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Abstract: In recent years, there has been a significant rise in the popularity of plant-based products
due to various reasons, such as ethical concerns, environmental sustainability, and health benefits.
Sensory analysis is a powerful tool for evaluating the human appreciation of food and drink prod-
ucts. To link the sensory evaluation to the chemical and textural compositions, further quantitative
analyses are required. Unfortunately, due to the destructive nature of sensory analysis techniques,
quantitative evaluation can only be performed on samples that are different from those ingested. The
quantitative knowledge of the analytical parameters of the exact sample ingested would be far more
informative. Coupling non-destructive techniques, such as near-infrared (NIR) and hyperspectral
imaging (HSI) spectroscopy, to sensory evaluation presents several advantages. The intact sample
can be analyzed before ingestion, providing in a short amount of time matrices of quantitative data of
several parameters at once. In this review, NIR and imaging-based techniques coupled with chemo-
metrics based on artificial intelligence and machine learning for sensory evaluation are documented.
To date, no review article covering the application of these non-destructive techniques to sensory
analysis following a reproducible protocol has been published. This paper provides an objective and
comprehensive overview of the current applications of spectroscopic and sensory analyses based on
the state-of-the-art literature from 2000 to 2023.

Keywords: NIR spectroscopy; hyperspectral imaging; sensory analysis; artificial intelligence; machine
learning; plant-based

1. Introduction

In recent years, there has been a significant rise in the popularity of plant-based
products. Many consumers base their dietary choices on the pursuit of health benefits,
out of ethical concerns (e.g., concern for animal welfare), or on environmental sustain-
ability (as a way to reduce their environmental footprint coming from intensive animal
farming) [1,2]. Other drivers include scientists’ endorsement, media attention, and popular
documentaries [3]. Regardless of the reasons behind this, it is evident that more consumers
than ever are seeking to incorporate more plant-based foods into their diets [4]. The
growth of interest in plant-based diets is reflected in the plant-based food market having
increased29% in the U.S. between 2017 and 2019 [5]. Moreover, the sales of plant-based
foods across European countries have grown by 21% since 2020, having reached a record
EUR 5.8 billion in 2022 [6]. The interest in plant-based products is evident; however, not
all plant-based products are equal. A healthful plant-based diet includes high-quality
foods: whole foods like grains, fruits, vegetables, legumes, nuts, and seeds. It has been
reported how health-promoting effects could be improved or worsened by the plant-based
diet’s quality [7]. Therefore, it is important to consider the quality of the specific compo-
nents of plant-based diets, as not all plant-source foods have the same beneficial health
effects [4]. Generally, foods represent very complex and diverse mixtures, which pose
enormous analytical challenges for an encompassing analysis. At present, the most com-
mon high-throughput analytical techniques that are applied for food quality assessment
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are high-performance liquid chromatography (HPLC) and gas chromatography (GC), es-
pecially coupled with sensitive mass spectrometry (MS) detectors [8]. The principles of
classical techniques have been explained in other publications [9]. Despite being power-
ful analytical tools, these techniques have some main limitations. They are destructive,
time-consuming, and laborious [10]. Moreover, they usually require complex sample prepa-
ration protocols, which include several pre-processing steps, e.g., the extraction, dilution,
concentration, and collection of volatiles, which are prone to error and involve harmful
chemicals that could cause negative environmental impacts [11]. Traditionally, these con-
ventional techniques are used to measure one specific compound or a pool of well-defined
compounds present in a given food or beverage [12]. Such an approach ignores the com-
plexity of food products and the possible interactions between the different attributes that
constitute its “quality”. Indeed, the problem with the quality analysis is linked to the
definition of “quality”. Food quality has been defined as “a complex and multidimensional
concept which is influenced by a wide range of situational and contextual factors”. The
influencing factors include safety, origin, nutrition, sensorial properties, authenticity, and
convenience [13]. For the European Commission, food quality is a complex, multidimen-
sional concept that includes nine items related to nutritive, sensory, or ethical aspects [14].
Therefore, the term “quality”, beyond its relationship with the fruits’ or vegetables’ inherent
attributes, such as sugar content, color, or firmness, must be viewed in terms of consumers’
appreciation [15].Consumers’ preferences vary widely among countries [16,17] or even
within regions of the same country [18]. In addition to geographical differences, several
factors influence consumers’ preferences, such as age, gender, socioeconomic level, and
educational level. Moreover, these preferences have changed over time after the pandemic
era [19]. Another important factor is consumers’ personal beliefs since often consumers base
their decisions on their personal perception of what “quality” means. It was found that the
term “quality” often has a positive connotation of high value, class, or degree of excellence
that can differ from “true” or measurable quality [20]. Thus, food quality is constituted of
multiple attributes or characteristics, some of which are not well defined or can only be
measured using empirical or destructive methods (e.g., sugar content with a refractometer),
while others are highly subjective (e.g., taste) [21]. If the value of conventional analytical
techniques is unquestionable for a product’s chemical and physical characterization, the
outcomes of these techniques must be correlated with sensory analysis. The knowledge of
the perceived sensory characteristics of a product is a piece of useful information for the
improvement of products or for novel product development [22]. The recent technological
improvements allow researchers to perform multi-parametric non-targeted analysis. The
ability to retrieve several chemical–physical and sensorial parameters at once makes novel
techniques valuable tools for food quality evaluation. Advanced spectroscopic techniques
coupled with machine learning have been largely applied for the quality analysis and
authentication of a wide range of food products [23]. NIR spectroscopy and machine vision
systems, such as hyperspectral imaging (HSI), are among the most successful technologies
applied for the quality evaluation and safety inspection of several commodities [24]. These
techniques are able to provide rapid, non-destructive, cost-effective, and environmentally
friendly results [25]. The increase in the use of these techniques is inevitably linked to the
increased ability of computational techniques. The application of chemometric tools based
on artificial intelligence (AI) allows for the extraction of several types of information from
very large spectroscopic datasets. These spectroscopic techniques have been applied to
the combined determination of food composition, textural features, and food preferences,
presented as promising tools to model food–human interactions [26]. Several reviews
addressing the prediction of quality-related properties have been published in recent years,
focusing on one specific beverage or food [25,27,28] or on a collection of fresh [26,29,30] or
processed [31–33] commodities. Some reviews focused only on quality and safety [34–37];
others included sensory analysis but only of specific foods [38–40]. One review in 2019
focused on the relationship between the measured properties and the perceived ones [41],
without providing information concerning the methodology or approach followed for the
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article selection. This review provides an overview of studies involving the spectroscopic
techniques and chemometric methods that are largely applied for food sensory and quality
evaluation. The present review is based on scientific articles written in English and pub-
lished in peer-reviewed journals from 2000 to 20023. Two well-known multidisciplinary
databases of peer-reviewed literature were searched, and the full procedure followed is
reported in detail. Additionally, we discuss the current challenges and future developments
of these techniques in food sensory analysis.

2. Methods: Review Protocol

The screening of the literature was performed following a procedure similar to the
PRISMA one (preferred reporting items for systematic reviews and meta-analyses) to avoid
subjective bias [42]. The SCOPUS and Web of Science (WoS) databases were searched for
peer-reviewed studies up to October 2023. Two libraries of the R software were used in
the article selection procedure: first, the “litsearchr” library [43] for keyword selection and,
afterward, the “revtools” package [44] for title and abstract screening. To ensure inter-rater
reliability, the reviewers conducted the literature search and selection process independently.
A naïve search, the simplest method among the pattern-searching algorithms, was used
to search for all the terms of the Boolean string in the chosen library databases. The naïve
search retrieved 168 articles from WoS and 159 articles from Scopus. After the removal of
duplicates using the litsearchr package, 250 articles were retained. In this article, a search
for other potential keywords was performed using the rapid automatic keyword extraction
algorithm. We tested several frequencies for the repetition of terms in the text and found
that retaining 235 terms that appear at least four times in the text was the best option since
they did not retain too many generic terms in the list. Then, we built a co-occurrence
network that allowed the individuation of possible keywords among the terms in the list
based on the quantity of their co-occurrence in the title/abstract/keywords of the selected
articles. We plotted the node strengths in decreasing order (so that the most important
terms were at the top) and found the cutoff value before which the terms explained 80% of
the total importance in the network. The list of potential new keywords, 130 terms above
our cutoff, was then screened manually following the PICO framework. The final Boolean
search string employed is reported below.

((sensorial OR sensory) AND (“multispectr* imag*” OR “hyperspectr* imag*” OR hsi
OR nir* OR near-infrar* OR “Near* Infrare*”) AND (analys* OR test* OR attribute* OR
qualit*) AND (food* OR drink* OR beverage*)).

This search retrieved 173 articles from WoS and 167 from Scopus, which, after duplicate
removal, were reduced to 256 articles in total. The revtools library was then used for the
screening of titles and the abstracts. The authors performed the screening independently
in light of the main reasons for exclusion that were stated prior to the search process.
The inclusion and exclusion reasons were the following: only articles or reviews were
considered, no books or conference proceedings; no industrial applications; no animal
products; no classification based on geographical origins, varieties, or adulteration; and
only published in the English language. In the case of a different opinion, the inclusion or
exclusion of an article/review was discussed until agreement among the authors. After
title and abstract selection, 141 articles were retained. A total of 82 articles were finally
selected based on the eligible criteria previously stated. The flow diagram of the studies
retrieved for this review is reported in Figure 1.



Chemosensors 2023, 11, 579 4 of 31
Chemosensors 2023, 11, x FOR PEER REVIEW 4 of 30 
 

 

 
Figure 1. Data search flow diagram. 

3. Near-Infrared (NIR) Spectroscopy 
The IR region is conventionally divided into three sub-regions: starting from the vis-

ible, there are the near-infrared, which is “near” to the visible region (NIR, 12,820–4000 
cm−1); the mid-infrared (MIR, 4000–400 cm−1); and the far-infrared (FIR, 400–33 cm−1) [45]. 
The basic components of a NIR spectrometer are: a light source, beam-splitter system, 
sample container, detector for intensity detection and the electrical conversion of light, 
and a data processing system for spectral data [46]. In food analysis, a halogen (tungsten) 
light source is usually employed for Vis-NIR systems, due to its wide-emitting spectral 
range [27]. Different optical geometries are available for NIR spectroscopy; the main dif-
ference is the placement of the detectors and the sample holder for different spectral 
modes of acquisition. The predominant spectra modes of the acquisition include diffuse 
reflectance, transmittance, or interactance [47]. NIR spectroscopy is a common technique 
for food detection, which provides information about the overtones and combinations of 
the stretching and bending modes involving chemical bonds, such as C-H, N-H, S-H, and 
O-H, commonly found in food and beverages [9]. Information about the chemical compo-
nents is thus contained in a NIR spectrum and can be used to extract both qualitative and 
quantitative information about the chemical and physical properties of the product [21]. 
Samples with highly different aggregation states can be analyzed by NIR spectroscopy, 
from intact solids to gel-like solids, pasty, and fluid or liquid samples [47]. NIR spectros-
copy is easy to use, fast, cheap, and non-destructive, since it requires minimal or no 

Figure 1. Data search flow diagram.

