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Abstract: A fluorescent probe, N′-((3-methyl-5-oxo-1-phenyl-4, 5-dihydro-1H-pyrazol-4-yl) methylene)-2-
oxo-2H-chromene-3-carbohydrazide (MPMC), was synthesized and characterized. Characterizations
of the synthetic MPMC were conducted via proton nuclear magnetic resonance (1HNMR) spec-
troscopy and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR). The fluorescence
emission behaviors of the MPMC probe towards diverse metal ions were detected, and the probe
exhibited high sensitivity and selectivity towards Cu2+ over other metal ions via the quenching of its
fluorescence. Furthermore, the existence of other metal actions made no apparent difference to the
fluorescence intensity of the MPMC-Cu2+ system; that is, MPMC displayed a good anti-interference
ability. Job’s plot of the MPMC and copper ions indicated that the detection limit was 10.23 nM
(R2 = 0.9612) for the assayed actions, with a stoichiometric ratio of 1:1 for MPMC and Cu2+. Addition-
ally, the color of the MPMC probe solution changed from nearly colorless to yellow in the presence of
Cu2+ in visible light, and the color change could be observed by the naked eye. Similarly, the color
resolved from bright yellow into blue in ultraviolet light. Moreover, reusability studies indicated that
the MPMC probe was reusable. The pH effect of the MPMC probe on Cu2+ had a broad range of pH
detection, i.e., from 4.0 to 11.0. The response time of the MPMC probe for determining Cu2+ was
within 1 min. The recognition of Cu2+ via MPMC performed on pre-treated paper under sunlight
and UV light both had a distinct colour change. Thus, the solid-state method for detecting Cu2+ with
the naked eye was both economical and convenient.

Keywords: fluorescent probe of Schiff base; copper ion; high sensitivity and selectivity; good anti-
interference ability; low detection limit

1. Introduction

Copper (II) ion is one of the essential transition metal ions that play a crucial role
in many key physiological processes in living organisms, including electron transport
oxidoreductases, the production of hemocyanin, blue copper protein, cytochrome C oxidase,
lactase, ascorbate oxidase, superoxide dismutase, skin pigmentation, and connective tissue
repair [1–3]. However, excessive amounts of Cu2+ can lead to a variety of diseases, such as
induction of cell death, Parkinson’s, Alzheimer’s, and prion diseases [4–6]. In addition, the
widespread use of Cu2+ in the electronic and electrical industries makes it an environmental
pollutant. Especially in recent years, the operations of ore mining along with metals
extraction in nature are growing, which brings about severe heavy metals pollution (copper,
cadmium, etc.) in the atmosphere, water resources, and soil. These heavy metals are
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incapable of being degraded by organisms; instead, they can be enriched thousands of
times via the biomagnification of food chain; then, they intrude into the human body,
making them a serious health hazard [7,8]. Consequently, the development of a highly
sensitive and selective Cu2+ assay for the efficient detection of Cu2+ in aqueous solutions
or biological systems is of great importance for biology, clinical medicine, chemistry, and
environmental sciences.

Nowadays, various detection technologies have been developed to test Cu2+, such as
chemiluminescence [9], electro-chemistry [10], colorimetry [11], atomic absorption spec-
trometry [12], and inductively coupled plasma mass spectrometry [13]. However, these
detection strategies have the drawbacks of low sensitivity and cumbersome operation.
In recent years, fluorescent molecular probes have been rapidly developing in molecular
recognition because of their excellent recognition properties, high selectivity, and sensitivity,
being accessible in site detection and real-time imaging. The “host–guest” pattern is a
fundamental structural model of fluorescent probes, including, chiefly, fluorophore and
receptor, connected by covalent bonding through a spacer. Recognition units that possess
different recognition functions serve to grasp and recognize test samples. Meanwhile, for
the difference of molecular structure before and after grasping, fluorophore’s fluorescence
property displays different fluorescence signals (wavelength or intensity variation), so as
to achieve the purpose of recognition and detection [14–17]. Actually, most fluorescent
probes that identify Cu2+ are restricted in their applications for the poor selectivity, short
wavelength emission, interference from autofluorescence, the need for a high organic phase
detection environment, and the presence of many possible interfering agents.

