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Abstract: This paper describes for the first time the surface modification of glassy carbon (GC)
electrodes with bamboo-based renewable carbon (RC) and antimony nanoparticles (SbNPs) for the
determination of methylparaben (MePa) in personal care products (PCPs). The synthesized RC-
SbNP material was successfully characterized by scanning electron microcopy, energy-dispersive
X-ray spectroscopy and cyclic voltammetry. The proposed sensor was applied in the detection
of MePa using the optimized parameters by differential pulse voltammetry (DPV). The analytical
range for detection of MePa was 0.2 to 9.0 µmol L−1, with limits of detection and quantification of
0.05 µmol L−1 and 0.16 µmol L−1, respectively. The determination of MePa in real PCP samples
was performed using the proposed GC/RC-SbNP sensor by DPV and UV-vis spectrophotometry as
comparative methodology. The use of RC-SbNP material for the development of electrochemical
sensors brings a fresh approach to low-cost devices for MePa analysis.

Keywords: renewable carbon; antimony nanoparticles; methylparaben; personal care products;
electrochemical sensors

1. Introduction

Due to globalization, there has been an increase in the use of pharmaceuticals and
personal care products (PCPs) in the last decade. PCPs are a class of emerging environ-
mental contaminants considered hazardous molecules that may interfere with aquatic
environments, leading to physiological effects through excessive exposure to humans
and animals [1–3].

Methylparaben (MePa), as well as parabens in general, is a well-known antibacterial
and antifungal preservative used in foods, pharmaceuticals, and PCPs due to such char-
acteristics as high hydrophilicity and water solubility and to prolong storage time of the
products. In addition, MePa is the most common paraben used in these industries and is
considered safe to humans [4–7]. However, recent studies revealed that such compounds
are considered hazardous due to their ability to competitively bind to estrogen receptors,
leading to endocrine problems in the immune system and nervous systems and the produc-
tion/degradation of endogenous steroids [8–10]. Parabens in general can also be viewed
as endocrine-disrupting compounds (EDCs) [11]. The presence of such contaminants in
different products has been associated with ovary and womb cancer in women. In addition,
some works reported the presence of MePa in blood and urine samples of children [8,12].
In some countries, its use has already been restricted and usage limits defined. In an
environmental context, due to its wide use, methylparaben is one of the most detected
parabens in effluent [13], being present in the aquatic ecosystem [14]. Despite this, its
potential ecotoxicity effects are not elucidated, still requiring studies [15]. The European
Union (EU) has stablished a 0.8% w/w maximum concentration for total of parabens in
commercial products [16].
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In the last decade, several analytical methodologies have been developed to detect
MePa [17,18]. Chromatographic methods coupled with mass spectrometry are currently
the most used technique for detecting such contaminants [19–21]. However, such tech-
niques can require solid phase extraction (SPE) [22], extraction, and cleanup based on
Quick Easy Cheap Effective Rugged Safe (QuEChERS) methods [23], high-quality solvents
(chromatography grade), and highly trained personnel. In order to overcome such restric-
tions, electrochemical sensors have been extensively used to detect endocrine compounds
(ECs) and EDCs [24]. Advantageous characteristics of electrochemical sensors, such as
highly sensitive and rapid analysis and low-cost equipment, have gained attention in the
development of analytical protocols for the detection of such chemicals [25–30].

Electrochemical sensors based on carbon-based materials are at the forefront of sensing
research due to the intrinsic properties of carbon of high electrical conductivity, mechan-
ical strength, chemical stability, and surface-to-volume ratio [31]. In addition to the use
of 0D, 1D, 2D, and 3D carbon materials in sensors, renewable carbon, also known as
biochar, has recently become an interesting option for manufacturing electrochemical
sensor platforms [32–34].