3. Near-Infrared (NIR) Spectroscopy

The IR region is conventionally divided into three sub-regions: starting from the visible,
there are the near-infrared, which is “near” to the visible region (NIR, 12,820–4000 cm−1);
the mid-infrared (MIR, 4000–400 cm−1); and the far-infrared (FIR, 400–33 cm−1) [45]. The
basic components of a NIR spectrometer are: a light source, beam-splitter system, sample
container, detector for intensity detection and the electrical conversion of light, and a data
processing system for spectral data [46]. In food analysis, a halogen (tungsten) light source
is usually employed for Vis-NIR systems, due to its wide-emitting spectral range [27].
Different optical geometries are available for NIR spectroscopy; the main difference is the
placement of the detectors and the sample holder for different spectral modes of acquisition.
The predominant spectra modes of the acquisition include diffuse reflectance, transmittance,
or interactance [47]. NIR spectroscopy is a common technique for food detection, which
provides information about the overtones and combinations of the stretching and bending
modes involving chemical bonds, such as C-H, N-H, S-H, and O-H, commonly found in
food and beverages [9]. Information about the chemical components is thus contained
in a NIR spectrum and can be used to extract both qualitative and quantitative informa-
tion about the chemical and physical properties of the product [21]. Samples with highly
different aggregation states can be analyzed by NIR spectroscopy, from intact solids to
gel-like solids, pasty, and fluid or liquid samples [47]. NIR spectroscopy is easy to use, fast,
cheap, and non-destructive, since it requires minimal or no sample preparation. Its positive
features have promoted its application for different purposes, from characterization and
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composition to the quality and safety evaluation of several food and beverage commodities.
However, NIR measurements require a small area of the samples; this is not an issue with
liquid samples, but for solid ones, this technique is inadequate for the evaluation of the
spatial features of the sample. NIR spectral measurements are dependent on the specific set-
ting or configuration of the lighting source and detection probe. Intact solid samples, often
measured in diffuse reflectance, are challenging since measurements provide information
on the light both reflected from and transmitted through the sample [21]. NIR spectroscopy
shares the problems linked to the light penetration of solid samples with the HSI technique
and are explained in detail in the following section. Powder samples naturally include
different particle sizes. In NIR spectroscopy, deviation from the linear relationship usually
assumed between the absorbance and concentration is found for samples with different
particle sizes (e.g., ground coffee) due to the effects of remission and transmission through
the sample. Indeed, particles with different sizes produce various light scattering effects,
directly affecting the spectral information and model performance [48]. Therefore, the
aggregation state of the sample has a major influence in the NIR analysis. Despite the
challenges posed by some types of samples, NIR spectroscopy dominates the applications
of vibrational spectroscopy in the evaluation of most liquid products, e.g., tea and cof-
fee quality [25], and is widely used in food analysis for quality, safety (e.g., detection of
contaminants), and origin identification.

4. Hyperspectral Imaging Spectroscopy
4.1. Imaging-Based Techniques

The main advantage of HSI over NIR is its ability to provide spectral information over
the whole sample or, at least, over a large area of the sample, instead of focusing only on
selected small areas [49]. HSI was initially applied only to remote sensing, but soon its
ability to provide both spatial and spectral data spread its application to various fields,
including several food and beverage commodities [26]. The HSI technique is an integration
of imaging techniques and spectroscopic ones. As in the case of conventional imaging
devices, hundreds of images are recorded at very close, almost continuous wavelengths.
By selecting a single pixel of each image, it is possible to see the spectral information
of that specific point [50]. Thus, HIS can be applied for the quantitative prediction of
the inherent chemical and physical properties of samples as well as their spatial distribu-
tion simultaneously [25,36]. A hyperspectral image is a three-dimensional dataset, with
two dimensions (x, y) representing spatial images and the third dimension (wavelength, λ)
representing spectral information. In the HSI dataset (called hypercube, data cube, spectral
cube, data volume, or spectral volume [36]) for each pixel, with specific x and y coordinates,
the third dimension contains a unique spectrum [9]. This is highly informative because pix-
els with identical spectra have the same chemical composition [51]. The 3D hyperspectral
data cube contains a sequence of consecutive sub-images at various wavelengths [52]. HSI
is often conducted in the VIS/NIR region (400–2500 nm) since numerous chemical bonds
in food samples absorb light in that range (900–2500 nm) [9]. HSI in the VIS/NIR region
has been widely applied to quantify contaminants, detect defects, and analyze quality
attributes in various food products [25,36]. It is possible to utilize various types of light
sources with an HSI system (halogen lamps, light-emitting diodes, and lasers), although
halogen lamps are the most popular for food analysis. The light interacts with the sample
before entering the camera through a series of lenses that contain a device for dispersing
light. Finally, a computer performs data acquisition and processing [53]. For detailed infor-
mation about HSI components, please consult the work of Ma et al. [54]. HSI images can
be acquired using different approaches, such as snapshots, point-to-point spatial patterns
(the point-scan or whiskbroom method), line-by-line spatial scan patterns (the line-scan
or push broom method),and wavelength tuning with filters (area scan or staring array
imaging system) [55]. The in-line scanning (push broom) mode and the filter-based imaging
mode (area scan imaging) systems are better suited for the quality analysis of food and
agricultural materials [56]. In the push broom set-up, a linear scan of the sample surface is
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performed by time either moving the sample or using mirrors. This is particularly useful
for quality checks in industrial applications; when samples are placed on moving belts in
the filter-based mode, the complete spatial information is acquired each time. The scanning
of samples consists in the acquisition of a two-dimensional image of a single waveband for
the whole sample area in each step. The positions of both samples and the camera are fixed,
and the wavelength selection is performed by electronically tunable optical filters [57]. The
most common acquisition method is in-line scanning, which is especially applied for real-
time and online applications. Filter-based HSI systems require more complex calibrations
and are not easy to implement for online applications [29]. Spectral image data can be
obtained in different spectral modes. For food and beverage quality analysis, the spectral
modes used are interactance, diffuse reflectance, or transmittance. Transmittance, which
requires high-resolution detectors, is usually employed when samples are homogeneous
solids or transparent solutions. Transmittance is commonly used to monitor the internal
quality changes in food products, since the light passes through samples before reaching
the detector and, therefore, carries information on the internal composition. However, the
product thickness must be below a certain value to ensure the possibility of imaging [58].
Diffuse reflectance and interactance are by far the preferred spectral modes used for the
HSI analysis of food products. The most commonly used approach for the analysis of food
quality and safety is the use of the push broom method in the reflectance mode [25,57].

4.2. Specific Problems

Despite the potential of the HSI technique, there are several factors that must be
considered when collecting food spectral images, since they can influence the final outcome.
Some of these factors are linked to the spectral mode employed, sample inhomogeneity
(e.g., thickness of the powder pressing [59]), specular reflections caused by the smooth
surface of certain foods [60], and the selected range of bands or wavelengths [61]. As
explained previously for the NIR analysis, while beverages are homogeneous samples,
food products are very complex ones. Handling real food products means dealing with
samples that show very high variations in their surface (e.g., roughness, asymmetry, surface
inhomogeneity, and spherical shape), which introduce random variations in the acquired
dataset. The incident light could enter the sample, be reflected, or both, depending on the
nature of the sample surface. The use of flat-surfaced samples for imaging is preferable
since it makes the sample’s surface parallel to the imaging plane, e.g., powder samples
are pressed into tablets with a smooth surface [62]. However, in several food product
samples, e.g., intact fruits, surfaces present irregularities by varying in color and surface
conditions/roughness, which creates incident light to scatter. Although the depth of
penetration of the incident light is usually negligible [61], some absorption effects are
inevitable. Therefore, the light that reaches the detector carries information about the
sample’s composition at different locations but also different depths within the product [63].
However, it is not simple to determine the penetration depth, since it varies depending on
the condition of the sample surface and the wavelength range [64]. While the scatter effect is
due to physical properties (e.g., cellular structure, particle size, and density), the absorption
effect is due to the chemical composition (e.g., sugars, proteins, and acids). Therefore, it
is important to consider the sample surface variations and to apply adequate treatments
during the image-processing steps, as is explained later. Another source of variation arises
from products with a spherical or curved surface (e.g., apples). The curved surface causes
a change in the distance from the detector to the sample surface, resulting in a discrepancy
in the optical path length [65]. This problem can be solved during the acquisition step
by rotating the sample or acquiring a panoramic image [66] or can be corrected after the
acquisition by choosing adequate spectral pretreatments [61]. The other two common
causes of variation in the dataset originate from specular reflection and high temperature.
Specular reflection produces glare spots in the image. These spots alter the intensities of
the pixels in each image band and consequently change the spectral profile. This produces
artifacts that negatively affect the feature extraction step and, hence, the classification
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model. These spots can be avoided by modifying the sampling conditions, i.e., the angle of
incidence of the radiation; otherwise, glare pixels need to be detected and removed before
the feature extraction and classification steps [60,67]. With the extension of irradiation time
with halogen lamps, the temperature increases the heating of the sample. This heating
effect is evident in temperature-sensitive foods (e.g., honey) since it modifies their physical
state, but also affects the absorption of light of any sample. If it is not possible to simply
reduce the sampling time, it is necessary to apply a temperature interference correction
method [61]. Working with hyperspectral imaging datasets is already complex since it
requires handling a large number of images in both the spatial and spectral dimensions at
the same time. Moreover, due to the afore-mentioned intrinsic complexity of food products,
it is evident that one single sample spectrum cannot be considered representative of a
product in a particular condition [62]. To increase the sample representativeness, it is
necessary to acquire hyperspectral images of a large number of sample replicates under
that particular condition [63]. If the number of samples is small, even DL algorithms
cannot perform accurate qualitative and quantitative analyses of the samples. The use
of large amounts of high-quality data is an effective way of improving the quality of the
final model. Even though the sample quantity is a critical point, there is no specific or
suggested number of samples. Researchers usually rely on rules of thumb rather than a
specific simple formula. The preference for a heuristic approach is understandable since
the sample size should be considered an optimization problem. The prediction ability of
the model becomes robust as the number of data increases. In most cases, thousands of
samples are required for DL models [68].The requirement of a large number of samples
adds some drawbacks. Numerous samples require a long image acquisition time and also
drastically increase the amount of data. These data require storage space and, furthermore,
increase the difficulties in the already complex steps of image processing and analysis. HSI
comprises a set of numerous monochromatic images corresponding to consecutive and
almost continuous wavelengths. This 3D dataset normally contains redundant information
or may exhibit a high degree of correlation. Therefore, the HSI dataset is often used to select
the most efficient wavelengths to develop a multispectral computer vision system for food
quality real-time inspection [50]. Many studies have applied statistical techniques to reduce
the hyperspectral images to multispectral ones. The reduction of the large HSI dataset after
the selection of fewer optimized monochromatic images to a small set of wavelengths is
often a chosen approach [63]. Multispectral imaging (MSI) has been also used for food
analysis on its own. Spectral imaging techniques can be classified as hyperspectral or
multispectral. The difference is in the number of wavelength bands recorded, normally
several hundred contiguous bands for HSI with a narrow bandwidth (5 and 10 nm) [69] and
generally less than 20 [34], discrete, and narrow wavebands for multispectral imaging [36].
Multispectral imaging systems have been developed using a small number of narrow
wavelengths to detect the features of interest. These wavelengths may range from visible to
NIR regions [34].

