control.
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Figure 4. Detection of SARS-CoV-2 genome using a negative control (NTC) and three positive samples
s1, s2 and s3. (a,b) TCDS signals for genes N and ORF1ab, respectively. (c,d) Gel electrophoresis of
the RT-LAMP reaction for genes N and ORF1ab, respectively.

In Figure 4a, we show the TCDS signals for the specific detection of gene N from
SARS-CoV-2 genome. Therein, one can see how the positive samples clearly exhibit a shift
in τ with respect to the NTC samples. In the three positive cases, the maxima of the function
γ̂ are located around τN ≈ 10−2 s. Likewise, Figure 4b shows the TCDS signals when
detecting the ORF1ab fragment of the SARS-CoV-2. In line with the previous findings, it
is confirmed that the TCDS for positive samples reveal a shift towards higher values of τ.
Hence, for this case, the maxima of the distribution function are near to τORF1ab ≈ 10−2 s.
Therefore, we could confirm that, by an appropriate design of the genetic amplification
reaction, the TCDS is highly sensitive to specifically detect genome fragments. This was
not the case in previous reports of TCDS in biological applications [33,35], since it worked
on bulky systems neglecting the specificity in the detection.

Concurrently to this experiment, the RT-LAMP reactions were verified using gel
electrophoresis as shown in Figure 4c,d, for the genes N and ORF1ab, respectively. Therein,
one can see the agarose gels for molecular weight markers (MW), negative control samples
(NTC) and the three tested samples (s1, s2 and s3). Additionally, from Figure 4c,d, it is worth
observing that only the positive reactions resulted in a quasi-ladder pattern, while the
NTCs did not show detectable RT-LAMP products. Thus, the electrophoresis test allowed
us to corroborate that the results retrieved by TCDS were successful to specifically detect
two genome regions of the SARS-CoV-2 as a study case.

4.3. Automatic Classification of Samples

Once the performance of the method was verified, the next step consisted of a deep
analysis of wastewater samples. For classification purposes, it was necessary to perform a
feature extraction step on the TCDS data. Hence, the hypothesis was that the time-constants
τN and τORF1ab are those representative parameters of the samples analyzed by the TCDS
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for the SARS-CoV-2 genome. For this study, a total of Ntrain = 40 samples for the training
data set and Ntest = 20 for the test set were considered.

Subsequently, the vector of features Θ = {τN, τORF1ab} ∈ R2×Ntrain was the input of
the linear classifier, for which 0.1 and 300,000 were the values of the learning rate and the
number of iterations, respectively, to solve the problem in (4). Figure 5 shows the results of
the classifier for the TCDS obtained from wastewater samples. Firstly, Figure 5a depicts
the results of the classifier training process. Therein, one can observe that the decision
boundary (dashed line) is able to distinguish among two classes of samples, negative (dots)
and positives (stars).

τORF1ab (ms)

τ N
(m

s)

(a) (b)

Figure 5. Classification results for SARS-CoV-2 genome detection. (a) Linear model for the training
data set based on logistic regression. (b) Confusion matrix describing the classifier performance in
prediction, of which the accuracy is 85%.

On the other hand, Figure 5b depicts the performance of the classifier in terms of a
confusion matrix when using the test data set. Therein, the results are shown for actual
negative (AN) and actual positive (AP), determined using a classical PCR assay; whereas,
the predicted negative (PN) and predicted positive (PP) are those classes retrieved by the
algorithm. Quantitatively, it can be deduced that the classifier operates with a PN value of
100% for all the negative samples. Nevertheless, one can observe that the method retrieved
three false positives in the analyzed samples, which results in an accuracy of 85%. In general,
the performance of the classifier could be considered good enough due to the experimental
variability of the samples. Furthermore, one should note that a simple linear classifier was
able to deal with sensor data in a simple but effective way. Hence, the classification results
are promissory on the basis of novel automated methods to analyze biochemical assays [43]
such as genetic amplification, which can be easily extended to analyze the presence of
several pathogens.