Renewable carbon (RC) is a carbon-based material originating from the slow pyrolysis
of biomass and has gained prominence due to its highly functionalized and porous surface
characteristics, which can lead to interesting applications of inorganic molecules (heavy
metal ions) [35], organic molecules (e.g., ECs and EDCs) [36,37], and biosensing assays [38]
(e.g., SARS-CoV-2) [39]. The modification and decoration of RC with different metal/metal
oxides micro/nanoparticles have been investigated in order to maximize the electrical
current response for electroactive molecules due to the synergistic, catalytic effect, thus
facilitating electron transfer [40–42]. Antimony nanoparticles (SbNPs) have been applied for
modification of carbon-based materials due to favorably negative overvoltage of hydrogen
evolution, wide operational potential window, convenient operation in acidic solutions of
pH 2 or lower, and a very small Sb stripping signal [43–45].

In this work, we report the modification of glassy carbon electrodes using the RC ma-
terial modified with Sb nanoparticles. The morphological, structural, and electrochemical
characterization of an RC-SbNP nanocomposite was properly evaluated. The proposed
sensor was applied in the detection of MePa in buffer solutions and then in real PCP sam-
ples using differential pulse voltammetry (DPV). A comparative methodology by UV-vis
spectrophotometry was used for verifying the reliability of the new electrochemical sensor.

2. Materials and Methods
2.1. Instrumentation and Methods

The voltammetric experiments were carried out using an electrochemical system
model—Autolab PGSTAT128N Metrohm (Eco Chemie, Utrecht, The Netherlands)—equipped
with NOVA 2.1 software. A conventional glass electrochemical cell with three electrodes
was used to carry out the experiments: a glassy carbon electrode modified (2 mm ± 0.1 mm)
with RC-SbNPs as the working electrode, the Ag/AgCl/KCl (3.0 mol L−1) electrode as the
electrode reference plate, and a platinum plate as an auxiliary electrode.

The electrochemical characterization of the GC/RC-SbNP electrode was carried out
using cyclic voltammetry from −1.0 to + 0.6 V vs. Ag/AgCl/KCl (3.0 mol L−1) in a
0.5 mol L−1 HCl solution with a scan rate of 50 mV s−1.

The morphology of the RC-SbNP material was characterized by scanning electron
microcopy (SEM, JEOL, model JSM-7500F) and energy-dispersive X-ray spectroscopy (EDS,
ultradry, Thermo Scientific) at the Institute of Chemistry (IQ) at UNESP, Araraquara, Brazil.

2.2. Reagents and Solutions

All reagents used in this work were analytical and used without prior purification.
Bamboo-based renewable carbon (RC) obtained through pyrolysis of bamboo biomass was
kindly provided by Mohini Sain of the University of Toronto. The SbCl3 salt, methylparaben
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standard, was purchased from Sigma-Aldrich. All solutions were prepared using purified
water in a PureLab Option-Q ELGA-Veolia system (resistivity ≥ 18 MΩ cm−1).

2.3. Synthesis of RC-Antimony Nanoparticles

The synthesis of the RC-SbNPs was carried out by a chemical reduction process
reported in previous works [44,46]. Briefly, 40 mg of RC was added to a beaker with
30 mL of ethanol, and the mixture was homogenized by using an ultrasonic cell disruptor
(QSonica) for 15 min. Then, 16 mg of a surfactant, sodium dodecyl sulfate (SDS), was added
and a 15 min ultrasonic bath carried out. For the chemical reduction process, 26 mg of
sodium borohydride (NaBH4) were added, and the solution was sonicated for an additional
hour. Finally, the Sb nanoparticles were incorporated into the carbon material by adding
a 1 mg/mL SbCl3 solution under vigorous stirring (1 drop per second). The obtained
RC-SbNP material was centrifuged and cleaned several times with ethanol, and dried at
60 ◦C (overnight).

Finally, a dispersion of RC and RC-SbNPs, 1 mg/mL of each material, was prepared
in ultrapure water for the electrode’s modification. The materials were sonicated in an
ultrasonic cell disruptor (QSonica) for 1 cycle of 10 min prior to use.

