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Abstract: Meteorites are an essential reference for human exploration of the universe and its cosmic
evolution and an essential research object for searching for extraterrestrial life. Ways to quickly identify
and screen suspected meteorite samples have become the foundation and prerequisite for research on
high-value meteorite samples. Therefore, this paper proposes a Raman mapping-assisted micro-laser
induced breakdown spectroscopy (micro-LIBS) technology for field detection of suspected meteorite
material composition without sample pre-processing, with a high detection speed and cost-effectiveness,
to realize the detection of element composition and molecular structure. Raman mapping carries out mul-
tispectral imaging with high spectral resolution of the region of interest. The fusion of Raman mapping
and optical microscopy images can provide mineral categories and spatial distribution characteristics
in regions of interest. A quantitative analysis model for Fe, Mg, and Na elements was constructed
based on the multidimensional scaling–back propagation neural network (MDS-BPNN) algorithm. The
determination coefficient of the model test set was better than 0.997, and the root mean square error was
better than 0.65. The content of Fe, Mg, and Na elements in the meteorite was preliminarily evaluated,
providing a reference for further analysis of element information in spectral image fusion data. The
Raman–LIBS combined technology has significant application potential in rapidly evaluating suspected
meteorite samples. Without high-end precision instruments or field research, this technology can provide
scientists with significant reference value atomic and molecular spectral information. At the same time,
this technology can be extended to other petrology research. We offer a fast, efficient, cost-effective, and
reliable analysis scheme for reference.

Keywords: micro-LIBS; Raman mapping; microscopic image; spectrum and image fusion; quantitative
analysis of elements; meteorite

1. Introduction

As an optical emission spectroscopy technology, Laser-induced breakdown spec-
troscopy (LIBS) ablates the sample surface by focusing on a pulsed laser and generating
plasma luminescence. The generation process of LIBS is similar to that of arc/spark emis-
sion spectroscopy [1,2]. LIBS is widely used in deep space exploration [3–7], as it can realize
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the analysis of almost all elements and applies to gas [8,9], liquid [10,11], and solid [12]
samples. In addition, in combination with different optical path systems, LIBS can achieve
rapid response real-time monitoring of remote sensing or in situ detection [13,14], showing
significant advantages and potential in biomedicine [15,16], environmental protection [17],
geological exploration [18], archaeological research [19], metallurgical detection [20], and
coal and carbon analysis [21].

The fusion of LIBS and Raman data can effectively improve the classification and
identification of rock and geological samples. Rammelkamp et al. [22] conducted a low-
level fusion of LIBS and Raman data to improve its ability to identify rock samples. Wang
et al. [23] proposed a mid-level data fusion of LIBS and Raman data. They constructed a
convolutional neural network (CNN) model to classify and recognize ore samples, with
an identification accuracy of 98%. Moros et al. [24] proposed a high-level data fusion
architecture, to type most rock samples correctly.

With the development of in situ detection methods, 2- or 3-D elemental mapping
techniques have become an essential tool in geochemical analysis, combining geochem-
ical information with geomorphological features to obtain structural and compositional
characteristics. Compared with the traditional X-ray fluorescence (XRF) method, LIBS
mapping has the advantages of fast speed, high-depth resolution, and light elemental
analysis ability [25]. Sun et al. [26] used the BPNN (back propagation neural network)
with input variables optimized by RF (random forest) to classify the LIBS–Raman joint
spectra of three kinds of meat, and the classification accuracy was as high as 99.42%. Chen
et al. [27] used LIBS and a convolutional neural network with two-dimensional input (2D
CNN) to recognize five rock samples. Lu et al. [28] used the CNN model to analyze the
time-resolved LIBS data and improved the soil’s potassium determination. The R2 and
RMSE of the CNN model were 0.9968 and 0.0785.