5. Conclusions

This work introduced an attractive method to automatically analyze isothermal ampli-
fication reactions using electrochemical impedance spectroscopy (EIS) and data science-like
methods. The proposal demonstrated the potentiality of the so-called time-constant-domain
spectroscopy (TCDS) as an analytical method in the framework of impedance-based sensors.
Moreover, we showed the TCDS is a powerful tool for monitoring the reverse transcriptase-
loop mediated isothermal amplification (RT-LAMP) of the SARS-CoV-2 genome. Interest-
ingly, the TCDS results showed a twofold advantage when compared with classical sensing
platforms. Firstly, the TCDS could serve as a sensor to quantify the amplification reaction
with a limit-of-detection of 0.045 pg/µL and a high linear response (98%). On the other
hand, the TCDS data encoded relevant features of the electrochemical processes within
the RT-LAMP reaction. These features could be considered as the input of a classification
algorithm, which was able to discriminate among positive and negative samples with an
accuracy of 85%. Although the findings presented in this work are promissory, they require
an extensive validation with more samples to reach a fully integrated device. Additionally,
the proposed method could be extended for detecting other pathogens and/or for multiplex
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assays. Future work will consider real-time measurements within an integrated portable
system for quantitative analyses. Ultimately, we demonstrated the versatility of EIS cou-
pled with TCDS to develop novel analytical methods and attractive solutions to monitor
amplification reactions, mainly focused on affordable devices in low-resource settings.
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26. Kežionis, A.; Kazakevičius, E. Some features of the analysis of broadband impedance data using distribution of relaxation times.
Electrochim. Acta 2020, 349, 136379. [CrossRef]

27. Li, X.; Ahmadi, M.; Collins, L.; Kalinin, S.V. Deconvolving distribution of relaxation times, resistances and inductance from
electrochemical impedance spectroscopy via statistical model selection: Exploiting structural-sparsity regularization and data-
driven parameter tuning. Electrochim. Acta 2019, 313, 570–583. [CrossRef]

28. Saccoccio, M.; Wan, T.H.; Chen, C.; Ciucci, F. Optimal regularization in distribution of relaxation times applied to electrochemical
impedance spectroscopy: Ridge and Lasso regression methods—A theoretical and experimental Study. Electrochim. Acta 2014,
147, 470–482. [CrossRef]

29. Boukamp, B.A. Fourier transform distribution function of relaxation times; application and limitations. Electrochim. Acta 2015,
154, 35–46. [CrossRef]

30. Ciucci, F.; Chen, C. Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: A
Bayesian and hierarchical Bayesian approach. Electrochim. Acta 2015, 167, 439–454. [CrossRef]

31. Liu, J.; Ciucci, F. The Deep-Prior Distribution of Relaxation Times. J. Electrochem. Soc. 2020, 167, 026506. [CrossRef]
32. Maradesa, A.; Py, B.; Quattrocchi, E.; Ciucci, F. The probabilistic deconvolution of the distribution of relaxation times with finite

Gaussian processes. Electrochim. Acta 2022, 413, 140119. [CrossRef]
33. Ramírez-Chavarría, R.; Sánchez-Pérez, C.; Matatagui, D.; Qureshi, N.; Pérez-García, A.; Hernández-Ruíz, J. Ex-vivo biological

tissue differentiation by the distribution of relaxation times method applied to electrical impedance spectroscopy. Electrochim. Acta
2018, 276, 214–222. [CrossRef]

34. Shi, F.; Kolb, J.F. Enhanced resolution impedimetric analysis of cell responses from the distribution of relaxation times.
Biosens. Bioelectron. 2020, 157, 112149. [CrossRef]

35. Ramírez-Chavarría, R.G.; Sánchez-Pérez, C.; Romero-Ornelas, L.; Ramón-Gallegos, E. Time-Constant-Domain Spectroscopy:
An Impedance-Based Method for Sensing Biological Cells in Suspension. IEEE Sens. J. 2021, 21, 185–192. [CrossRef]

36. Saxena, R.; Srivastava, S. An insight into impedimetric immunosensor and its electrical equivalent circuit. Sens. Actuators B Chem.
2019, 297, 126780. [CrossRef]

37. Vivier, V.; Orazem, M.E. Impedance Analysis of Electrochemical Systems. Chem. Rev. 2022, 122, 11131–11168. [CrossRef]
38. Carrillo-Reyes, J.; Barragán-Trinidad, M.; Buitrón, G. Surveillance of SARS-CoV-2 in sewage and wastewater treatment plants in

Mexico. J. Water Process. Eng. 2021, 40, 101815. [CrossRef]
39. Song, J.; El-Tholoth, M.; Li, Y.; Graham-Wooten, J.; Liang, Y.; Li, J.; Li, W.; Weiss, S.R.; Collman, R.G.; Bau, H.H. Single- and