Coumarin (2H-1-benzopyran-2-one), a fluorophore used extensively, possesses high
fluorescence quantum yields, good photostability, large stokes shifts, and easy structural
modifications. Coumarin derivatives have been found in various plants, which are widely
used in aqueous environmental monitoring, antibacterial and antitumor medications, and
others [18]. Currently, coumarin-based fluorescent probes consist essentially of Schiff
bases [19–22] and biological thiols [23,24]. In particular, a few studies on the coumarin-
based pyrazolone fluorescent probes have been reported [23–25].

In the field of analytical chemistry, as a conjugated double bond, Schiff bases are
recommended for the detection and identification of metal ions. Additionally, Schiff
bases are applied to the quantitative analysis of certain ions by means of chromatography,
fluorescence analysis, and photometric analysis. Meanwhile, for the space-turning effect
of -C=N- in the molecular structure, Schiff bases and their complexes tend to coordinate
easily. In addition, lone-pair electrons of the integral structure are more abundant, such that
the coordination sites also become more abundant, which indicates that Schiff bases have
good, coordinated properties. At this stage, Schiff bases make coordination with metallic
cations easier, especially the heavy metal ions. Thus, Schiff bases are good ligands for metal
ions [19–22].

Thus, a fluorescent probe based on coumarin and pyrazole Schiff base, N′-((3-methyl-
5-oxo-1-phenyl-4, 5-dihydro-1H-pyrazol-4-yl) methylene)-2-oxo-2H-chromene-3-carbohy-
drazide (MPMC), was designed and synthesized in this paper [26]. The coumarin moiety
belonging to MPMC served as the fluorophore; and the acylhydrazone structure belonging
to MPMC served as the recognition receptor and bursting part. The results demonstrate
that the MPMC probe was selective and sensitive for the detection of Cu2+.