5. Chemometrics
5.1. Hyperspectral Data

HSI data analysis produces two types of models, classification or regression models,
depending on the aim of the research. The classification models attribute samples to discrete
finite known or unknown groups, e.g., samples are divided into different classes based on
a consumer’s rating. Instead, the prediction creates a regression model between the input
data and target properties in a continuous range, e.g., sugar content prediction in fruit. In
hyperspectral data analysis, before the application of any modeling method, some image
processing steps are essential. Image processing involves the application of pre-processing
tools, wavelength selection, feature extraction, and segmentation [50]. The application of
pretreatment techniques reduces the undesirable variation, noise, and redundancy that
are naturally introduced during hyperspectral data acquisition, which significantly affects
the extraction of useful information [50,70]. In the field of hyperspectral imaging, the
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most common practice is the adaptation of the well-known pre-processing techniques of
classical spectroscopy [71]. This is explained in detail in the following paragraph. HSI
requires specific additional data processing steps due to its inherent complexity. HSI spectra
have major problems with high collinearity and data redundancy. Hyperspectral images
contain hundreds of continuous spectral bands (hundreds of spectral bands of relatively
narrow bandwidths). In such a dataset, it is easy to face multicollinearity problems. If
two independent variables in a model are highly correlated, then one of them can be
predicted using the other. This correlation results in the weakening of the accuracy of
the model, making the statistical inferences less reliable. The removal of wavelengths
carrying redundant information not only contributes to the elimination of low signal-to-
noise ratio bands, but also extracts the most representative wavelengths. This selection
reduces the spectral dimension of the dataset decreasing the computational burden [25].
Various methods involving wavelength selection and feature extraction have been used to
reduce the dimensionality of the hyperspectral images [50]. Data dimensionality reduction
methods can be mainly divided into two categories: feature extraction and band selection.
The main difference is that feature selection keeps a subset of the original features, while
feature extraction algorithms transform the data into a new feature space. A detailed
explanation of these methods can be found in the literature [72]. It is very important for HSI
analysis to perform a segmentation of the image, which allows for background removal
and the selection of the regions of interest (ROI). In the images acquired with HSI, the
sample does not cover all the image area, and the parts of the image that do not include
the sample must be eliminated. The elimination of these areas may seem a logical and
simple task. Nevertheless, this selection is not straightforward [71]. The ROI selection
could be performed by manual selection or by applying image segmentation algorithms.
Image segmentation is often preferred in food analysis since manual segmentation is
very time-consuming and prone to intra- and inter-observer variability [73]. The simplest
image segmentation method is threshold segmentation; other types include region-based
segmentation, edge segmentation, watershed segmentation, clustering-based segmentation,
and deep learning [61]. Usually, to simplify the modeling procedure, a mean spectrum
of all the pixels within the same ROI is calculated. However, ROI selection should be
performed with great care. If the ROI chosen is too small, it may lead to the exclusion of
pixels carrying important information about the food sample. Conversely, a larger ROI may
cause a loss of specific information due to an average of too many pixels. Another issue
may arise from dead pixels and spikes. Dead pixels are usually caused by anomalies in the
detectors and are problematic since their presence can distort the final prediction models. It
is also important to identify and handle spiked points (spikes), which appear as a sudden
and sharp rise followed by a sharp decline in the spectrum. Spikes are anomalies linked
to detectors or electronic circuit problems or arise from environmental conditions [71].
Among the several statistical techniques that are available for hyperspectral images, we
focused only on the processing techniques that are usually applied for food and drink
commodities’ quality analysis. General multivariate image analysis for HSI has been
previously reviewed [74].

5.2. Multivariate Data Analysis

Large multivariate datasets are common in food research, especially from non-destructive
technologies [75]. Numerous multivariate data analysis methods are available in the lit-
erature; the selection of the optimal method depends on the dataset and objective of the
investigation. As with any analytical measurement, the experimental design, sample selec-
tion, and data collection steps must be carefully planned as they are of critical importance
and could influence the analysis outcome [76]. For a multivariate data analysis, after
data acquisition, several steps are required prior to the obtainment of the outcome. The
main steps include the application of pretreatments to remove noise, feature extraction to
eliminate non-informative or redundant information, model creation, and model validation.
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5.2.1. Step 1: Pre-Processing

Data pre-processing is a fundamental step that removes undesired, irrelevant, and
random or systematic variations in the dataset occurring during data acquisition. This type
of noise could be linked to the sampling procedure, to the inhomogeneity of the biological
samples, or simply due to the instrumental artifacts [77]. The efficacy of a pretreatment
depends on several factors, such as the characteristics of the experimental data and the
purpose of the analysis. The selection of the appropriate pre-processing method is not
straightforward. Several pre-processing methods can be found in the literature, but there
are no unequivocal guidelines for the selection of the most appropriate pre-processing
method. It is always advisable to check the literature for pre-processing methods that
have already been applied to similar experiments [57]. Since the primary objective of
spectral pre-processing is to remove the effect of undesirable phenomena on the spectral
data arising from measurements, the identification of the possible causes of noise is useful
for selecting the appropriate pre-processing method or the combination of pre-processing
methods. For instrumental noise, smoothing could be useful since it can partly remove
random noise (e.g., Savitzky–Golay filter). NIR and hyperspectral data mainly suffer from
light scattering effects resulting from the lack of homogeneity of the sample, linked to an
uneven morphological surface (e.g., surface roughness) or the different sizes of particles.
The most popular methods to handle light scattering are standard normal variate (SNV)
and multiplicative scatter correction (MSC). The derivatives of spectral data are also used
since they are able to reduce the spectral noise and enhance the difference between the
spectra. The first and second derivative eliminate the additive baseline and linear baseline,
respectively [71,78]. Derivatives increase sensitivity since they amplify small variations in
the data, highlighting important spectral features that were partially obscured by noise.
However, they also amplify the noise in the data. Therefore, after derivatives, a smoothing
filter is usually applied (e.g., Savitzky–Golay filter). A comprehensive explanation of the
various available pretreatments (e.g., mean centering and baseline correction) can be found
in Siche et al. [34].

5.2.2. Step 2: Multivariate Analysis with ML

After pre-processing, the raw dataset is transformed into a “cleaned” dataset. At this
point, dimensionality reduction and the selection of spectral features are usually performed.
The feature extraction step is a very important one since it reduces the data to a set of
independent variables containing key characteristics linked to the data. This selection
will save computational time later when building the models between the data and the
investigated parameter [79]. Chemometry is the discipline that uses mathematical and
statistical methods to process chemical data and to maximize the extraction of useful
information [80]. Machine learning (ML) is a branch of artificial intelligence (AI) often
used as a chemometric tool. ML techniques are capable of removing irrelevant information,
extracting feature variables and building calibration models with a strong fault tolerance
and a high degree of robustness [26]. ML encompasses different scalable and heuristic
algorithms. These algorithms learn rules from the training data and identify patterns in a
dataset to classify or predict specific parameters without being explicitly programed [81].
Repeated iterations are performed, resulting in a model that progressively improves its
performance [30]. The outstanding performances of non-destructive techniques in com-
bination with advanced ML algorithms have made this combination widely applied in
food analysis [75]. A large variety of chemometric-based feature selection algorithms are
available; please consult the work of Lin Y. et al. [75] for a comprehensive list. The next
step is the actual creation of a chemometric model that links the property of interest and
the spectral data. The ML methods to be applied in this step depend on the scope of
the investigation. The choice mainly depends on the quantitative or qualitative nature
of the analysis. ML algorithms can be divided into unsupervised or supervised learning.
The main difference between these two types is the labeling of the training data, which
are the data used to build the model. Supervised machine learning is used for pattern
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recognition or regression and relies on labeled input and output training data, whereas
unsupervised learning processes use unlabeled or raw data. If the information on the
studied food attributes is missing, only an unsupervised classification can be performed.
Since no information is available concerning the class label of the data or even the number
of classes, the algorithm determines a mathematical boundary among the classes. In this
approach, the unlabeled samples are then classified into different groups based on some
measure of mathematical similarity. Therefore, in each cluster, there are samples similar
to each other but mathematically different from samples in other clusters [82]. For the
unsupervised qualitative analysis of food and drinks, a principal component analysis (PCA)
is usually the first choice, as well as for an exploratory analysis of the data [76,83]. PCA
can be used as a dimensionality reduction technique as it discovers independent latent
variables by transforming the original variables linearly and removing the correlation
between them [63]. This linear feature extraction method is suboptimal if the datasets
investigated have a non-linear structure, which is often the case for datasets obtained by
spectrometric techniques [75]. In addition to PCA, other types of clustering algorithms can
be used for unsupervised classification, including hierarchical cluster analysis (HCA) and
K-means clustering [25]. Supervised qualitative analysis differs from the unsupervised one
since it has available information concerning the classes. The number of predefined classes
is based on the measured dependent variable values that were previously measured. The
model then classifies the membership of any novel sample to one of the classes. Different
classification algorithms can be used; the most popular ML tools used in food and beverage
analysis are linear discriminant analysis (LDA), partial least squares-discriminant analy-
sis (PLS-DA), support vector machines (SVMs), K-nearest neighbor (KNN), and artificial
neural networks (ANNs) [25,57]. PLS and ANNs are the most used in food analysis and
are explained later in this paragraph. A complete general description of algorithms for
classification purposes can be found elsewhere [84]. In quantitative analysis, the regression
models correlate the spectral data and the quantity of a compound or a property of a
sample (e.g., sugar concentration or hardness in berries). The analysis estimates the effect
of the explanatory variables on the dependent one to identify which information captured
by the independent variables is relevant to predicting the dependent one. The regression
model allows the prediction of the dependent variable of interest from the independent
ones. Therefore, this supervised modeling requires information on both the independent
and dependent variables. The property or quantity data are obtained by previous measures
on the samples using reference standard laboratory methods [57]. Regression learners are
used to predict specific attributes or parameters, such as sensory descriptors in food and
beverages. This type of ML may be classified as linear regression, regression trees, support
vector machines (SVMs), Gaussian process regression, ensembles of trees, and ANNs [30].
For a quantitative analysis of fruits and vegetables, the most commonly used ML algorithms
are PLS and ANNs [63]. A main difference among the regression models for quantitative
analysis is the linear or non-linear nature of the relationship between the predicted variable
and the independent ones. For predictive purposes, PLS is often the most appropriate
method, if the relationship between the predicted variable and the independent ones is
linear [57]. PLS, as with PCA, is used to convert a set of highly correlated variables into a
smaller set of independent latent variables by projecting the independent and the predicted
variables into a new latent space, where the covariance between these latent variables
is maximized. PLS regression is particularly useful when the number of independent
variables is higher than the dependent ones, since it allows to cope with multicollinearity
among the predictors. PLS is also employed as a dimensionality reduction technique [63].
PLS-DA is a categorical version of PLS regression, where the variables to be predicted
are discrete [85]. To model more complex relationships between the dependent and inde-
pendent variables, deep learning (DL) algorithms are required. Artificial neural networks
(ANNs) are a type of DL algorithm that are frequently used both for classification and
quantification purposes in food and drink analysis. An ANN is a non-linear data modeling
tool capable of modeling complex relationships between inputs and outputs or finding
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patterns in data when linear computing cannot. The structure of an ANN is modeled after
the human brain, with a parallel series of interconnected sets of multiple layers of artificial
neurons [86]. In recent years, the widespread application of ANN algorithms to various
aspects of food science has been reported, especially concerning its application in food
quality analyses [87]. ANNs’ ability to handle a large amount of heterogeneous data and
to solve complex non-linear problems makes this algorithm well-suited for hyperspectral
image processing and classification [75,88].