Traditional meteorite analysis methods include inductively coupled plasma mass
spectrometry (ICP-MS), energy dispersive X-ray spectroscopy (EDX), scanning electron
microscopy (SEM), X-ray diffraction (XRD), and electron probe microanalysis (EPMA).
Stead et al. [29] used laser ablation quadrupole ICP-MS to detect the content of rare earth
elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, and Yb) in olivine. This method’s limit of
determination (LOD) reached a level lower than ng/g, with a deviation of ~5–10%. Bsdok
et al. [30] used reflection microscopy, electron probe microanalyses (EPMA), and electron
microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) to determine the
concentration of trace elements in the Santa Rosa de Viterbo iron meteorite for the first
time. As a result, significant concentrations of Au (>400 ppm) and Ge (>230 ppm) and
major elements such as Fe, Ni, and Co in this meteorite were demonstrated. However,
these traditional methods have drawbacks, such as XRD requiring time-consuming sample
preparation and the evaluation of raw data. By contrast, EPMA is faster but relatively
expensive and has high requirements for experimental equipment [31]. Compared with
traditional techniques, LIBS and Raman spectra have the advantages of high precision, low
cost, high speed, and in situ detection. In addition, LIBS can realize the identification of
almost all elements, including light elements, rare earth elements, and halogen elements,
which is very suitable for the analysis of meteorites.

LIBS performs well in qualitative and quantitative elements analysis, but it still has
an inevitable defect, i.e., destructive detection. To solve the above problem, a new method
based on spectral image fusion is proposed to assist in the detection of micro-LIBS, in
which the randomness detection problem of LIBS is optimized. The detection efficiency
and analysis accuracy of LIBS are improved through the molecular identification of Raman
spectra and spatial positioning of microscopic images. Taking meteorite as an example,
the feasibility of using spectral image fusion-assisted micro-LIBS technology to realize
the space-selective detection of meteorite samples is validated, and the accuracy of LIBS
quantitative analysis is discussed with the multidimensional scaling–back propagation
neural network (MDS-BPNN) algorithm.
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2. Materials and Methods

The technical concept of Raman mapping-assisted micro-LIBS is shown in Figure 1,
where Figure 1a shows the implementation of Raman mapping, Figure 1b shows the
fusion of Raman mapping and optical microscopy images, and Figure 1c shows the spatial
localization of micro-LIBS ablation cavities based on Raman mapping assistance.
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2.1. Sample Description and Preparation

For this study, we used 34 kinds of certified reference materials (CRMs) to establish
a micro-area LIBS database. Please refer to the Supporting Information (Table S1) for the
specific number and composition. We used a tablet press and set its pressure to 20 MPa
to press the certified reference material powder into a target with a diameter of 1.5 inches
and a thickness of about 2 mm (we maintained the pressure for 5 min during the pressing
process). The meteorite sample came from the Boyuan geological specimen studio and
was discovered in the wild by the staff. The external environment that surrounds the earth
will have an impact on the meteorites that have been dispersed there, resulting in changes
in the meteorite’s composition surface. Therefore, to accurately analyze the composition
information of meteorites, we must go deep into the interior of meteorites. The meteorite
was cut and polished, and the composition of the olivine meteorite on the cut surface was
analyzed by laser spectroscopy.

2.2. Raman Spectroscopy Setup

The schematic diagram of the Raman mapping experimental device is illustrated in
Figure 2a. A red laser (operating mode: CW, central wavelength: 785 ± 0.5 nm, spectral
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line width: <0.06 nm, maximum power: 100 mW, power stability: <3%) was focused
on the meteorite profile through a 100× Olympus microscope. The spectrometer was
a NOVA (IdeaOptics Technology, Shanghai, China) with a 1200 lines/mm grating in a
range of 534–633 nm. The integration time of a single Raman spectrum was 100 ms. The
signal-to-noise ratio of the spectrometer was 1000:1. The Ultra Long Edge Filter (Semrock
Inc., New York, NY, USA, LP02-785RE-25) further extracted weak signals, i.e., filtering the
excitation light and penetrate the weak signal closer to the laser line; the Dichroic Splitter
(Semrock Inc., LPD02-785RU-25) played the role of light splitting, i.e., reflecting a standard
785 laser incident at 45◦ and transmitting the longer Raman-shifted wavelengths. The laser
spot diameter of the Raman system was 1 µm, and the scanning step was 1 µm. Raman
spectrum detection was achieved through automatic focusing.
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2.3. Laser-Induced Breakdown Spectroscopy (LIBS) Setup

The schematic diagram of the micro-LIBS experimental device is shown in Figure 2b.
An ultraviolet high repetition rate pulse 266 nm laser was the excitation source of micro-
LIBS (central wavelength: 266 nm, single pulse energy: better than 12 uJ @1 kHz, repetition
frequency: 1 kHz, pulse width: less than 1.0 ns, pulse-to-pulse RMS: less than 2% @1 kHz,
and beam diameter: 900 ± 200 µm). The UV laser was focused on the meteorite profile
through a Cassegrain microscope objective (REFLX OBJ. 10×/0.23NA DUV INFIN, the
coating was DUV-enhanced aluminum (150–11,000 nm), NA: 0.22, aperture diameter:
8.6 mm, focal length: 19.3 mm, working distance: 30.56 mm). The spectrometer was
an AvaSpec-ULS2048 × 64TEC (Avantes Technology, Apeldoorn, Netherlands) with a
1200 lines/mm grating in a range of 350–592 nm. The coupler was a UV reflective collecting
mirror. The spot diameter of the LIBS system was 20 µm, and the diameter of the ablation
hole was 40 µm. The integration time of a single LIBS signal was 10 ms.