2. Experiments
2.1. Reagents and Chemicals

Phenylhydrazine (molecular weight: 108.14; relative density: 1.099 g/mL at 25 ◦C; and
CAS number: 100-63-0), and 2-hydroxybenzaldehyde (molecular weight: 122.12; relative
density: 1.146 g/mL at 25 ◦C; and CAS number: 90-02-8) were both analytical reagents,
purchased from Macklin Inc. (Shanghai, China). Piperidine (molecular weight: 85.15;
relative density: 0.862 g/mL at 20 ◦C; and CAS number: 110-89-4) was of analytical
grade and purchased from TCI chemicals (Shanghai, China). Ethyl acetoacetate (molecular
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weight: 130.14; relative density: 1.029 g/mL at 20 ◦C; and CAS number: 141-97-9), an
analytical reagent, was obtained from Aladdin Inc. (Shanghai, China). A total of 85%
hydrazine hydrate (molecular weight: 50.06; relative density: 1.03 g/mL at 25 ◦C; and CAS
number: 7803-57-8), was of analytical grade and obtained from Nanjing Reagent (Nanjing,
China). Phosphoric trichloride (molecular weight: 153.33; relative density: 1.645 g/mL
at 25 ◦C; and CAS number: 10025-87-3), analytical grade, was purchased from Kaiwei
Chemical (Shanghai, China). Diethyl malonate (molecular weight: 160.17; relative density:
1.055 g/mL at 25 ◦C; and CAS number: 105-53-3), anhydrous ethanol (molecular weight:
46.07, relative density: 0.789 g/mL at 20 ◦C; and CAS number: 64-17-5), 36% acetic acid
(molecular weight: 60.05; relative density: 1.05 g/mL at 25 ◦C; and CAS number: 64-
19-7), hydrochloric acid (molecular weight: 36.46; relative density: 1.17 g/mL at 20 ◦C;
and CAS number: 7647-01-0), N,N-dimethylformamide (molecular weight: 73.09; relative
density: 0.948 g/mL at 20 ◦C; and CAS number: 68-12-2), sodium hydroxide (molecular
weight: 40.01; relative density: 2.12 g/mL at 20 ◦C; and CAS number: 1310-73-2), cupric
chloride anhydrous (molecular weight: 134.45; relative density: 3.386 g/mL at 25 ◦C;
and CAS number: 7447-39-4), zinc chloride (molecular weight: 136.30; relative density:
1.01 g/mL at 20 ◦C; and CAS number: 7646-85-7), manganese(II) chloride (molecular
weight: 125.84; relative density: 2.98 g/mL at 25 ◦C; and CAS number: 7773-01-5), nickel(II)
sulfate (molecular weight: 154.76; relative density: 3.68 g/mL at 25 ◦C; and CAS number:
7786-81-4), iron(III) chloride (molecular weight: 162.20; relative density: 2.84 g/mL at 25 ◦C;
and CAS number: 7705-08-0), ferrous chloride (molecular weight: 126.75; relative density:
3.16 g/mL at 25 ◦C; and CAS number: 7758-94-3), calcium chloride (molecular weight:
110.98; relative density: 1.086 g/mL at 25 ◦C; and CAS number: 10043-52-4), magnesium
sulfate (molecular weight: 120.37; relative density: 1.07 g/mL at 25 ◦C; and CAS number:
7487-88-9), lead chloride (molecular weight: 278.11; relative density: 5.85 g/mL at 25 ◦C;
and CAS number: 7758-95-4), sodium chloride (molecular weight: 58.44; relative density:
2.165 g/mL at 25 ◦C; and CAS number: 7647-14-5), potassium chloride (molecular weight:
74.55; relative density: 1.98 g/mL at 25 ◦C; and CAS number: 7447-40-7), silver nitrate
(molecular weight: 169.87; relative density: 4.35 g/mL at 25 ◦C; and CAS number: 7761-88-
8), and barium chloride (molecular weight: 208.23; relative density: 3.856 g/mL at 25 ◦C;
and CAS number: 10361-37-2) were all of analytical grade, and obtained from Sinopharm
(Shanghai, China). A stock solution of MPMC was prepared in EtOH at a concentration of
1.0 × 10−3 mol/L. The stock perchlorate solutions (including the perchlorate of Cu2+, Pb2+,
Fe3+, Fe2+, Mg2+, Ni2+, Cd2+, Co2+, Mn2+, Ca2+, Ba2+, Na+, K+, Zn2+ and Ag+) were freshly
prepared in deionized water at a concentration of 1.0 × 10−3 mol/L.

1H and 13C NMR spectra were recorded on a Bruker AVANCE III 400 MHz NMR
spectrometer in DMSO-d6 with TMS as an internal standard. Mass spectrum was recorded
on the Thermo Q-Exactive mass spectrometer. The melting point was measured on the
XRC-1 melting point instrument. The ultraviolet absorption was recorded on Cary50. The
fluorescence test was recorded on the RF-6000 luminescence spectrophotometer. ESI-MS data
were recorded with Mariner System 5304 mass spectrometer. Elemental analyses (C, H, and
N) were gathered on a CHN-O-Rapid instrument within 0.4% of the theoretical values.

2.2. Synthesis of MPMC

The synthetic route of the target MPMC probe is shown in Scheme 1. Edaravone
aldehyde derivative (compound 2) and coumarin-3-carbohydrazide (compound 4) were
synthesized in reference to the methods reported in the literature [27–30].