5.2.3. Step 3: Model Validation

Finally, the quality of the established models must be evaluated [25]. The performance
of different classification models is compared based on their accuracy, sensitivity, and
selectivity [89]. For regression, two types of validation procedures are possible, cross-
validation (internal) and external validation. Cross-validation is also called “internal”
validation since the dataset for the validation is composed of samples randomly selected
from the same dataset on which training is performed. Internal validation is useful for
the optimization of the model, since it allows selecting among alternative processing
methods and to avoid overfitting. However, to assess the applicability or generalizability
of the findings to the real world, external validation is required. A prediction model is
evaluated for its adaptability and reliability with the help of cross-validation techniques
and/or external validation datasets. The prediction model is used to predict the outcome
(e.g., quality parameters of fruits and vegetables) of new input data [75], and the model’s
prediction performance for these unknown samples is evaluated. The fitness of the model is
based on the model’s performance on the test set through the calculation of several statistics.
The most used ones include the root-mean-square error of calibration, cross-validation, or
prediction (RMSEC, RMSECV, and RMSEP, respectively);the determination coefficients of
calibration, cross-validation, or prediction (R2c, R2cv, and R2p, respectively); bias; and the
ratio of prediction to deviation (RPD). The optimal model shows the highest R2 and RPD
and the lowest RMSE [90]. Only after validation, the model can be applied to NIR spectra
or to every pixel of a hyperspectral image recorded from unknown samples to predict the
quality of interest [53].

6. Sensory Analysis—An Overview

It is well known that a broad range of factors, comprising chemical and physi-
cal properties, contribute to the perceived sensory characteristics of foods and drinks
(e.g., smell, taste, and appearance) [41]. A simple quantification of chemical compounds
does not account for the perceived taste or smell. There are effects such as the “masking
effect” which decreases taste intensity despite the additional taste component [91]. In
addition, it is well known that the concentration of volatile compounds should exceed their
specific odor activity value (OAV) to be perceived [92]. Moreover, in the taste experience,
the different factors are not separate but rather are interconnected. Flavor perception,
defined as the amalgamation of taste and aroma, is determined by the presence and interac-
tion of the various chemical compounds present in the food matrix perceived through a
combination of different sensory modalities. For example, in wine, the aroma contributes
significantly to the taste, while for meat and cheese, the combination of taste and aroma
influences the flavor [41]. Time plays a non-negligible role in the overall sensory perception
of food and beverages. It was reported that the human senses are keener to perceive
changes in a stimulus during the eating or drinking process rather than having a response
to its absolute intensity [93,94]. During ingestion, different processes could influence the
perception of the overall aroma and taste features (e.g., the release and transport of volatile
compounds to the olfactory epithelium [93]), and conventional analyses do not include an
over-time investigation of food–human interactions. Although sensory perception relies
on the human senses, several factors, such as individual preference, personal eating expe-
rience, previous eating experiences, palatability, and physical condition, could influence
the overall judgment [95]. These sources of subjectivity are even more problematic since
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it was found that results could fluctuate among different tasters or even that the same
tasters evaluate the same sample differently during different sensory trials [91]. Indeed, in
a comparison of instrumental analysis and sensory analysis, it was found that the instru-
mental results were more sensitive to differences than the sensory analysis. This underlines
how strong is the influence of parameters that are not quantifiable with common analytical
methodologies on the sensory judgment. Therefore, a quality analysis based on visual
appearance, texture, and chemical composition, even a very detailed one, is not sufficient
to predict the consumer’s appreciation of a product. A combination of quality parameters
determined by conventional analytical techniques together with a sensory analysis is the
most suitable approach. In sensory analysis, the choice of tasters is made from a group of
either trained experts or untrained consumers. The choice depends on the type of food
and specific goals of assessment. Consumers are merely employed when information on
hedonic liking, preference, or purchase intentions is required [96]. Sensory evaluation,
particularly in complex samples such as foods and drinks, requires the selection of suit-
able methods and well-trained subjects who recognize the specific features of foods and
drinks to avoid subjectivity. Trained panelists determine cores for samples considering
their sensory characteristics, such as appearance, aroma, and taste, in accordance with
official standard methodology using common sensory terms to describe food [48]. However,
the analysis performed by sensory panels of experts, who have been trained in sensory
evaluation methodologies, is not immune to error [96].

7. Applications for Plant-Based Products

From the considered studies, it can be observed that the regression methods most
widely used to build prediction models are the PLS regression or ANN with different pre-
processing methods. We found that several articles only reported the internal validations
for their prediction models, and the statistics employed for the model evaluations differed.
In general, the values of R2, RMSE (which can be RMSECV or RMSEP), and RPD were
provided, sometimes also the bias, SEC (standard error of calibration), and SEP (standard
error of prediction) values were included, while, at other times, only some or just one of
those statistics alone was provided. Therefore, it is not easy to compare the fitness of the
models and understand if they can be effectively applied to novel datasets. As explained in
the previous paragraphs, the selection of specific wavelengths or bands in the spectrum is of
pivotal importance [97,98]. However, the majority of articles report the selection procedure
that is followed, but do not always indicate the actual wavebands used to build the models.
The bulk of articles found report on the studies on worldwide, highly consumed foods or
drinks, e.g., tea and coffee.

7.1. Coffee

Coffee is a popular beverage consumed throughout the world. This beverage is one of
the most studied agricultural commodities in terms of sensory quality. Several studies have
been carried out on the application of NIR to predict the sensory attributes of coffee in
conjunction with a sensory evaluation performed by a panel of experts [99]. In general,
it was possible to build suitable models to predict the sensory attributes of coffee from
NIR spectral features [100–102] or HSI [103]. Some studies reported the most important
wavelengths related to the sensory attributes measured. Generally, sensory attributes,
such as the aroma, acidity, mouthfeel, aftertaste, bitterness, cleanliness, astringency, defects,
and overall quality, are evaluated, following the roles established by the Specialty Coffee
Association of America (SCAA) [104]. Coffee quality depends on the chemical composition
of green coffee beans, which in turn is influenced by planting patterns and design, and
the roasting process. Concerning the applicability of models to different datasets, a rapid
and simultaneous quantification of different classes of molecules in green coffee beans
(lipids, proteins, sucrose, phenolic compounds, total chlorogenic acids, and caffeine) was
reported using a previously published prediction model. A sensory analysis was then
performed to correlate perceived flavor to specific compounds belonging to those classes
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identified by the HPLC/UV-Vis analysis [105]. In another study, the authors performed a
correlation between the composition of green Arabica coffee beans and the sensory quality
of coffee brews demonstrating that high cafestol, sucrose/acid, and cafestol/kahweol ratios
in the green coffee beans were usually associated with higher quality scores for the coffee
brews [104]. HSI is another useful technique used to predict sensory attributes, such as
coffee aroma. It was possible to predict volatile compounds using the HSI spectra acquired
for single-roasted coffee beans, which were successfully segregated into batches based on
the HSI predictions of groups of volatile compounds (pyrazines) and analytically predicted
sensory traits (nutty) [103]. NIR has been also applied to classify espresso coffees with
different sensory characteristics [106], to distinguish between defective and non-defective
roasted coffees [107] and to discriminate between Arabica and Robusta coffees, which
strongly influence the perceived aroma [108,109]. Indeed, the authors developed a rapid
and simple method to identify pure Arabica coffee and blended coffee by NIR spectroscopy
reaching a purity level that varied from 98.71 to 101.53% for pure Arabica coffees and from
77.22 to 83.93% for Arabica concentrations in blended coffees [109]. A discrimination was
performed for Robusta coffee grown in different agroforestry systems with a micro-portable
NIR and sensory analysis. They used the NIR spectral data to create a PCA and found
that some wavelengths responsible for the clusterization of samples were linked to the
stretching and bending of groups belonging to sugars, caffeine, sucrose, and chlorogenic
acids. These compounds were correlated to attributes of bitterness, flavor, cleanliness, and
mainly acidity, body, and overall quality in the sensory analysis [110].