2.4. Electrode Preparation

Cleaning of the glassy carbon (GC) electrodes was done by polishing followed by
an ultrasound bath. Polishing was carried out until a mirrored surface was obtained in a
polishing machine with sandpaper made of silicon carbide and an aqueous suspension of
0.5 µm alumina. Soon afterward, the electrodes were put in an ultrasound bath in ethanol
for 5 min and then in ultrapure water for another 5 min. After the polished GC electrodes
had been cleaned and dried at room temperature, 10 µL of the suspension to be studied
(RC or RC-SbNPs) was added. The suspension was dried at room temperature and the
electrodes taken to the electrochemical cell to perform voltammetry studies. Scheme 1
summarizes the synthesis process of RC-SbNPs, the modification of GC electrodes with the
nanocomposite and the electrochemical system used in this paper.
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2.5. Analysis of Methylparaben in PCPs

Five different samples of PCPs were purchased at a local supermarket in Botucatu,
São Paulo, Brazil. Hand sanitizer (ethyl alcohol 70◦), mouthwash, deodorant, emollient
for cuticles, and a moisturizer cream were chosen for analysis according to the presence of
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methylparaben as a constituent in the formulation, as reported on their labels. All samples
were diluted 1:10 in ethanol, in order to perform a liquid–liquid/liquid–solid extraction of
MePa. In addition, after the dilution in ethanol, the samples of deodorant, emollient for
cuticles, and moisturizer cream were diluted in 100 mL of PBS (pH 7.0) and centrifuged in
order to obtain a solid/liquid phase separation and thus facilitate the electrochemical and
spectrophotometric experiments. After proper dilution, an aliquot of 0.25 mL was added to
a 20 mL electrochemical cell with 0.1 mol L−1 PBS (pH 7.0).

The quantitative analysis of MePa was carried out by the standard addition method,
in which known concentrations of the standard were added during the analysis. This is a
quantitative analysis method, which is often used when the sample of interest has multiple
components that result in matrix effects, where the additional components may either
reduce or enhance the analyte absorbance signal [47].

For validation of the electroanalytical methodology, the samples were also analyzed
in a UV-visible spectrophotometer (mono-beam) model UV-M51 by BEL Engineering®,
Monza (Milano), Italia. A wavelength scan was carried out from 220 to 350 nm, with a step
of 1 nm per point of reading. The samples were also enriched with known amounts of
MePa reference standard. The obtained results for the UV-vis and DPV techniques were
used to compare the amounts of MePa.

3. Results
3.1. Morphological and Spectroscopic Characterization of the RC-SbNP Composite

Surface morphology characterization was carried out by FEG-SEM analyses. As shown
in Figure 1A, the RC materials display a very heterogeneous structure in arrangement and
size, which is important, as it provides a high contact surface and a better conductivity, both
good characteristics for use in electrochemical processes. Figure 1B,C show the RC-SbNP
nanomaterial at different magnitudes, and the inclusion of Sb nanoparticles with mean
size of 50 nm (Figure 1D). Figure 1E shows the EDS spectra obtained from the RC-SbNP
nanocomposite, confirming the composition of the material with carbon (0.255 eV), oxygen
(0.522 eV) and antimony (3.60 eV).
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Electrochemically, the characterization of the composite containing antimony was
performed by cyclic voltammetry experiments with a scan rate of 50 mV s−1 in a 0.5 mol L−1

HCl solution. The comparison was between the GC electrode modified only with the RC
and the GC electrode modified with RC-SbNPs. In Figure 1F, it is possible to observe
that in the GC/RC electrode (dashed line) no electrochemical processes occurred. On
the contrary, when the GC/RC-SbNPs was used (solid line), it was possible to see an
electrochemical process referring to the antimony nanoparticles. The oxidation peak shown
in GC/RC-SbNP electrode voltammetry at 19 mV (solid line) is associated with deoxidation
of Sb0 to Sb+3. In the reverse scan, it is possible to observe a reduction process of Sb at
−305 mV. Therefore, we can conclude that the electrochemical processes present in the
voltammogram correspond to the presence of Sb on the electrode surface, which proves
that the nanoparticles were well incorporated into the GC/RC [36,44,46,48,49].