2.2.1. Synthesis of Edaravone

A total of 13.0 g and 0.1 mol of acetyl ethyl acetate was first mixed with 5 mL of 60%
ethanol solution while stirring. Next, a solution consisting of phenylhydrazine (10.8 g,
0.1 mol) and absolute ethanol was added dropwise at 45 ◦C in approximately 30 min. After
dripping, the reaction proceeded at 45 ◦C for 20 min. Thereafter, the reaction solution was
cooled to room temperature, supplemented with 1 mL of concentrated hydrochloric acid,
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reacting at 45 ◦C for another 2 h. The following is the addition of 10% sodium hydroxide
solution, dropwise, to adjust the pH to be 7.0. Then, the solution was added by 20 mL of
water and stirred at room temperature for 1 h, followed by filtering to obtain light yellow
crystals. Finally, crystals were washed with cold absolute ethanol and heated to reflux in
ethyl acetate and absolute ethanol solution (with a volume ratio of 2:1) to obtain white and
pure edaravone (compound 1). The synthetic route of edaravone is shown in Scheme 2.
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Scheme 1. Reagents and conditions: (i) ethyl acetoacetate, 60% ethanol solution, 45 ◦C, 2 h; (ii) N,N-
dimethylformamide, POCl3, 100 ◦C, 15 h; (iii) diethyl malonate, piperidine, ethanol, 25 ◦C, overnight;
(iv) ethanol, 85% hydrazine hydrate, 20 h; (v) ethanol, CH3COOH, reflux, 2 h.
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Scheme 2. Synthesis of edaravone.

2.2.2. Synthesis of Edaravone Aldehyde Derivative

Edaravone (8.70 g, 0.05 mol) was dissolved in 1 mL of N,N-dimethylformamide under
stirring; then, 10.1 mL of phosphorus oxychloride was introduced slowly in drops by an
external ice bath. The reaction mixture was then heated to reflux for 1.5 h. After cooling,
it was introduced into 200 mL of ice water, then oscillated, stood still, and filtered; thus,
crude edaravone aldehyde derivative was obtained. Subsequently, the crude product was
treated by absolute ethanol washing, heated to reflux in ethanol, followed by drying to gain
the pure edaravone aldehyde derivative (compound 2). The synthetic route of edaravone
aldehyde derivative is shown in Scheme 3.
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Scheme 3. Synthesis of edaravone aldehyde derivative.

2.2.3. Synthesis of Ethyl Coumarin-3-Carboxylate

Salicylaldehyde (4.90 g, 0.04 mol), diethyl malonate (7.25 g, 0.045 mol), and 20 mL
of absolute ethanol were successively added and thoroughly mixed, and then 0.5 mL of
hexahydropyridine and two drops of acetic acid were dripped. In succession, the reaction
mixture was then heated to reflux for 2 h while stirring. After being cooled to dilution
crystallization, filtering was adopted to obtain the crude product, which was then washed
with ethanol several times and dried to obtain the pure ethyl coumarin-3-carboxylate
(compound 3). The synthetic route of ethyl coumarin-3-carboxylate is shown in Scheme 4.
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2.2.4. Synthesis of Coumarin-3-Carbohydrazide

In the presence of coumarin-3-carboxylic acid ethyl ester (2.00 g, 0.01 mol) and 50 mL
of anhydrous ethanol, five drops of hydrazine hydrate (0.01 mol) were then added. The
reaction mixture was heated to reflux for 10 h under agitation. Then, crystals of coumarin-
3-carbohydrazide were formed while being cold. After filtering, yellow crystals were
obtained. The yellow crystals were washed by absolute ethanol and dissolved with reflux
in absolute ethanol. Finally, bright yellow crystals, which were the pure coumarin-3-
carbohydrazide (compound 4), were produced via the dryness. The synthetic route of
coumarin-3-carbohydrazide is shown in Scheme 5.
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2.2.5. Synthesis of MPMC Probe