2.4. Spectral Data Pre-Processing

Due to the pulsed ultraviolet laser with a high pulse repetition rate as the excitation
source of micro-LIBS devices, it is impossible to accurately pick up the LIBS signal generated
by each pulse through a digital delay controller. Therefore, using a long exposure window
to collect signals makes reducing the impact of bremsstrahlung and other effects difficult,
resulting in LIBS having significant baseline and background noise. Raman spectroscopy is
a nondestructive detection technology that has a clear baseline and is easily influenced by
ambient fluorescence, background light, and the dark current of the spectrometer, so it also
has an obvious baseline.
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Fortunately, Raman spectrum and LIBS are both signals with sparse spectral peaks
and a continuous baseline. The Baseline Estimation And Denoising with Sparsity (BEADS)
algorithm can simultaneously solve the baseline correction and the noise reduction prob-
lems of spectral signals. The algorithm is based on modeling the series of spectral peaks as
mostly positive, sparse with sparse derivatives, and on modeling the baseline as a low-pass
signal. The algorithm has the characteristics of fast iterative convergence, high efficiency,
and good stability [32]. Our team uses the BEADS algorithm to achieve baseline correction
and the denoising of spectra [33–36]. The cut-off frequency (Fc), filtering order parameter
(D), and asymmetry parameter (R) of the BEADS algorithm used in this study are 0.05, 1.00,
and 6.00, respectively. Taking micro-LIBS as an example, its baseline correction and noise
reduction results are shown in Figure 3.
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2.5. Chemometric Analysis

In terms of data processing, Matlab R2020a (Massachusetts Institute of Technology,
Natick, MA, USA) was used for chemical analysis and scientific drawing, respectively.
Research on global climate change, stellar spectrum, human gene distribution, and other
high-dimensional data usually faces the problem of dimensionality reduction. It is ex-
tremely important to find hidden and meaningful low-dimensional data information in
high-dimensional data mining. Principal components analysis (PCA) is a common data
dimensionality reduction algorithm. It projects data into the direction with the maximum
variance but still ignores the corresponding relationship between data points. To address
this issue, we used the multidimensional scaling (MDS) data dimension reduction method.
MDS is a mathematical model that can analyze the distance between objects. The key
information of a group of data is usually represented by a series of points in space. The
arrangement of these points creates different geometric distances, which reflect the em-
pirical relationship of the data. This geometric relationship can be multidimensional or
one-dimensional. “Approximation” refers to the difference between observed objects,
which can be described by similarity or difference. MDS is based on the similarity between
pairs of samples and uses this feature to build an appropriate low-dimensional space, so



Chemosensors 2023, 11, 567 6 of 16

that the distances between sets of objects in the high-dimensional space are as consistent as
possible with the object similarity in the constructed low-dimensional space [37,38].

With enough neurons, neural networks can fit any type of data with arbitrary precision,
making them ideal for dealing with nonlinear issues. Back propagation neural networks
(BPNN) are particularly good at tackling function-fitting difficulties [39]. A training neural
network is constructed using a set of input data sets during the function-fitting process
to produce a set of associated target outputs. The neural network will generalize the
relationship between input and output once it has fitted the data.