7.2. Tea

Together with coffee, tea is a very popular non-alcoholic drink appreciated for its
flavor and also its various health benefits. There are different varieties of tea (black, green,
Oolong white, and Pu-erh), but all are derived from the leaves of Camellia sinensis. They
are categorized according to the degree of fermentation (unfermented, lightly or semi-
fermented, fully fermented and post-fermented). The aromatic differences are determined
by the level of oxidation, which determines a different chemical compositions [111]. The
influence of fermentation on the quality of tea is linked to the changes in the chemical
composition, which influences the taste, aroma, color, and nutritional value. Several authors
developed prediction models for various polyphenolic compounds in fermented black tea.
Models were built for eight individual catechins in the black tea drying process [112]. Many
chemical compounds affect tea flavor, including catechins, which can specifically provide
important taste profiles during tea’s infusion, especially for bitterness and astringency.
In this article, the authors underlined how the strong predictive power of catechins in
the black tea drying process was determined by their model, which was a guideline for
controlling the sensory quality of black tea. Instead, other authors built models for various
theaflavins in the black tea fermentation process and performed a hierarchical cluster
analysis combined with a sensory evaluation to group the samples through different
fermentation processes [113], showing a clear link between those molecules and sensory
perception. Harvest can strongly influence tea quality. Indeed, several chemical compounds
of white teas produced from fresh leaves with different maturity levels (mature leaves and
shoots, or buds and young leaves) were analyzed, including catechins, alkaloids, amino
acids, and flavonol glycosides; also, the sensory characteristics of two categories were
also assessed by the panelists. The testers observed a considerable difference between the
two maturity levels. Then NIR data used to build the PCA showed a separation between
the two maturity levels; thus, the authors underline how NIR spectroscopy is a potential
method to discriminate between the sensory characteristics of white teas [114].NIR is
a useful method to classify teas based on their sensory characteristics, as shown in the
discrimination of premium-grade green tea. This “Special-Grade Green Tea” is difficult to
recognize only based on the dry tea’s appearance. PLS modeling allowed for the prediction
of the sensory scores of samples with a high prediction accuracy (over 90%). Moreover, the
authors showed a potential correlation between specific spectral regions and the presence
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of polyphenols and alkaloids measured in the samples (total polyphenols, catechins, and
flavonol glycosides) through principal components [115].The moisture content of leaves
during processing can seriously influence the tea’s sensory quality. The control of water
content during the processing of tea can be useful to stabilize the quality and flavor
of the beverage. The results obtained demonstrate that the data fusion of a micro-NIR
spectrometer and portable colorimeter is feasible to establish a quantitative prediction
model of the moisture content in Longjing tea [116].

7.3. Soft Drinks

We did not find many articles that correlated sensory perception with fruit juices. The
authors mainly predicted the total soluble solids (TSSs) content, pointing out how the TSSs
parameter was related to sensory attributes [117,118]. A hyperspectral microscope was
used for the sensory quality analysis of matcha in an attempt to mimic human tasters. This
hyperspectral microscope imaging (HMI) system is composed of an HSI spectrometer and
an upright microscope. The most informative spectral regions were selected by competitive
adaptive reweighted sampling (CARS). ANN models were established based on the spectral
information possessed by the most informative regions selected by CARS and the sensory
scores from the sensory evaluation. Different sets of spectral variables were used to predict
the appearance, infusion color, aroma, taste, and overall quality profiles. HMI technology
as a rapid, objective, and accurate tool has the potential for estimating the quality of
matcha [48].

7.4. Alcoholic Drinks

VIS-NIR spectroscopy was also used to evaluate wine sensory characteristics. Some
authors modeled the relationship between some sensory and palate properties and the
Vis-NIR spectra of white wine using PLS. Specifically, the correlation coefficients (Rcal)
obtained were higher than 0.70 for estery, lemon, and honey aromas, and less than 0.50
for passion fruit aroma, overall flavor, and sweetness in the cross-validation [119]. In aged
wines and spirits, volatile phenolic compounds are responsible for characteristic odor notes.
The levels in the aged wine spirits are influenced by the aging system, e.g., the wood and
toasting levels of the barrels. The NIR technique was used to predict the volatile phenols
content, which are known contributors to the sensory quality of spirit beverages [120].
The same authors analyzed wine spirits aged in stainless-steel or wooden barrels and
found that PCAs created with NIR spectra over a range of 540 days were able to efficiently
cluster the samples based on the different aging technologies and wood species used [121].
Other authors also reported a classification (LDA) of wine spirits, and brandies by aging
according to their phenolic and higher alcohol compositions. Moreover, a PLS allowed the
prediction of the same compounds in novel samples [122]. In both articles, the importance
of the compounds analyzed for wine and spirit sensory characteristics was stressed, but an
actual sensory analysis was not provided.

7.5. Fresh Fruits and Vegetables

Fruits and vegetables have been mainly analyzed with regard to their main com-
ponents, such as sugar and acids, and for quality defects, like internal browning [123].
Sugar quantification with NIR techniques for fruits is a well-established technique [124].
Several authors applied NIR or VIS-NIR spectroscopic techniques to predict, in addition
to sugar, other fundamental fruit and vegetable quality parameters linked to the chemical
composition, such as TA, pH, dry matter content, and total phenolic content [125]. HSI
was also used to predict some of these parameters for table grapes [126]. Both color and
some textural attributes were well predicted from the NIR spectra for boiled potatoes. The
most valuable traits from a sensory analysis are useful information for potato breeding
programs [127]. Prediction models were developed through a PLS regression relating
sensory-based texture descriptors to the dry matter (DM) content of potatoes. Since, using
PLS, the NIR spectra were also related to the DM content, the author noted the existence of a



Chemosensors 2023, 11, 579 15 of 31

relationship between NIR spectra and sensory-perceived texture [128]. A prediction of dry
matter using NIR spectra was performed. Dry matter was selected since it includes sugars
and other compounds (fibers, minerals, acids, etc.) that contribute to flavor. The models
were built for the dry matter analysis of the d’Anjou pear cultivar using fruit samples col-
lected in two consecutive years. Pear samples were pooled into three classes depending on
the predicted dry matter content. Two hedonic tests in consecutive years were performed
and the samples were judged on a sensory scale for eight sensory attributes (appearance,
aroma, firmness, crunchiness, juiciness, sweetness, bitterness, and pear flavor) and overall
liking. Consumers significantly favored higher dry matter fruits over lower dry matter
fruits in terms of the perceived pleasant traits. Thus, the NIR sorting of pears by dry matter
at harvest is a rapid and simple way to select consumers’ favored products [129]. Another
essential aspect that contributes to the perceived quality of both fruits and vegetables is
the texture [96]. A number of different VIS-NIR prediction models were developed to
evaluate the texture properties of fruits. Texture parameters, such as roughness, crunchi-
ness, mealiness in apples, hardness, chewiness, cohesiveness, and firmness of dates, were
analyzed [130]. Only one study investigated the application of MSI to predict the color
and texture of packaged wild rocket [131]. We found that HSI and MSI were principally
employed for the detection of internal defects that affected quality. A major advantage is
obviously the spatial information provided regarding color homogeneity and the presence
of surface defects or contamination (e.g., mold). In most of the studies involving fresh
vegetables and fruits, a sensory analysis was performed in combination with quality param-
eter detection and Vis-NIR spectra acquisition. In a study on fresh tomatoes, a PLS model
built with selected informative wavelengths was able to predict eight sensory attributes.
Moreover, high inter-correlations among sensory attributes, metabolites determined by
GC-MS analysis, and the selected informative wavelengths were found using PCA. Indeed,
this study on showed how 8 out of 19 sensory attributes were well predicted from the
Vis-NIR spectra of intact tomatoes using a PLS regression method [132]. Other authors
tried to predict the sensory characteristics of fruits and vegetables from spectra obtained
by non-destructive methods [133–136]. For table grapes, both NIR spectroscopy and HSI
were able to predict several physicochemical parameters. However, rather than a direct pre-
diction of consumer appreciation or specific sensory parameters, the spectral information
was employed to search for a correlation of sensory data to the spectral features associated
with chemical compounds [126,137]. To investigate the effects of the ripening stages and
parcel types on Cabernet Franc grapes, fifteen different batches were characterized by de-
scriptive sensory analyses, compression measurements, and Vis/NIR spectroscopy. Using
Vis/NIR spectroscopy, the researchers were able to discriminate between the ripening and
parcel effects using a factorial discriminant analysis (FDA). Moreover, they established
a relationship between different Vis/NIR wavelengths and sensory attributes (firmness,
elasticity, and touch resistance) [138]. Spectroscopic techniques are considered a rapid tool
to discriminate defective from non-defective extra virgin olive oil and to classify it based on
the fruitiness level [139]. Furthermore, quality parameters as well as the adulteration of oils
have also been monitored spectroscopically [47]. A sensory analysis in conjunction with
an MSI analysis was performed to follow the modification of wok-fried vegetables during
storage. While repeated sensory analyses showed that the tasters’ appreciation remained
stable over time, the authors found differences in some wavebands during storage that
were not correlated to the actual compounds, but indicated modification in the overall
composition. These findings highlight how the MSI technique can detect alterations in food
products, even before a perceived sensory modification [140].

7.6. Cocoa

Multiple substances are known to contribute to cocoa flavor and may be used as
biochemical quality parameters to describe cocoa quality. For example, the bitter taste is
associated with methylxanthines (theobromine and caffeine), while the acidic note is mainly
due to the lactic and acetic acids formed during the fermentation process. Conversely,
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astringency is caused by phenolic substances. In addition, other quality parameters, like
lipid, carbohydrate, protein, and moisture contents, are involved in the definition of cocoa
flavor. The applicability of NIR spectroscopy for the quantification of these substances
offers a rapid and reliable method to evaluate quality parameters linked to the sensorial
perception of cocoa and its derivates, such as chocolate [141]. A recent study showed that
is possible to relate the chemical and sensory profiles of chocolate. The correlation is more
difficult when the analysis is performed on cocoa beans. Indeed, the cocoa flavor strongly
depends on the post-harvest processing (i.e., fermentation and drying) to which the fresh
cocoa is subjected prior to being consumed [142].

7.7. Processed Food

Cereals and cocoa are usually used as ingredients in processed foods, such as biscuits
and snacks [143,144]. Non-destructive techniques have been adopted to assess the quality,
shelf life, and sensory evaluation of several types of processed foods [143]. The shelf
lives of traditional biscuits and two (millet and buckwheat) by-product-enriched biscuit
formulations were monitored according to several parameters, including both texture and
sensory-related (e.g., peroxide value and free fatty acids), by NIR spectroscopy. ANNs were
preferred over PLS for the prediction of the optimal storage time, free fatty acid content, and
the peroxide value of biscuits, because of their more accurate performances [144]. Other
authors, instead, assessed wafer cookies’ storage time with a combination of both destruc-
tive (water activity, mechanical properties, and sensory acceptance) and non-destructive
techniques (image analysis, NIR spectroscopy, and HSI). PLS models allowed a good deter-
mination of the storage time and water activity using NIR spectroscopy and Vis/NIR HSI
data. The water activity was an important parameter that discriminated between “good”
and “compromised” wafers, in terms of sensory (textural) properties [145]. Two IR regions
(MIR and NIR) combined with chemometric analysis were used to develop rapid meth-
ods for the determination of glucose, fructose, and sucrose levels in cereal-based snacks,
showing a good predictable performance for the PLS regression model [146]. NIR spec-
troscopy was also applied to determine xanthines and polyphenols, considered as being
mainly responsible for the bitter taste of chocolate in eleven types of different biscuits. PLS
regressions for each of the compound classes were created with the FT-NIR dataset using
HPLC-MS\MS as the reference method. The authors reported that the comparison between
the sensory panel test evaluation of the “Bitter Taste Index” (BTI), on a scale from 1 to 12,
showed a correlation between the concentration of these compounds and the perceived
bitter taste of the biscuits. However, in addition to this finding, no results of the sensory
analysis were reported in the article [147]. In an interesting article, the authors evaluated
the quality of pre-fried carrots and celeriac during defrosting at +5 ◦C. For 14 days, both
multispectral image analysis and sensory analysis with a trained panel were performed.
MSI was able to detect minor changes prior to the sensory panel. Interestingly, the article
reported the statistical treatment performed on the sensory data [140]. Various chemical
parameters, namely, starch, sugar, protein, dry matter, fat, phytate, and tannin, were de-
termined from the yam flour using NIR spectroscopy. A significant relationship between
chemical composition and sensory attributes from a sensory quantitative descriptive analy-
sis (QDA) of yam tubers was found using Pearson’s correlation analysis. The prediction of
the sensory attributes from the chemical parameters was performed with linear multiple
regressions. All the models predicted coefficients of determination close to 1. Unfortunately,
it is not clear if any type of validation was further performed on the dataset [148].