Two-Stage, Closed-Tube, Point-of-Care, Molecular Detection of SARS-CoV-2. Anal. Chem. 2021, 93, 13063–13071. [CrossRef]
[PubMed]

40. Ramírez-Chavarría, R.; Quintana-Carapia, G.; Müller, M.I.; Mattila, R.; Matatagui, D.; Sánchez-Pérez, C. Bioimpedance Parameter
Estimation using Fast Spectral Measurements and Regularization. IFAC-PapersOnLine 2018, 51, 521–526. [CrossRef]

41. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press:
Cambridge, UK, 2014. [CrossRef]

http://dx.doi.org/10.1016/j.cej.2021.128453
http://dx.doi.org/10.1016/j.aca.2019.03.005
http://www.ncbi.nlm.nih.gov/pubmed/30982523
http://dx.doi.org/10.1016/j.aca.2018.07.045
http://www.ncbi.nlm.nih.gov/pubmed/30442390
http://dx.doi.org/10.1007/s12598-022-02179-8
http://dx.doi.org/10.1021/acsanm.9b02156
http://dx.doi.org/10.1016/j.snb.2018.04.126
http://dx.doi.org/10.1016/j.bios.2020.112949
http://www.ncbi.nlm.nih.gov/pubmed/33429205
http://dx.doi.org/10.3390/s21196578
http://www.ncbi.nlm.nih.gov/pubmed/34640898
http://dx.doi.org/10.1021/acsbiomaterials.0c01570
http://www.ncbi.nlm.nih.gov/pubmed/33749256
http://dx.doi.org/10.1007/s11517-019-01970-7
http://www.ncbi.nlm.nih.gov/pubmed/30941674
http://dx.doi.org/10.1109/TIM.2021.3113116
http://dx.doi.org/10.1016/j.electacta.2020.136379
http://dx.doi.org/10.1016/j.electacta.2019.05.010
http://dx.doi.org/10.1016/j.electacta.2014.09.058
http://dx.doi.org/10.1016/j.electacta.2014.12.059
http://dx.doi.org/10.1016/j.electacta.2015.03.123
http://dx.doi.org/10.1149/1945-7111/ab631a
http://dx.doi.org/10.1016/j.electacta.2022.140119
http://dx.doi.org/10.1016/j.electacta.2018.04.167
http://dx.doi.org/10.1016/j.bios.2020.112149
http://dx.doi.org/10.1109/JSEN.2020.3014569
http://dx.doi.org/10.1016/j.snb.2019.126780
http://dx.doi.org/10.1021/acs.chemrev.1c00876
http://dx.doi.org/10.1016/j.jwpe.2020.101815
http://dx.doi.org/10.1021/acs.analchem.1c03016
http://www.ncbi.nlm.nih.gov/pubmed/34541844
http://dx.doi.org/10.1016/j.ifacol.2018.09.198
http://dx.doi.org/10.1017/CBO9781107298019


Chemosensors 2023, 11, 230 13 of 13

42. Tang, Z.; Cui, J.; Kshirsagar, A.; Liu, T.; Yon, M.; Kuchipudi, S.V.; Guan, W. SLIDE: Saliva-Based SARS-CoV-2 Self-Testing with
RT-LAMP in a Mobile Device. ACS Sens. 2022, 7, 2370–2378. [CrossRef] [PubMed]

43. Nasir, N.; Kansal, A.; Alshaltone, O.; Barneih, F.; Sameer, M.; Shanableh, A.; Al-Shamma’a, A. Water quality classification using
machine learning algorithms. J. Water Process. Eng. 2022, 48, 102920. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1021/acssensors.2c01023
http://www.ncbi.nlm.nih.gov/pubmed/35920555
http://dx.doi.org/10.1016/j.jwpe.2022.102920

	Introduction
	Theoretical Background
	Electrochemical Impedance
	Distribution of Relaxation Times Model

	Materials and Methods
	Chemicals and Materials
	Sample Collection and Preparation
	RT-LAMP Assay
	Electrochemical Impedance Measurements
	Time-Constant-Domain Spectroscopy
	Classification Algorithm

	Results
	Performance to Detect the SARS-CoV-2 Genome
	Impedance Measurements of RT-LAMP Reactions
	Time-Constant-Domain Spectroscopy of RT-LAMP Reactions

	Detecting SARS-CoV-2 Genome in Wastewater Samples
	Automatic Classification of Samples

	Conclusions
	References