3.2. Electrochemical Characterization of the GC/RC-SbNP Electrode

Electrochemical characterization of the construction steps of the GC/RC-SbNP sensor
was carried out using CV and EIS experiments. Figure S1A shows the voltammetric
response of the unmodified GC electrode (dashed line), GC/RC (solid red line) and GC/RC-
SbNPs (solid blue line). It was possible to observe well-defined oxidation and reduction
processes for the [Fe(CN)6]4−/3− redox probe. It is worth noting that the anodic (Ipa) and
cathodic (Ipc) currents increased with the modification of electrodes with RC and RC-SbNPs.
In addition, the reversibility of the redox process was improved, as shown in Table S1. The
GC electrode presented a peak separation (∆Ep) of 493 mV, followed by the GC/RC with a
∆Ep of 385.10 mV, and the GC/RC-SbNPs with 406.50 mV. In Figure S2B, as anticipated, the
GC electrode presented a higher resistance to charge transfer (Rct) in the order of 3.73 kΩ.
After the electrode modification with RC and RC-SbNP nanomaterials, the (Rct) decreased
to 2.81 and 2.70 kΩ, respectively. The EIS results were fitted in a Randles equivalent circuit
consisting of electrolyte or cell resistance (Rs), in series with a parallel combination of a
constant phase element (CPE), which was used to represent the nonideal capacitance C, and
charge-transfer resistance (Rct) in series with Warburg impedance (W). The results for EIS
experiments are summarized in Table S2 (Supplementary Materials). These results indicate
that there is an improvement in electron kinetics in the electrode/electrolyte surface, thus
improving the response in both CV and EIS experiments.

3.3. Methylparaben Oxidation Process

The electrochemical behavior of MePa on the GC/RC-SbNP electrode was performed
by cyclic voltammetry (CV) with scan rate of 50 mV s−1 in phosphate buffer solution (PBS)
0.1 mol L−1 pH 7.0, added to 100.0 µmol L−1 of methylparaben. The results shown in
Figure 2A revealed no electrochemical process in the absence of the analyte (dashed line).
However, in the presence of 100 µmol L−1 of MePa (solid line), an irreversible oxidation
peak could be observed at Epa = +0.878 V vs. Ag/AgCl/KCl (3.0 mol L−1). This oxidation
process is similar to the findings reported by Piovesan et al. [27]: a defined peak close
to 0.86 V. The inset in Figure 2A shows the respective redox reaction involved with this
molecule. The oxidation of phenolic compounds can usually occur by a single-electron
and proton transfer. This mechanism was further investigated by Gil et al. [50], reporting
different parabens oxidize in the potential range. Slight differences in oxidation peak may
be observed due to the length of the carbon chain.

Figure 2B shows the effect of the variation in scan rate on the oxidation process of
MePa between 10 mV s−1 and 75 mV s−1. The plot log Ipa vs log scan rate (mV s−1) revealed
a linear relationship with R2 of 0.9974 and slope of 0.5833. According to the literature [41],
a log–log plot slope of (or close to) 0.5 indicates a diffusion-controlled reaction rate [27].
Differential pulse voltammograms were recorded in a 0.1 mol L−1 PBS pH 7.0 solution
added to 10.0 µmol L−1 of MePa in order to compare the voltammetric response of the
analyte at the bare and modified electrodes. Figure 2C shows the results obtained for the
GC (dash line), GC/RC (curve a) and GC/RC-SbNP (curve b) electrodes. It is possible
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to observe once again the influence of antimony nanoparticles on RC for the detection of
methylparaben, since the value of the anodic peak current is higher than the one that does
not present the nanoparticles, showing efficiency in its use for detection. The anodic peak
current increased by a factor of 4.4 and 6.8 for the GC/RC and RC/RC-SbNP electrodes,
respectively, when compared to the unmodified one. These findings can be attributed
to the adsorptive characteristics of RC, reported in literature to have a highly porous
functionalized structure and high surface area [32,51]. Therefore, phenolic compounds
such as MePa can be easily adsorbed on the carbon surface through hydrogen binding,
physical adsorption, or p–p stacking of electrons of the carbon chain [37]. The addition of
Sb nanoparticles has been reported to create a synergetic effect with carbon nanomaterials
(e.g., biochar, carbon nanotubes, graphene) [43,52,53].
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3.4. Influence of pH on the Oxidation Process of Methylparaben Using the GC/RC-SbNP Electrode