The previous sections discuss the use of the described non-destructive spectroscopic
techniques for predicting the quality parameters and sensory attributes of plant-based
products. Table 1 summarizes the applications of the same techniques for the classification
of foods and beverages.
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Table 1. Classification models.

Product Sample N Technique Regions Best Model Statistics Sensory
Analysis References

Coffee
Green beans
and roasted

ground coffee
194 NIR 12,500–3700 cm−1 LDA 100% NO Buratti et al.

(2014) [108]

Roasted and
ground coffee

beans
45 NIR 1200–2400 nm Elastic net 0.88–0.94% NO Craiget al.

(2015) [149]

Espresso 24 FT-NIR 4000–600 cm−1 PLS-DA Aroma:sensitivity = 0.92–1;
specificity = 0.82–0.99

YES
n = 6 trained

testers
Belchior et al.
(2019) [106]

Flavor: sensitivity = 0.75–0.97;
specificity = 0.94–0.99

Aftertaste: sensitivity = 0.90–1;
specificity = 0.93–1

Acidity: sensitivity = 0.75–0.97;
specificity= 0.90–1

Body: sensitivity = 0.84–1;
specificity = 0.87–0.99

Tea White tea 127 FT-NIR 10,000–4000 cm−1 PSO-SVM

98.92% discrimination of
tea (buds and young leaves

vs. mature leaves
and shoots)

YES
n = 6 trained

testers
Li et al.

(2019) [114]

Green tea 279 NIR 10,000–4000 cm−1 siPLS 93%externalpredictionaccuracy
YES

n = 6 trained
testers

Li et al.
(2019) [115]

Black tea 110 Micro-
NIR 900–1700 nm SVM

83.78–89.19%
(low–mediumlevel data

fusion: color and spectra)

YES
n = 5 trained

testers
Jin et al.

(2021) [113]

Alcoholic
beverage Wine spirits 16 NIR 904–1699 nm LDA 66–100% NO Čica et al.

(2019) [122]

Fresh/dried
Fruits and

oils

Raw and
boiled

chestnuts
96 VIS-NIR 10,000–4000 cm−1 PLS-DA

Data fusion based, raw and
boiled: accuracy (0.99

both), sensitivity (0.98 and
0.99), specificity (0.99 both)

YES
n = 8 trained

testers
Corona et al.
(2021) [150]

PLS-DA
Only spectral

data:CV = 0.78 boiled
CV = 0.98 raw

Pineapple 424 MSI 405–970 nm PLS-DA
Color:accuracy

(85.71%),sensitivity
(100%),specificity (42.86%)

YES
n = 2 testers

Manthou et al.
(2020) [151]

PLS-DA

Odor:accuracy
(83.04%);sensitivity
(61.54%);specificity

(89.53%)

PLS-DA
Texture:accuracy

(72.32%);sensitivity
(95%);specificity (15.63%)

Virgin olive
oils 112 FT-NIR 12,500–4500 cm−1 LDA

76.3% (67.2–100%):
4 classes: defective and
non-defective oils (low,

medium, high fruity flavor)

YES
n = 16 trained

testers

Sinelli et al.
(2010)
[139]

LDA
98% (92.9–100%):3 classes:

low, medium, high
fruity flavor

Grapes 15
batches Vis-NIR yes FDA 55–79%

YES
n = 12 trained

testers

Le Moigne
et al.(2008)

[138]

Gooseberries HSI 400.680–1001.612 nm LS-SVM 96.66% NO
Nirere et al.

(2022)
[152]

Cocoa Chocolate 97 VIS-NIR 400–2498 nm

SO-PLS-LDA
(selected
data from

NIR + PTR-
ToF-MS

fluorescence)

77.4% YES
n = NS

Biancolillo
et al. (2021)

[142]
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In Table 2, a summary of the NIR, MSI, and HSI techniques used for prediction
purposes is presented.

Table 2. Prediction models.

Product Sample N Technique Regions
Quality Param-
eters/Sensory

Attributes
Best

Model Accuracy Sensory
Analysis References

Coffee
Roasted
coffee
beans

250 HSI 1000–2500 nm Aldehydes PLS
R2

cv = 0.67;
RMSE = 2.85;
RPD = 1.82

NO
Caporaso

et al. (2022)
[103]

Pyrazine PLS
R2

cv = 0.69;
RMSE = 4.65;
RPD = 1.78

Ketones PLS
R2

cv = 0.43;
RMSE = 0.64;
RPD = 1.37

Phenols PLS
R2

cv = 0.54;
RMSE = 0.25;
RPD = 1.87

Acids PLS
R2

cv = 0.18;
RMSE = 4.26;
RPD = 1.12

Heterocyclic PLS
R2

cv = 0.26;
RMSE = 1.95;
RPD = 1.89

Roasted
and

ground
coffee

130 FT-NIR 12,500–3500 cm−1 Roasting color PLS R2
cv = 0.87 NO Bertone et al.

(2016) [153]

Arabica content PLS R2
cv = 0.97

Espresso
green
coffee
beans

35
38

NIR
on roasted

ground coffee
1100–2200 nm Acidity PLS R2

cv = 0.94;
RMSECV = 6.77%

YES
n = 11

trained
testers

Esteban
D’ıez et al.

(2004) [100]

Mouthfeel
(body) PLS R2

cv = 0.83;
RMSECV = 7.01%

Bitterness PLS R2
cv = 0.94;

RMSECV = 4.74%

Aftertaste PLS R2
cv = 0.86;

RMSECV = 6.57%

Arabica
roasted
coffee

51 NIR 1100–2500 nm Acidity PLS R2
cv = 0.84;

RMSECV = 0.28

YES
n = 5

trained
testers

Ribeiro et al.
(2011) [101]

Bitterness PLS R2
cv = 0.87;

RMSECV = 0.35

Flavor PLS R2
cv = 0.93;

RMSECV = 0.31

Cleanliness PLS R2
cv = 0.91;

RMSECV = 0.38

Body PLS R2
cv = 0.88;

RMSECV = 0.27

Overall quality PLS R2
cv = 0.91;

RMSECV = 0.39

Coffee 217 NIR 900–1650 nm Body PLS
R2

ev = 0.80;
RMSEP = 0.28;

RPD = 1.86

YES
n = 2

trained
testers

Baqueta et al.
(2019) [102]

Flavor PLS
R2

ev = 0.77;
RMSEP = 0.13;

RPD = 1.23

Astringency PLS
R2

ev = 0.84;
RMSEP = 0.13;

RPD = 1.09
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Table 2. Cont.

Product Sample N Technique Regions
Quality Param-
eters/Sensory

Attributes
Best

Model Accuracy Sensory
Analysis References

Acidity PLS
R2

ev = 0.80;
RMSEP = 0.11;

RPD = 5 × 10−14

Bitterness PLS
R2

ev = 0.84;
RMSEP = 0.10;

RPD = 0.74

Powder
fragrance PLS

R2
ev = 0.75;

RMSEP = 0.15;
RPD = 1.05

Drink aroma PLS
R2

ev = 0.75;
RMSEP = 0.16;

RPD = 1.02

Residual flavor PLS
R2

ev = 0.75;
RMSEP = 0.15;

RPD = 0.89

Overall quality PLS
R2

ev = 0.74;
RMSEP = 0.16;

RPD = 1.02

Coffee 56 NIR 900–2300 nm Quality score PLS R2
ev = 0.98;

RMSEP = 0.52

YES
n = 6

trained
testers

Belchioret
et al. (2022)

[106]

Coffee
blends 55 NIR 1200–2400 nm Defective coffee PLS

R2
ev = 0.87–0.91;

RMSEP = 0.03
(mixture of

defects)

NO Craiget et al.
(2015) [149]

Tea Green tea 225 micro-NIR 900–1700 nm Moisture PLS
R2

ev = 0.98;
RMSEP = 0.03;

RPD = 6.53
NO Zong et al.

(2022) [116]

Black tea 108 NIR 1000–1800 nm Catechin LS-
SVM

R2
ev = 0.98;

RPD = 5.65 NO Li et al.
(2023) [112]

Catechin
gallate

LS-
SVM

R2
ev = 0.99;

RPD = 10.7

Epicatechin LS-
SVM

R2
ev = 0.99;

RPD = 7.16

Epicatechin
gallate

LS-
SVM

R2
ev = 0.98;

RPD = 5.45

Epigallocatechin LS-
SVM

R2
ev = 0.98;

RPD = 5.40

Epigallocatechin
gallate

LS-
SVM

R2
ev = 0.98;

RPD = 6.37

Gallocatechin LS-
SVM

R2
ev = 0.98;

RPD = 6.22

Gallocatechin
gallate

LS-
SVM

R2
ev = 0.99;

RPD = 14.8

Black tea 110 micro-NIR 900–1700 nm Theaflavin SVM

R2
ev = 0.79;

RMSEP = 0.77;
RPD = 1.60

(micro-NIR)
YES
n = 5

trained
testers

Jin et al.
(2021) [113]

R2
ev = 086;

RMSEP = 0.58;
RPD = 2.01

(data fusion)

Theaflavin-3-
gallate SVM

R2
ev = 0.73;

RMSEP = 0.74;
RPD = 1.48

(micro-NIR)
R2

ev = 0.67;
RMSEP = 0.74;

RPD = 1.36
(data fusion)



Chemosensors 2023, 11, 579 20 of 31

Table 2. Cont.