2.6. Methods and Steps of Data Analysis

The article involves the use of two spectral techniques, Raman spectroscopy and LIBS,
where Raman spectroscopy was only used for qualitative analysis of mineral categories.
LIBS was used for qualitative and quantitative analysis of elements. Therefore, when
processing Raman spectra, after removing the baseline and normalization, mineral classifi-
cation was determined, and the spatial distribution pattern of characteristic molecules was
detected by selecting Raman spectral peak strengths combined with mapping technology.
After removing the baseline and normalization, LIBS data were used for the element recog-
nition of feature peaks. Quantitative analysis requires the construction of a quantitative
analysis model using a database. The specific steps we followed are as follows:

Step 1: Prepare a target sample library for CRMs and construct a LIBS database for
CRMs based on micro-LIBS technology;

Step 2: Utilize the MDS algorithm to reduce and scale high-dimensional LIBS data and
implement feature extraction for 20 data dimensions. Then, use seven features as input vectors
for the BPNN model, and establish a quantitative analysis model for Fe, Mg, and Na;

Step 3: Establish the MDS–BPNN quantitative inversion model, based on CRMs, to
analyze the Fe, Mg, and Na content in different regions of meteorites.

3. Results
3.1. The Fusion of Raman Mapping and Microscopic Image

First, we determined the scanning area of Raman mapping through visible microscopic
images and obtained microscopical images. The microscopic images included 357,600 pixels
(752 × 480). Then, the region was scanned for Raman spectral points with a scanning step
of 1 µm, and 4131 spectra (81 × 51) were obtained. These spectra were clustered into three
categories, as shown in the Supporting Information in Figure S1. We took the spectral peaks
of these three kinds of substances as the gray-scale images, as shown in the Supporting
Information in Figure S2. Given that the area was mainly composed of three minerals, the
intensities of 823 cm−1, 513 cm−1, and 291 cm−1 were selected as R, G, and B information
for compositing an RGB image. As illustrated in Figure 4b, the number of Raman mapping
pixels was expanded to be consistent with the microscopic image. Figure 4 shows that
optical microscopic images have a high spatial resolution, while Raman mapping has a high
spectral resolution, which is shown as follows: optical microscopic photographs clearly
show the spatial texture morphology but describing the differences in material compositions
and their spatial distribution is challenging; Raman mapping has a low spatial resolution
due to the scanning step size restriction, but it has a high spectrum resolution and can show
the spatial distribution of molecules. Therefore, based on the intensity–hue–saturation
(IHS) algorithm [40,41], the fusion of Raman imaging and microscopic images can be
achieved, and the composite images of multi-source data fusion with high spatial and
spectral resolution can be obtained, as shown in Figure 4c. See the Supporting Information
in Figure S3 for the gray-scale images of three channels.

After searching the average Raman spectra of the three minerals in the Raman spectrum
database of the RRUFF Project website, we found that the mineral matched by Sample 1 was
microcline (RRUFF ID: R050054), the mineral matched by Sample 2 was forsterite (RRUFF
ID: R060535), and the mineral matched by Sample 3 was hematite (RRUFF ID: R060190),
respectively, as shown in Figure 5. The primary composition of the minerals in the red area
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is forsterite, the main composition of the minerals in the green area is microcline, and the
main composition of the minerals in the blue area is hematite, as shown by the identification
findings of the Raman spectrum in Figure 5c. However, it should be emphasized that only
seven spectra of Sample 1 were obtained within the entire mapping region, and there was only
one distinguishable Raman peak. When performing feature matching in a limited spectral
database, the matching results (microcline) may be controversial. Therefore, controversial
data will not be considered in the subsequent discussion.
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3.2. Micro-LIBS

In the Raman mapping area, the mineral distribution proportion of Forsterite and
Hematite accounted for over 99.83%. The detection of the atomic emission spectra in this
region was undertaken using micro-LIBS technology. Fe, Mg, and Na elements could
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be analyzed qualitatively and quantitatively because the spectrometer’s spectral range
is 350–592 nm, as illustrated in Figure 6. Forsterite is the main component of Sample 2’s
magnesium olivine, with a tiny quantity of fayalite, as indicated by the copious Mg and
trace amounts of Fe and Na elements. The abundant Fe element and trace Na element
were detected in Sample 3, demonstrating that this sample is a metal oxide and contains
a trace Na element inside. 15 LIBS were randomly detected in each mineral area for the
quantitative analysis of the test model.
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3.3. Element Quantitative Analysis

First, 34 standard minerals were detected by micro-LIBS, and 15 spectra were gen-
erated for each mineral, with 2048 pixels for each spectrum. Second, spectral data were
preprocessed and normalized to reduce spectral jitter caused by focusing and other factors.
Finally, by calculating the standard deviation of 15 spectra of each mineral, the repeata-
bility of the LIBS spectrum in each mineral was evaluated by the maximum standard
deviation [42], which can be calculated according to the following formula:

SDj =

√√√√√ n
∑

i=1
(yij − yi)

2

n

SDmax = max
(
SDj

)
where yij is the intensity of the j spectrum at pixel i, yi is the intensity of the average
spectrum of m spectra at pixel i, n is the number of pixels in each spectrum, and SDmax is
the maximum value of SDj.