The optimization study of the electrolyte’s pH regarding the redox process in
100.0 µmol L−1 of MePa was conducted by DPV experiments at the GC/RC-SbNP elec-
trode. The pH of 0.1 mol L−1 PBS ranged from 5.0 to 10.0, the best response that could be
obtained with the analyte. Figure 3A shows the comparative DPV experiments at different
pH for 10.0 µmol L−1 of MePa, showing the change in the oxidation processes of this
phenolic compound. In Figure 3B, it is possible to observe a dependent relation between
the anodic peak current (Ipa) and the pH variation. The graph also shows that the peak
anodic current has a maximum value of exactly pH 7.0, so this value was chosen and used
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in the following analysis. For the oxidation potential (Epa), we can notice the change in the
potential, where MePa moves towards more negative values as the pH increases, which is
related to the reduction in ionic concentration of hydrogen, pointing to the deprotonation
process that occurs during oxidation. The plot Epa vs. pH presents a linear regression
(Figure 3B), with a slope of −55.4 mV, which indicates that the MePa oxidation involves
the participation of the same number of protons and electrons. This is a process with
a previously reported mechanism for the oxidation of methylparaben that involves two
protons and two electrons [54,55]. The inflection point between pH 8.0 and 9.0 corresponds
to the pka of analyte, similar to the value of 8.17 reported in the literature [56]. In addition,
the results indicated that MePa has a higher anodic current response when 0.1 mol L−1 PBS
solution at pH 7.0 is used as a supporting electrolyte. Therefore, this solution was used for
the subsequent analyses.
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3.5. Optimization of the Electrode Composition in the Voltammetric Response of Methylparaben
Using the GC/RC-SbNP Electrode

Another important parameter optimized was the influence of RC-SbNP film concentra-
tion on the electrode, which was obtained performing a DPV with five different electrodes
varying composite concentration from 0.5 to 2.0 mg/mL at an amplitude of 100 mV and
a scan rate of 10 mV s−1 in a 0.1 mol L−1 PBS solution pH 7.0 added to 10.0 µmol L−1

MePa. As shown in Figure S2, we can observe that the concentration film that presented
the highest anodic peak current (Ipa) was 1.0 mg mL−1 when used for the modification
of the electrode. Therefore, for all the following experiments and analysis of MePa, this
concentration was applied.

3.6. Calibration Curve and Detection and Quantification Limits

Figure 4A presents the DPV experiments using the proposed GC/RC-SbNP electrode,
following all the optimized conditions described during the work. The voltammogram
presented a linear region from 0.2 to 9.0 µmol L−1 with additions of MePa, according
to the equation presented (Figure 4B) with a correlation coefficient of 0.990 (n = 9). Ac-
cording to the IUPAC recommendations, the limit of detection (LOD) was found to be
0.05 µmol L−1, which was determined using the 3σ/slope, where σ is the standard devia-
tion of 10 voltammograms from the blank. The limit of quantification (LOQ) obtained was
0.16 µmol L−1 determined by 10σ/slope, also as recommended by the IUPAC.
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Table 1 shows the comparison of different electrodes reported in the literature and
their respective analytical parameters for MePa determination. In comparison to previous
reports, the LOD reported herein in this manuscript offered a good working range of
concentration for the detection of MePa in PCP samples. There are some noteworthy
works in the literature regarding the electrochemical detection of methylparaben and
other parabens. Piovesan et al. [27] reported a modified electrode based on reduced
graphene oxide (rGO) and gold nanoparticles (AuNP) dispersed in chitosan (CS) for the
voltammetric determination of methylparaben (MePa). The authors reported a linear
range of voltammetric detection from 0.03 to 1.30 µmol L−1 (R2 = 0.990), with a LOD of
13.77 µmol L−1 and a LOQ of 41.73 µmol L−1. The AuNP-rGO-CS/GCE was also applied
in the detection of MePa in PCPs with recovery ranging from 84.3% to 133.5%. The use of
carbon-based materials for electrode modification, such as rGO [57] and multiwalled carbon
nanotubes (MWCNTs) [58], showed great sensitivity toward MePa detection. In particular,
the work reported by Baytak et al. [59], a GCE modified with carbon nanofibers (CNFs)
and nickel–cobalt–palladium nanoparticles showed an LOD of 0.0012 µmol L−1, the lowest
reported to our knowledge. Although some papers discussed in this manuscript showed
lower LODs, the GC/RC-SbNP sensor displayed a linear range in concentrations suitable
for detecting MePa in PCP samples. Therefore, the next section covers the application of
the proposed sensor in real samples.