Compound 2 (1.0 g, 4.95 mmol) and compound 4 (1.0 g, 4.95 mmol) were dissolved in
40 mL of ethanol. With the addition of catalyst acetic acid, the reaction proceeded at reacting
temperature of 78 ◦C, heating to reflux for 2 h. After restoration at room temperature, a light-
yellow precipitate was generated and was obtained via filtering, washing with ethanol
several times. Finally, the precipitate was dried to give the MPMC probe (0.902 g, yield
46.96%). m.p. > 280 ◦C. 1H NMR and 13C NMR data of MPMC are shown as follows: 1H NMR
(400 MHz, DMSO-d6) δ 11.14 (s, 1H), 9.01 (s, 1H), 8.77 (s, 1H), 7.93 (d, J = 7.6 Hz, 1H), 7.76 (d,
J = 8.0 Hz, 1H), 7.73–7.68 (m, 1H), 7.45 (d, J = 8.6 Hz, 1H), 7.44–7.37 (m, 2H), 7.00 (s, 1H), 6.97 (d,
J = 7.4 Hz, 1H), 4.30 (q, J = 7.0 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, DMSO-d6)
δ 163.26, 163.07, 159.11, 156.48, 155.01, 149.19, 134.97, 133.72, 131.28, 130.76, 125.33, 120.08,
118.66, 118.29, 118.14, 117.00, 116.63, 61.71, 14.54. MS (ESI): 389.38 (M + H) +. Anal.Calcd for
C21H16N4O4: C, 64.94; H, 4.15; N, 14.43. Found: C, 64.92; H, 4.13; N, 14.41.

2.3. General Procedure for the Spectrum Measurement

Stock solutions of MPMC (1 mM) were prepared in ethanol. The metal ions stock
solutions (1 mM) were prepared with the nitrate or chloride salts (Cu2+, Pb2+, Fe3+, Fe2+,
Mg2+, Ni2+, Cd2+, Co2+, Mn2+, Ca2+, Ba2+, Na+, K+, Zn2+ and Ag+) in deionized water.
Absorption and emission spectra were obtained at room temperature using PBS solution
(pH 7.5) in MPMC (10 µM) with different concentrations of analyzer. Fluorescence spectra
were recorded at an excitation wavelength of 358 nm. The total concentration of Cu2+

and MPMC was kept constantly (2.0 mM). The fluorescence intensity of MPMC was
then recorded by varying the molar ratio of MPMC to Cu2+. The selectivity of MPMC
towards Cu2+ was tested by comparing other metal ions. MPMC (1 mM) was treated
with Cu2+ (1 mM) and other metal ions (10 mM) for 10 min and the fluorescence intensity
of the mixtures was recorded. For reproducibility testing, Cu2+ (1.0 mM) was incubated
with MPMC aqueous solution (1.0 mM), and the fluorescence of MPMC was quenched.
The fluorescence intensity of MPMC (1.0 mM) and MPMC-Cu2+ ensemble (1.0 mM) was
determined in a series of buffers (pH 1.0 to 14.0).
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3. Results and Discussion
3.1. Fluorescence Spectra of the MPMC Probe for Selectivity and Anti-Interference Detection

The fluorescence emission behaviors of the MPMC probe towards diverse metal ions
were detected in ethanol (EtOH)/H2O (v/v = 1/1) solution, respectively. Fluorescence
intensities of diverse metal ions added to MPMC were detected as the wavelength variation.
The fluorescence emission spectrums are illustrated in Figure 1a. As shown in Figure 1a,
when excitation wavelength 358 nm was given to the MPMC probe, a fluorescence emis-
sion band at 548 nm generated. Then fluorescence quenching followed along with the
insertion of Cu2+ (1.0 equiv), with the emission minimum being at 548 nm. Conversely, the
fluorescence emission spectrums of MPMC were affected little by introducing other metal
ions, in addition to a weak quenching of nickel ions.
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Figure 1. (a) Fluorescence emission spectra of the MPMC probe (10 µM) without or with metal ions
(including Cu2+, Pb2+, Fe3+, Fe2+, Mg2+, Ni2+, Cd2+, Co2+, Mn2+, Ca2+, Ba2+, Na+, K+, Zn2+, Ag+)
(10 µM) in ethanol with excitation wave length of 358 nm. (b) Fluorescence response of MPMC
(10 µM) to Cu2+ in the presence of various metal ions (including Pb2+, Fe3+, Fe2+, Mg2+, Ni2+, Cd2+,
Co2+, Mn2+, Ca2+, Ba2+, Na+, K+, Zn2+, Ag+) (100 µM) in EtOH/H2O (v/v = 1/1) (λex = 358 nm,
λem = 548 nm).