As mentioned above, we determined the highest standard deviation for each mineral
spectrum, as shown in Figure 7a. Because of the target sample’s particle size, the focus
region, and other variables, the stability of the 15 LIBS spectral data for each mineral varied.
Therefore, minerals with a maximum standard deviation of less than 0.048 were used
to build the MDS–BPNN quantitative analysis model, and 19 CRMs with good spectral
stability and repeatability were selected, as shown in Figure 7b.
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Figure 7. Maximum standard deviation of 34 CRMs. (a) The stem chart of SDmax; (b) the histogram
of SDmax. (CRMs with a maximum standard deviation of less than 0.048 are marked in green, while
others are marked in yellow).

In the quantitative analysis model of MDS–BPNN, first, the MDS dimension reduction
algorithm was used to compress the filtered and optimized data, and 2048 feature points
of each spectrum were compressed to 20 feature points. Then, the dimensional reduced
data were input into a forward network composed of an input layer, a hidden layer,
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and an output layer. In forwarding propagation, the input dimension reduction data
were transferred from the input layer to the output layer by the tan sigmoid function
through the neurons of each hidden layer, and the prediction value of the output layer
was compared with the expected value. Reverse training was carried out if there was a
significant difference between the output layer’s projected value and the expected value. It
propagated backward along the initial forward propagation channel during the reverse
training and modified the weight coefficient between each neuron to bring the error closer
to the predetermined standards. The number of neurons in the three hidden layers was
defined as 100, 60, and 40, respectively. Finally, the determination coefficient (R2) and
root mean square error (RMSE) were used to evaluate the quantitative analysis of the
MDS–BPNN model. The closer R2 is to 1, and the smaller RMSE is, the better the prediction
ability of the model is.

The modeling data set was divided into a training set, a validation set, and a test set.
There were 1224 spectral data in the training set, 263 spectral data in the validation set, and
263 spectral data in the test set, respectively. Quantitative models of Fe, Mg, and Na are
shown in Figure 8.
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Figure 8. Calibration curve for quantitative analysis of Fe, Mg, and Na elements of MDS–BPNN. (a) The
training set prediction results for quantitative analysis of Fe, Mg and Na elements of MDS–BPNN; (b) the
validation set prediction results for quantitative analysis of Fe, Mg, and Na elements of MDS–BPNN;
(c) the test set prediction results for quantitative analysis of Fe, Mg, and Na elements of MDS–BPNN;
(d) the test set prediction calibration curve for quantitative analysis of Fe element of MDS–BPNN; (e) the
test set prediction calibration curve for quantitative analysis of Mg element of MDS–BPNN; (f) the test
set prediction calibration curve for quantitative analysis of Na element of MDS–BPNN.

The obtained LIBS data of meteorite are imported into the MDS–BPNN model for
quantitative analysis of Fe, Mg, and Na elements. The obtained quantitative analysis results
of 30 LIBS are shown in Figure 9. Figure 9a shows that the average contents of Fe, Mg, and
Na are 55.59%, 6.90%, and 1.26%, respectively. Figure 9b shows that the average contents of
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Fe, Mg, and Na are 15.03%, 33.22%, and 0.18%, respectively. Figure 9c shows that this group
of spectra has good stability and high sufficiency. The composition of 15 ablation holes in
the scanning area is similar. Figure 9d shows that, besides the first and third spectra, this
group of spectra also shows good stability and sufficiency. The composition of thirteen
ablation holes in the scanning area is similar, and the composition of the other two ablation
holes is similar. The aforementioned spectral properties are consistent with the outcomes
of the quantitative investigation.
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4. Discussion
4.1. Physical and Chemical Matrix Effects of Quantitative Models