3.7. Determination of MePa in PCPs

The GC/RC-SbNP electrode was applied in the determination of MePa in real PCPs
samples using the developed DPV methodology described in the previous section. The
extraction of MePa and sample preparation is discussed in Section 2.5.

In order to compare the reliability of the electrochemical sensor, a UV-vis spectropho-
tometry comparative methodology was employed. Figure S3 shows the obtained calibration
curve for the alternative methodology. The absorbance spectrum displayed a maximum
absorbance peak at λmax = 262 nm. The technique displayed a linear range from 1.0 to
60.0 µmol L−1 (R2 = 0.996), with a LOD of 0.63 µmol L−1 and LOD of 2.10 µmol L−1.
Although the LOD and LOQ values for this technique were higher than the electrochemical
one, comparison between the two techniques was possible. Figures S4 and S5 shows
the DPV and UV-vis, respectively, detection of MePa in the real samples for hand sani-
tizer (A), mouthwash (B), deodorant (C), emollient for cuticles (D) and moisturizer cream
(E) using the standard addition method (SAM), where the sample was spiked with known
concentrations of the MePa standard.
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Table 1. Comparison of the reported values for LOD of MePa.

Electrode Linear Range (µmol L−1) LOD (µmol L−1) LOQ (µmol L−1) Real Samples Reference

Gold electrode 40–1000 1.71 5.70 Pharmaceutical products and urine [55]
GCE/MWCNTs-LB 1.0–80 0.40 Not reported Skin toner [58]
Au/(MNP/Ppy)3 electrode 0.0–131.40 0.0995 Not reported Urine, breast milk and cosmetic [29]
(Co-Ni-Pd)NPs-CNFs/GCE 0.003–0.3 0.0012 Not reported Cosmetics, pharmaceuticals and urine samples [59]
GCE/rGO/RuNPs 0.5–3.00 0.24 Not reported Deodorant cream [57]
AuNP-rGO-CS/GCE 0.03–1.30 0.0138 0.04173 Liquid soap, skin cleansing lotion, insect repellent and mouthwash [27]

GC/RC-SbNPs 0.2–9.0 0.05 0.16 Hand sanitizer, mouthwash, deodorant, emollient for cuticles and
moisturizer cream This work

Au: gold electrode, AuNP: gold nanoparticles, CS: chitosan, MNP: magnetic nanoparticles, Ppy: polypirrol, GCE and GC: glassy carbon electrode, RuNPs: ruthenium nanoparticles,
MWCNTs-LB: Langmuir–Blodgett (LB) film of multiwalled carbon nanotubes, (Co-Ni-Pd)NPs: cobalt, nickel and palladium nanoparticles, CNFs: carbon nanofibers.
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The SAM method consisted in a quantitative analysis method, which is often used to
overcome matrix effects in complexes samples. In that way, during analysis the sample (s)
was spiked or enriched with known amounts of 1.0 µmol L−1 (a), 2.0 µmol L−1 (b) and
3.0 µmol L−1 (c). The method is performed by reading the experimental (Ipa or absorbance)
intensity of the samples and then measuring the responses of the samples with amounts
of known standard added. The data are plotted as Ipa or absorbance vs. the amount
of the standard added. The least-squares line intersects the x-axis at the negative of the
concentration of the unknown (Figures S4 and S5, respectively).