Furthermore, in view of potential interference of other metal ions in practical applica-
tions, sorts of metal ions were added successively into the MPMC-Cu2+ system, and the
influences on fluorescence selectivity were investigated.

A total of 100 µM of competitive metal ions (Pb2+, Fe3+, Fe2+, Mg2+, Ni2+, Cd2+, Co2+,
Mn2+, Ca2+, Ba2+, Na+, K+, Zn2+, Ag+), along with 10 µM MPMC in EtOH-H2O (v/v = 1/1),
were prepared and determined to access the fluorescence intensities. As Figure 1b illustrates,
a fluorescence emission band at 548 nm was generated again. Thereafter, with the addition
of 10 µM Cu2+, the fluorescence quenching took place. The existence of other metal actions
made no difference on the fluorescence intensity apparently. In general, the MPMC probe has
the characteristic of selectively recognizing Cu2+, displaying a good anti-interference ability.

3.2. Titration Experiment of the MPMC Probe to Cu2+

Colorimetric experiments were conducted to study the specificity of the MPMC probe
towards Cu2+. As Figure 2a shows, while adding Cu2+ to MPMC dissolved in EtOH/H2O
(v/v = 1/1), the color of solution passed from colorless to yellow in seconds. The result
shows that the MPMC probe can realize the colorimetric detection of Cu2+ with a detection
limit 10 µM. In the same way, the fluorescence color turned from colorless to yellow under
365 nm ultraviolet (UV) light, shown in Figure 2b. The applied results clearly demonstrate
that the MPMC probe could have an application in the qualitative and quantitative detection
of Cu2+ in the form of color change and spectrum signals multiplication.
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Figure 2. (a) Colorimetric performance of sensor MPMC (1 mM) upon addition of different metal
ions (including Cu2+, Pb2+, Fe3+, Fe2+, Mg2+, Ni2+, Cd2+, Co2+, Mn2+, Ca2+, Ba2+, Na+, K+, Ag+)
(1 mM) in EtOH/H2O (v/v = 1/1) solution; (b) color change induced upon addition of Cu2+ under
365 nm UV lamp.

As the concentration variation of Cu2+, fluorescence titration experiments were per-
formed to explore the sensitivity of the MPMC probe to Cu2+. As illustrated in Figure 3,
with the Cu2+ concentration rising, the fluorescence intensity of the MPMC probe reflected
a continued decrease. The linear equation for copper (II) ions is Y = −728.21X + 1388.2,
and the correlated coefficient is 0.9612. Based on the formula L = 3σ/Ka, the minimum
detectable concentration of the probe for copper (II) ions was calculated as 10.23 nM [31].
Compared with other fluorescent probes for the detection of Cu2+ listed in Table 1, the
MPMC probe prepared in this paper has a lower detection limit.
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Figure 3. (a) The fluorescence spectra of MPMC (10 µM) with the increasing concentration of Cu2+ ion
(0.01−10.0 equiv.) in EtOH/H2O (v/v = 1/1). (b) The changes of fluorescence signal with different
concentrations of copper ions. (c) The linear fit between MPMC and Cu2+.

Table 1. Performance of MPMC compared with available Cu2+ probes.