Product Sample N Technique Regions
Quality Param-
eters/Sensory

Attributes
Best

Model Accuracy Sensory
Analysis References

Theaflavin-3-3′-
gallate SVM

R2
ev = 0.24;

RMSEP = 2.05;
RPD = 0.98

(micro-NIR)
R2

ev = 0.18;
RMSEP = 1.90;

RPD = 0.99
(data fusion)

Theaflavin-3′-
gallate SVM

R2
ev = 0.63;

RMSEP = 0.48;
RPD = 1.30

(micro-NIR)
R2

ev = 0.55;
RMSEP = 0.47;

RPD = 1.18
(data fusion)

Beverages Wine
spirits 16 NIR 904–1699 nm Alcohols and

phenols PLS R2
cal = 0.82–0.98 NO Čica et al.

(2019) [122]

Wine
spirits 120 NIR 12,500–4000 cm−1 Guaiacol PLS

R2 = 0.96;
RMSEP = 0.0296;

RPD = 5.90
NO Anjos et al.

(2022) [120]

4-methylguaiacol PLS
R2 = 0.96;

RMSEP = 0.0233;
RPD = 5.36

Eugenol PLS
R2 = 0.95;

RMSEP = 0.0049;
RPD = 4.92

Syringol PLS
R2 = 0.97;

RMSEP = 0.1170;
RPD = 6.76

4-methylsyringol PLS
R2 = 0.94;

RMSEP = 0.0874;
RPD = 4.45

4-allylsyringo PLS
R2 = 0.90;

RMSEP = 0.0176;
RPD = 3.19

White wine 120 Vis-NIR 400–2500 nm Estery aroma PLS R2
cv = 0.67;

SEP = 0.61

YES
n = 16

trained
testers

Cozzolino
et al. (2005)

[119]

Lemon aroma PLS R2
cv = 0.71;

SEP = 0.40

Passionfruit
aroma PLS R2

cv = 0.58;
SEP = 1.01

Honey aroma PLS R2
cv = 0.78;

SEP = 0.50

Sweetness
(flavor) PLS R2

cv = 0.60;
SEP = 0.30

Overall flavor PLS R2
cv = 0.77;

SEP = 0.30

Strawberry
juice 122 FT-NIR 800–2400 nm TSS PLS

R2
ev = 0.979;

RMSEP = 0.25;
RPD = 6.8

NO
Włodarska
et al. (2019)

[118]

Total phenolic
content PLS

R2
ev = 0.844;

RMSEP = 126.7;
RPD = 2.6

Matcha
drink 115 HSI 400–998 nm Appearance ANN

R2
ev = 0.79;

RMSEP = 3.23;
RPD = 2.20

YES
n = 5

trained
testers

Ouyang
et al. (2020)

[48]
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Table 2. Cont.

Product Sample N Technique Regions
Quality Param-
eters/Sensory

Attributes
Best

Model Accuracy Sensory
Analysis References

Infusion color ANN
R2

ev = 0.71;
RMSEP = 3.43;

RPD = 1.74

Aroma ANN
R2

ev = 0.67;
RMSEP = 2.98;

RPD = 1.76

Taste ANN
R2

ev = 0.77;
RMSEP = 2.34;

RPD = 2.03

Overall quality ANN
R2

ev = 0.77;
RMSEP = 2.56;

RPD = 2.01

Fruits
and

vegeta-
bles

Table
grapes 350 FT-NIR 11,544–3952 cm−1 Titratable

acidity PLS R2
cv = 0.57;

RMSECV = 0.861

YES
n = 82
con-

sumers

Basile et al.
(2020) [137]

TSS PLS R2
cv = 0.83;

RMSECV = 1.3

White and
red table
grapes

140 HSI 400–1000 nm TSS (white) PLS R2
cv = 0.94;

RMSE = 0.06

YES
n = 15

trained
testers

Baiano et al.
(2012) [16]

TA (white) PLS R2
cv = 0.95;

RMSE = 0.06

pH (white) PLS R2
cv = 0.80;

RMSE = 0.06

TSS (red) PLS R2
cv = 0.94;

RMSE = 0.12

TA (red) PLS R2
cv = 0.82;

RMSE = 0.25

pH (red) PLS R2
cv = 0.90;

RMSE = 0.12

Dates 250 Vis-NIR 285–1200 nm Hardness PCR R2
cv = 0.91;

RMSE = 1.05

YES
n = 10

trained
testers

Alhamdan
et al. (2019)

[31]

Chewiness PCR R2
cv = 0.68;

RMSE = 3.56

Cohesiveness PCR R2
cv = 0.80;

RMSE = 1.34

Dates 200 NIR-HSI 950–1700 nm Moisture PLS
R2

ev = 0.91;
RPD = 3.65;
SEP = 0.82

NO
Ibrahim

et al. (2021)
[154]

Dry matter PLS
R2

ev = 0.91;
RPD = 3.69;
SEP = 0.81

Firmness PLS
R2

ev = 0.89;
RPD = 3.42;
SEP = 4.12

Pears 200 NIR 729–975 nm Dry matter
harvest 2016 PLS R2 = 0.90;

RMSE = 0.32

YES
n = 668

con-
sumers

Serra et al.
(2019) [129]

200 Dry matter
harvest 2017 PLS R2 = 0.94;

RMSE = 0.36

Oranges 600 FT-NIR 10,000–4000 cm−1 TSS PLS R2
ev = 0.83;

RMSEP = 0.61

YES
n = 23
con-

sumers

Yuan et al.
(2014) [125]

pH PLS R2
ev = 0.73;

RMSEP = 0.17
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Table 2. Cont.

Product Sample N Technique Regions
Quality Param-
eters/Sensory

Attributes
Best

Model Accuracy Sensory
Analysis References

Apples 380 Vis-NIR 400–2100 nm Roughness PLS R2
cv = 0.84

YES
n = 16

trained
testers

Mehinagic
et al. (2003)

[134]

Crunchiness PLS R2
cv = 0.49

Mealiness PLS R2
cv = 0.41

Sweet taste PLS R2
cv = 0.65

Sour taste PLS R2
cv = 0.63

Tomatoes 356 VIS-NIR 400–2499 nm Green, unripe PLS R2
cv = 0.66

YES
n = 9

trained
testers

Li et al.
(2021) [132]

Saltiness PLS R2
cv = 0.85

Sweetness PLS R2
cv = 0.92

Umami PLS R2
cv = 0.74

Tingling PLS R2
cv = 0.78

Firmness PLS R2
cv = 0.76

Smoothness PLS R2
cv = 0.72

Mealiness PLS R2
cv = 0.65

Beans 55 NIR 1100–2500 nm Aroma PLS
R2

ev = 0.31;
RMSEP = 0.77;

RPD = 1.19

YES
n = 11

trained
testers

Plans et al.
(2014) [133]

Flavor PLS
R2

ev = 0.70;
RMSEP = 0.71;

RPD = 1.62

Mealiness PLS
R2

ev = 0.81;
RMSEP = 0.81;

RPD = 1.90

Seed-coat
perception PLS

R2
ev = 0.26;

RMSEP = 1.26;
RPD = 1.16

Seed-coat
roughness PLS

R2
ev = 0.59;

RMSEP = 1.22;
RPD = 1.55

Seed-coat
brightness PLS

R2
ev = 0.55;

RMSEP = 0.99;
RPD = 1.47

Wild rocket
96

pack-
ages

MSI 405–970 nm Visual
freshness PLS RMSECV = 1.5

YES
n = 11

trained
testers

Løkke et al.
(2013) [131]

Sprinkliness PLS RMSECV = 1.7

Green leaves PLS RMSECV = 1.6

Yellow leaves PLS RMSECV = 1.5

Cooked
potatoes 81 NIR 1100–2500 nm Dry matter PLS R2 = 0.88–0.94;

RMSEP = 6.84–12.70

YES
n = 16

trained
testers

Van Dijk
et al. (2002)

[128]

Cooked
garlic 85 NIR 1100–2500 nm Sweetness iPLS

R2
ev = 0.66–0.72;

RMSEP = 0.76–0.73;
RPD = 1.71–1.78

YES
n = 8

trained
testers

Sans et al.
(2020) [136]

Fiber iPLS
R2

ev = 0.58–0.42;
RMSEP = 0.64–0.82;
RPD = 1.41–1.10

Off flavor iPLS
R2

ev = 0.57–0.20;
RMSEP = 0.77–1.02;
RPD = 1.48–1.12
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Table 2. Cont.

Product Sample N Technique Regions
Quality Param-
eters/Sensory

Attributes
Best

Model Accuracy Sensory
Analysis References

Cereals Cooked
rice 76 Vis-NIR 400–2500 nm Initial starch

coating PLS R2
cv = 0.76;

RMSEP = 0.20

YES
n = 12

trained
testers

Champagne
et al. (2001)

[155]

Slickness PLS R2
cv = 0.53;

RMSEP = 0.38

Stickiness PLS R2
cv = 0.58;

RMSEP = 0.33

Hardness PLS R2
cv = 0.67;

RMSEP = 0.32

Cohesiveness
of mass PLS R2

cv = 0.83;
RMSEP = 0.22

Amylose PLS R2
cv = 0.81;

RMSEP = 1.91

Protein PLS R2
cv = 0.85;

RMSEP = 0.38

Lipid PLS R2
cv = 0.90;

RMSEP = 0.04

Dried
fruits Walnuts 50 Vis-NIR 400–2500 nm Peroxide value PLS R2

cv = 0.55;
RMSECV = 1.9

YES
n = 9

trained
testers

Jensen et al.
(2001) [135]

Hexanal
content PLS R2

cv = 0.72;
RMSECV = 26.2

Nutty PLS R2
cv = 0.77;

RMSECV = 11.7

Sweet PLS R2
cv = 0.76;

RMSECV = 7.8

Rancid PLS R2
cv = 0.86;

RMSECV = 13.4

Bitter PLS R2
cv = 0.75;

RMSECV = 8.8

Cocoa Cocoa
beans 48 FT-NIR 12,500–3600 cm−1 Moisture PLS

R2
cv = 0.88;

RMSECV = 0.21;
RPD = 2.87

NO
Krähmer

et al. (2015)
[141]

pH PLS
R2

cv = 0.94;
RMSECV = 0.11;

RPD = 4.22

Free amino
acids PLS

R2
cv = 0.82;

RMSECV = 0.25;
RPD = 1.79

Nitrogen
content PLS

R2
cv = 0.87;

RMSECV = 0.06;
RPD = 2.81

Organic acids PLS
R2

cv = 0.88;
RMSECV = 0.14;

RPD = 2.91

Acetic acid PLS
R2

cv = 0.67;
RMSECV = 0.10;

RPD = 1.75

Lactic acid PLS
R2

cv = 0.85;
RMSECV = 0.11;

RPD = 2.57

Methylxanthines PLS
R2

cv = 0.74;
RMSECV = 0.20;

RPD = 1.98

Theobromine PLS
R2

cv = 0.79;
RMSECV = 0.14;

RPD = 2.19



Chemosensors 2023, 11, 579 24 of 31

Table 2. Cont.