Table 2 shows the recovery of MePa using the SAM approach for the DPV and UV-vis
techniques. The calculated error showed in Table 2 compared the concentration of MePa
obtained between the two techniques (footnote). The hand sanitizer and mouthwash sam-
ples presented lower errors due to the extraction of MePa by liquid–liquid extraction (LLE)
being more efficient in liquid samples than in those in semisolid (cream) consistency [60].
In addition, PCPs in creams and gel form might contain more fragrances, emulsifiers, ultra-
violet filters, acrylates, preservatives, and antioxidants, which can interfere with UV-vis
analysis due to such compounds having more chromophore groups (an unsaturated group
that absorbs light) within their chemical structure [61–63]. In that way, a matrix effect
would have less impact on the DPV electrochemical technique.

Table 2. Results for the determination of MePa by UV-vis and DPV techniques.

Samples DPVRECOVERED
2 Total MePa (µg/mL) 1 Relative Error (%)

(µmol L−1) DPV UV-Vis
3 Hand sanitizer 4.13 ± 0.10 50.30 ± 0.50 51.00 ± 0.50 −1.50
3 Mouthwash 1.15 ± 0.05 49.22 ± 0.80 52.95 ± 0.92 −3.80
4 Deodorant 0.38 ± 0.05 468.50 ± 2.60 513.51 ± 1.80 −8.80
4 Emollient for cuticles 0.32 ± 0.03 394.50 ± 5.60 456.45 ± 2.20 −13.33
4 Moisturizer cream 0.18 ± 0.04 221.40 ± 2.70 255.61 ± 1.50 −13.40

1 Relative error: DPV vs. UV-vis (CDPV − CUV-vis/CUV-vis) × 100%; 2 dilution correct between methods; 3 sample
diluted 1:10 in ethanol; 4 sample diluted 1:10 in ethanol and then 1:100 in PBS.

Therefore, the developed DPV methodology using the GC/RC-SbNP sensor to detect
MePa in PCPs was considered satisfactory. The error between the DPV and UV-vis com-
parative method was expected, especially in samples with a number of substances with
chromophore groups being higher. In that way, the developed sensor could be a valuable
tool to monitor MePa from an environmental perspective.

4. Conclusions

A novel electrochemical methodology for the detection of methylparaben in personal
care products using a sensor based on renewable carbon and antimony nanoparticles was
presented. The proposed material was successfully characterized by morphological and
electrochemical techniques. The GC/RC-SbNP sensor was applied in the detection of
MePa using DPV, presenting a sensitive, low-cost, and easy-to-prepare sensing platform.
In addition, the proposed electrodes use a material obtained from bamboo waste, adding
value to this waste.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/chemosensors11020141/s1. Figure S1. (A) CV scans for GC (dashed
line), GC/RC (black line), GC/RC-SbNPs (blue line), with a scan rate of 50 mVs−1. (B) Nyquist
diagrams for GC (N), GC/RC (�) and GC/RC-SbNPs (•). Supporting electrolyte: 5 mmol L−1

of [Fe(CN)6]4−/3− in 0.1 mol L−1 PBS and 0.1 mol L−1 KCl; Table S1: Fitted parameters of EIS
experiments; Table S2: Fitted parameters of EIS experiments; Figure S2: Effect of RC-SbNP film
concentration at Ipa of 10.0 µmol L−1 MePa. The DPV experiments were carried out in a 0.1 mol
L−1 PBS pH 7.0; Figure S3: UV-vis spectra (220–350 nm) for different concentrations of MePa and
the respective calibration curve showing the linear relationship of absorbance vs. [MePa]/µmol
L−1; Figure S4: Detection of MePa by proposed DPV method. The voltammograms for sample (s),

https://www.mdpi.com/article/10.3390/chemosensors11020141/s1
https://www.mdpi.com/article/10.3390/chemosensors11020141/s1
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samples + 1.0 µmol L−1 (a), samples + 2.0 µmol L−1 (b) and samples + 3.0 µmol L−1 (c). For (A) hand
sanitizer, (B) mouthwash, (C) deodorant, D) emollient for cuticles and E) moisturizer cream samples;
Figure S5: UV-vis spectra and respective quantification of MePa concentrations for (A) hand sanitizer,
(B) mouthwash, (C) deodorant, (D) emollient for cuticles and (E) moisturizer cream samples.
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