Physical and chemical matrix effects are crucial for quantifying the chemical composi-
tion of the substance being tested, which can increase the error in analyzing the elemental
content of the substance. Firstly, because the LIBS system is a deep ultraviolet optical
microscopy system, the laser ablation aperture is small (micrometer level). Therefore, in
cases of uneven particle size or large particles, the obtained CRMs may have varying de-
grees of spectral jitter, which means that the spectrum cannot reflect the actual component
content, thereby affecting the accuracy of the quantitative analysis model. Therefore, when
establishing a national standard LIBS database, the spectral quality of CRMs is measured
through standard deviation (SD). In addition, the quantitative analysis model for Fe, Mg,
and Na elements in CRMs has good predictive performance. However, under different
chemical matrix effects, the model’s predictive performance will decrease. Therefore, when
predicting the content of Fe, Mg, and Na elements in meteorites, the deviation between
the predicted and actual values may be worse than that of the BPNN model trained on
CRMs. However, suppose the meteorite to be measured is put into the model training set.
In that case, there may be an overfitting phenomenon, which makes it impossible to ensure
the predictive performance of the quantitative model. Therefore, a later work will collect
various meteorite samples with different element contents, establish a meteorite sample
database, use this technology to establish a LIBS spectral database, and then construct a
quantitative analysis model strategy based on this spectral database. However, due to the
large sample size of the types, quantities, and different element contents of the meteorites
involved, and the fact that modeling meteorite samples must be certified by professional
institutions, the team still needs some time to solve such problems.

4.2. Relevance of Analyzed Elements Fe, Mg, and Na for Meteorite Analysis

The elements Fe, Mg, and Na are important in meteorite analysis because they are the
most abundant elements in meteorites. Fe is the most abundant element in meteorites and
is used to classify them into different groups. Iron in Earth’s rocks mainly occurs in the
form of Fe (III), while newly fallen meteorites contain little or almost no Fe (III). Therefore,
Fe (III) is an essential parameter for evaluating whether meteorites have undergone severe
terrestrial alteration on the ground [43,44]. In addition, among meteorites, MgO necessarily
increases with Fe2O3(T) + MgO (for convenience, Fe2O3 is usually used to represent Fe
values). Some terrestrial rocks lie off the trend because they have MgO/Fe2O3(T) ratios
outside the range for meteorites. The ratio of magnesium to iron content does not change
much in most stony meteorites. In contrast, iron content in the iron meteorites totals
approximately 90 to 95%, with the remainder comprising nickel and trace amounts of
heavy metals, including iridium, gallium, and sometimes gold. They are classified using
two different systems: chemical composition and structure. There are thirteen chemical
groups for irons, of which IAB is the most common. Magnesium is also used to determine
the age of meteorites, because it has two stable isotopes and one that is radioactive. The
radioactive isotope decays into aluminum over time. Scientists can determine how long
ago the meteorite formed by measuring the ratio of magnesium to aluminum isotopes in
a meteorite. Sodium is used to determine the origin of meteorites because it is a volatile
element that is easily lost during heating. The ratio of sodium to other elements in a
meteorite can help scientists determine whether the meteorite came from the inner or
outer solar system. In addition, sodium is one of the best elements to distinguish between
terrestrial rocks and meteorites. This is because most terrestrial rocks contain more Na2O
than any meteorite. Therefore, when the Na2O content exceeds 2%, the sample is almost
impossible to be a meteorite. The quantitative results of Na2O from 30 LIBS data using the
MDS–BPNN model indicate that the concentration of Na2O in the two scanning regions
ranges from 0.17 to 0.20. Potassium is also an alkali element, and compared to most
terrestrial rocks, the concentration of all alkali elements in meteorites is deficient. Therefore,
when the K2O content is more significant than 0.6%, the sample is almost impossible to be a
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meteorite. In addition, other major elements such as Si, Ti, Cr, Al, Mn, and Ca have essential
roles in determining the origin and classification of meteorites. As is well known, LIBS
can achieve almost all element analyses. However, due to the limitations of the detection
range of laboratory spectrometers, the current detection range of existing spectrometers
only covers the wavelength range of 350–600 nm, which precisely includes the LIBS peaks
of Fe, Mg, and Na elements. Therefore, quantitative analysis of other elements was not
possible. Still, as long as the spectral detection range of the spectrometer is expanded, this
technology can cover qualitative and quantitative analysis of elements of interest.