Product Sample N Technique Regions
Quality Param-
eters/Sensory

Attributes
Best

Model Accuracy Sensory
Analysis References

Caffeine PLS
R2

cv = 0.26;
RMSECV = 0.17;

RPD = 1.16

Fat PLS
R2

cv = 0.80;
RMSECV = 1.05;

RPD = 2.25

Carbohydrates PLS
R2

cv = 0.82;
RMSECV = 0.32;

RPD = 2.35

Phenols PLS
R2

cv = 0.93;
RMSECV = 0.25;

RPD = 3.77

Epicatechin PLS
R2

cv = 0.93;
RMSECV = 0.22;

RPD = 3.69

Processed
foods Biscuits 164 FT-NIR 10,000–4000 cm−1 Xanthines PLS R2

ev = 0.96;
SEC/SEP= 77 mg kg−1

YES
n = 8

trained
testers

Bedini et al.
(2013) [147]

156 10,000–4000 cm−1 Polyphenols PLS R2
ev = 0.96;

SEC/SEP= 3 mg kg−1

YES
n = 8

trained
testers

SEC: standard error of calibration, SEP: standard error of prediction, TSS: total soluble solids, R2
cal: correlation

coefficient.

8. Technical Challenges and Future Perspectives

Although spectroscopy techniques are useful analytical methods to aid our under-
standing of the aroma and taste of both foods and drinks, these methodologies have not
been widely applied to predict sensory parameters but rather have been used as comple-
mentary techniques. A large scientific literature is available concerning the application
of NIR spectroscopy and HSI techniques to quantify and predict several chemical prop-
erties (e.g., sugars and hardness) linked to consumers’ appreciation of a wide range of
products. However, a clear gap remains between the applications of these techniques to
the prediction of compositional parameters or for quality classification and the prediction
of sensory properties in foods. The spectroscopic analysis of sensory parameters poses
both theoretical and practical issues. These issues principally arise from the lack of a
generalization approach for the established models and the large differences in the number
of samples employed in the literature. The interpretation of spectroscopy data, whether
in the form of signals or images, is a task that cannot be performed without the assistance
of complex chemometric approaches. These approaches involve various steps that are
essential for extracting relevant information. An effective handling of the spectroscopic
data must be performed by experienced and well-trained personnel and require expensive
GPUs and large storage space. The choice of an appropriate algorithm is very important
for the robustness of the final model. Nevertheless, different authors propose different
algorithms (e.g., different pre-treatments and selected wavelengths) to solve the same
problems. The selected wavelengths employed to build models for the same type of sample
often differ from study to study. These differences can be attributed to differences in
cultivar, the cultivation technologies adopted in the field, or seasonal variation. However,
only a few studies explained these wavelengths in terms of product characteristics or
tentatively attributed them to specific compounds in an attempt to link the investigated
parameters and the underlying chemical composition. An in-depth analysis of the selected
wavelength in relation to the features investigated can be very useful for future research. A
common procedure or a reference framework that can suggest algorithms for specific appli-
cations can favor the use of these spectroscopy techniques by other authors and ease the
comparison of the outcomes. However, the influence of instrument setups from different
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manufacturers and the experimental conditions (e.g., illumination and calibration of the
system) is strong. This makes the generalization of unified robust calibration models, which
should also be used for extended periods and different situations, quite hard to achieve.
Other issues are the number of samples, the model validation procedure, and the lack of
statistical analysis for reference sensory methods. The small number of samples in most
of the applications reported in the literature is a drawback for the use of this technology
in food science [156]. In most of the articles, only a few samples are analyzed (less than
100) and internal cross-validation is the preferred validation method. Without external
validation using an independent set of samples, the applicability to real case scenarios
is lacking. Moreover, information about statistics related to the sensory method used as
a reference to develop and interpret NIR calibration models is often lacking. From the
literature published in the last 10 years, the strong development of NIR spectroscopy and
HSI applications in the food industry steadily emerges, and an even wider application in
the future is possible. An increase in the available scientific evidence of the accuracy of
these spectroscopic techniques for sensory analysis would surely promote the application
of these techniques to sensory evaluations. This could be easily achieved through increased
model robustness and predictive ability, increased sample numbers, and the addition of
appropriate statistical treatment to the sensory step.
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77. Engel, J.; Gerretzen, J.; Szymańska, E.; Jansen, J.J.; Downey, G.; Blanchet, L.; Buydens, L.M.C. Breaking with trends in pre-
processing? Trends Anal. Chem. 2013, 50, 96–106. [CrossRef]

78. Conzen, J.-P. Multivariate Calibration, 3rd ed.; Bruker Optik GmbH: Ettlingen, Germany, 2014; ISBN 978-3-929431-13-1.
79. Saha, D.; Manickavasagan, A. Machine learning techniques for analysis of hyperspectral images to determine quality of food

products: A review. Curr. Res. Food Sci. 2021, 4, 28–44. [CrossRef]
80. Wang, H.-P.; Chen, P.; Dai, J.-W.; Liu, D.; Li, J.-Y.; Xu, Y.-P.; Chu, X.-L. Recent advances of chemometric calibration methods in

modern spectroscopy: Algorithms, strategy, and related issues. TrAC Trends Anal. Chem. 2022, 153, 116648. [CrossRef]
81. Badillo, S.; Banfai, B.; Birzele, F.; Davydov, I.I.; Hutchinson, L.; Kam-Thong, T.; Siebourg-Polster, J.; Steiert, B.; Zhang, J.D. An

Introduction to MachineLearning. Clin. Pharmacol. Ther. 2020, 107, 871–885. [CrossRef] [PubMed]
82. Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.A. A comprehensive survey of

clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng.
Appl. Artif. Intell. 2022, 110, 104743. [CrossRef]

83. Basile, T.; Amendolagine, A.M.; Tarricone, L. Rootstocks’ and Cover-Crops’ Influence on Grape: A NIR-Based ANN Classification
Model. Agriculture 2023, 13, 5. [CrossRef]

84. Sheth, V.; Tripathi, U.; Sharma, A. A Comparative Analysis of Machine Learning Algorithms for Classification Purpose. Procedia
Comput. Sci. 2022, 215, 422–431. [CrossRef]

85. Berrier, K.L.; Prebihalo, S.E.; Synovec, R.E. Chapter 7—Advanced data handling in comprehensive two-dimensional gas
chromatography. In Basic Multidimensional Gas Chromatography; Separation Science and Technology Book Series; Snow, N.H., Ed.;
Elsevier: Amsterdam, The Netherlands, 2020; Volume 12, pp. 229–268. [CrossRef]

86. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
87. Huang, Y.; Kangas, L.J.; Rasco, B.A. Applications of artificial neural networks (ANNs) in food science. Crit. Rev. Food Sci. Nutr.

2007, 47, 113–126. [CrossRef]
88. Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.J.; Chanussot, M.; Fauvel, P.; Gamba, A.;

Gualtieri, M.; et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, S110–S122.
[CrossRef]

89. Boichenko, E.; Panchenko, A.; Tyndyk, M.; Maydin, M.; Kruglov, S.; Artyushenko, V.; Kirsanov, D. Validation of classification
models in cancer studies using simulated spectral data—A “sandbox” concept. Chemom. Intell. Lab. Syst. 2022, 225, 104564.
[CrossRef]

90. Pu, H.; Kamruzzaman, M.; Sun, D.-W. Selection of feature wavelengths for developing multispectral imaging systems for quality,
safety and authenticity of muscle foods-a review. Trends Food Sci. Technol. 2015, 45, 86–104. [CrossRef]

91. Hoshi, A.; Aoki, S.; Kouno, E.; Ogasawara, M.; Onaka, T.; Miura, Y.; Mamiya, K. A novel objective sour taste evaluation method
based on near-infrared spectroscopy. Chem. Senses 2014, 39, 313–322. [CrossRef]

92. Wang, H.; Miao, Y.; Xu, X.; Ye, P.; Wu, H.; Wang, B.; Shi, X. Effects of Blending on Phenolic, Colour, Antioxidant and Aroma
Components of Cabernet Sauvign on Wine from Xinjiang (China). Foods 2022, 11, 3332. [CrossRef] [PubMed]

93. Smyth, H.; Cozzolino, D. Instrumental methods (spectroscopy, electronic nose and tongue) as tools to predict taste and aroma in
beverages: Advantages and limitations. Chem. Rev. 2013, 113, 1429–1440. [CrossRef] [PubMed]

94. Hugi, A.; Voirol, E. Instrumental measurements and sensory parameters. In Instrumentation and Sensors for the Food Industry,
2nd ed.; Rogers, E.K., Brimelow, C.J.B., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 31–60.

https://doi.org/10.1177/00037028231190660
https://doi.org/10.1039/C7RA05954J
https://doi.org/10.1016/B978-0-08-102894-0.00016-4
https://doi.org/10.3390/foods11030281
https://www.ncbi.nlm.nih.gov/pubmed/35159433
https://doi.org/10.1016/j.chemolab.2012.05.009
https://doi.org/10.1016/j.infrared.2022.104317
https://doi.org/10.3390/s23020560
https://www.ncbi.nlm.nih.gov/pubmed/36679357
https://doi.org/10.1016/j.chemolab.2011.03.002
https://doi.org/10.1080/10408398.2022.2131725
https://doi.org/10.1016/j.foodres.2021.110878
https://doi.org/10.1016/j.trac.2013.04.015
https://doi.org/10.1016/j.crfs.2021.01.002
https://doi.org/10.1016/j.trac.2022.116648
https://doi.org/10.1002/cpt.1796
https://www.ncbi.nlm.nih.gov/pubmed/32128792
https://doi.org/10.1016/j.engappai.2022.104743
https://doi.org/10.3390/agriculture13010005
https://doi.org/10.1016/j.procs.2022.12.044
https://doi.org/10.1016/B978-0-12-813745-1.00007-6
https://doi.org/10.1038/nature14539
https://doi.org/10.1080/10408390600626453
https://doi.org/10.1016/j.rse.2007.07.028
https://doi.org/10.1016/j.chemolab.2022.104564
https://doi.org/10.1016/j.tifs.2015.05.006
https://doi.org/10.1093/chemse/bjt118
https://doi.org/10.3390/foods11213332
https://www.ncbi.nlm.nih.gov/pubmed/36359945
https://doi.org/10.1021/cr300076c
https://www.ncbi.nlm.nih.gov/pubmed/23256680


Chemosensors 2023, 11, 579 29 of 31

95. Peleg, M. On fundamental issues in texture evaluation and texturization—A view. Food Hydrocoll. 2006, 20, 405–414. [CrossRef]
96. Chen, L.; Opara, U.L. Texture measurement approaches in fresh and processed foods. A review. Food Res. Int. 2013, 51, 823–835.

[CrossRef]
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