According to the factor group analysis, the magnesium iron silicate structure with
Pnma symmetry has 36 Raman-active vibration modes: 11Ag +11B1g + 7B2g + 7B3g [45].
The Raman spectra of the silicate crystals have a characteristic set of two intense lines
near 837–858 cm−1 (к1: Si–O asymmetric stretching band Ag (Si–O)a-str) and 808–825 cm−1

(к2: Si–O symmetric stretching band Ag (Si–O)s-str) [46]. The ratio of the two Raman
characteristic peaks of 854 and 822 cm−1 could reflect the content difference between
forsterite and fayalitic olivine [47], as shown in Figure 10a. In the detection area of Raman–
LIBS, the peak ratio, based on a partial least squares regression, is approximately 0.59,
indicating that the content difference between forsterite and fayalitic olivine is relatively
stable. Therefore, a reference can be provided by preparing reference materials of forsterite
and fayalitic olivine to determine the mixing ratio of unknown objects. In addition, the
quantitative results of LIBS for Mg/(Mg + Fe) in this detection area are approximately 0.78,
while the quantitative results of EDS for Mg/(Mg + Fe) are approximately 0.88, which
conforms to the semi-quantitative accuracy of LIBS. Figure 10c shows that the ratio reflects
the content difference between forsterite and fayalitic olivine.
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4.3. The General Utility of the Approach and Its Comparison with State-of-the-Art Meteorite
Analysis Method

Energy dispersive spectroscopy (EDS) in scanning electron microscopy (SEM) is a
crucial technique for determining the elemental composition of samples at micro spatial
resolution in analytical science. EDS is the optimal solution in geological analysis, which
can obtain the mineral distribution in samples through non-destructive detection. However,
the detection limit of EDS is usually in the order of 1000 ppm. Furthermore, it is not
sensitive to trace elements, making it impossible to reveal the numerous characteristics
during the formation of and changes in meteorites. Cathodoluminescence (CL) is commonly
used to characterize trace elements. The composition and distribution of trace elements are
investigated by analyzing the spectra of different wavelengths emitted by the sample. The
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detection limit of CL is 10,000 times that of EDS. The latest research couples EDS with CL,
achieving complementarity between the two technologies [48]. However, this technology
has a series of problems, such as high experimental costs and difficulty in equipment
maintenance. The Raman mapping-assisted micro-LIBS method can achieve qualitative
and quantitative analyses of elements and molecules. Although LIBS technology is a semi-
quantitative analysis method, it can achieve almost full element analysis and has significant
advantages in quickly assessing mineral element composition and content. Raman mapping
can quickly analyze anions in minerals with nondestructive testing, combined with LIBS
technology to identify metal cations. In addition, this combined technology can obtain
direct evidence of minerals’ atomic and molecular composition through information fusion.
In summary, EDS–CL technology is more suitable for finely analyzing high-value samples
in large laboratories or analysis and testing centers. At the same time, Raman mapping-
assisted micro-LIBS technology is ideal for various application scenarios, especially in
the rapid assessment of many suspected samples and the rapid screening of high-value
samples, which has significant application potential.

5. Conclusions

First, before laser-induced breakdown spectroscopy damages the composition of the
detecting components, Raman spectroscopy is one of the most favored instruments for
the non-invasive detection of the molecular structure of substances. It is also the most
promising molecular pre-evaluation technology. The fusion of Raman mapping and micro-
scopic image technology has undeniable benefits in assisting the quantitative analysis of
various minerals in the micro-LIBS. Raman mapping provides high spectral resolution for
mineral spatial distribution laws, while microscopic images provide high spatial resolution
for mineral texture and morphology features. The spectral image fusion technology can
assist the micro-LIBS to quickly and accurately locate the region of interest (ROI), avoiding
random destructive detection. Second, using ultraviolet micro-LIBS experimental equip-
ment, the MDS–BPNN quantitative analysis model of the three elements Fe/Mg/Na in the
certified reference material was established through the ultraviolet micro-LIBS experimen-
tal equipment. The determination coefficients of the elements Fe, Mg, and Na in the test
concentration were 0.9955, 0.9597, and 0.9827, respectively. The RMSE of the elements Fe,
Mg, and Na were 0.3199, 0.6452, and 0.0934, respectively. Finally, the analysis of meteorites
reveals that an important aspect of this work is the use of Raman mapping to assist micro-
LIBS in achieving the quantitative analysis of elements, to better understand the mineral
distribution and element composition of meteorites. For our future works, we will also
focus on the implementation of micro-LIBS mapping and the fusion of Raman mapping,
LIBS mapping, and microscopic images to further improve the information abundance of
large imaging data sets.

Supplementary Materials: The following supporting information can be downloaded at: https:
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their Raman spectra; Figure S2: Mapping of different Raman peaks; Figure S3: The gray-scale images
of three channels; Figures S4–S37 Spectral data preprocessing of CRMs.
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