Compound Molecular Formula Solvent Repeatability Detection Limit Reference
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C45H36N4O8S4 

50% CH3CN 

and 20 mM 

HEPES 

No 390 nM [38] 

 

C20H22N2O2 
Water/DMF 

(9.9/0.1) 
No - [39] 

 

C13H11BrN2O2S DMSO No 2.35 μM [40] 

 

C21H16N4O4 
EtOH/H2O 

(1:1, v/v) 
Yes 10.23 nM This work 

3.3. Study of EDTA Effect of MPMC Probe on Cu2+ 

To fully investigate the response between MPMC probe and Cu2+, the procedures in-

volved the addition of ethylene diamine tetraacetate acid (EDTA) to MPMC-Cu2+ complex, 

C19H13N3O2S DMSO:H2O
(1:9, v/v) No 20.0 nM [35]
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3.3. Study of EDTA Effect of MPMC Probe on Cu2+ 

To fully investigate the response between MPMC probe and Cu2+, the procedures in-

volved the addition of ethylene diamine tetraacetate acid (EDTA) to MPMC-Cu2+ complex, 

C16H9F3O4
CH3CN/HEPES

(95/5, v/v) No 24.5 nM [36]
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3.3. Study of EDTA Effect of MPMC Probe on Cu2+ 

To fully investigate the response between MPMC probe and Cu2+, the procedures in-
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3.3. Study of EDTA Effect of MPMC Probe on Cu2+ 

To fully investigate the response between MPMC probe and Cu2+, the procedures in-

volved the addition of ethylene diamine tetraacetate acid (EDTA) to MPMC-Cu2+ complex, 

C45H36N4O8S4
50% CH3CN and

20 mM HEPES No 390 nM [38]
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3.3. Study of EDTA Effect of MPMC Probe on Cu2+ 

To fully investigate the response between MPMC probe and Cu2+, the procedures in-

volved the addition of ethylene diamine tetraacetate acid (EDTA) to MPMC-Cu2+ complex, 

C13H11BrN2O2S DMSO No 2.35 µM [40]
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3.3. Study of EDTA Effect of MPMC Probe on Cu2+ 

To fully investigate the response between MPMC probe and Cu2+, the procedures in-

volved the addition of ethylene diamine tetraacetate acid (EDTA) to MPMC-Cu2+ complex, 

C21H16N4O4
EtOH/H2O

(1:1, v/v) Yes 10.23 nM This work

3.3. Study of EDTA Effect of MPMC Probe on Cu2+

To fully investigate the response between MPMC probe and Cu2+, the procedures
involved the addition of ethylene diamine tetraacetate acid (EDTA) to MPMC-Cu2+ com-
plex, and the detection of fluorescence intensity was performed. As shown in Figure 4,
the fluorescence intensity was recovered with the additional amount of EDTA added into
the MPMC-Cu2+ complex. It suggests that the complexation ability of EDTA to Cu2+ is
stronger than that of the MPMC probe. EDTA seized the Cu2+ bound to the MPMC probe,
leading to the recovery of fluorescence. Namely, the fluorescence recognition between
MPMC probe and Cu2+ is reversible [41]. Then, the fluorescence quenching still occurred
after the sustainable addition of Cu2+. Similarly, the fluorescence intensity recovered again
after the addition of EDTA. The results indicate that the MPMC probe is reusable.

3.4. Study of pH Effect of MPMC Probe to Cu2+

The MPMC probe is required not only for highly sensitive and selective performance,
but also for its good sensing ability at different acidities in practical applications. The sens-
ing ability was detected by adjusting the pH of EtOH-PBS (phosphate buffer solution) from
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1.0 to 14.0. As Figure 5 illustrates, with a range 4.0–11.0 of pH variation, the fluorescence
intensity of the MPMC probe was maintained constantly. It then dropped dramatically
in a range 5.0–8.0 pH while adding Cu2+ to the MPMC solution. At a low pH range, the
fluorescence intensity exhibited no variance; it was probably caused by hydrolysis of Cu2+

under acidic conditions, which inhibited the formation of the MPMC-Cu2+ complex30.
Thus, the prepared MPMC probe acted as a fluorescent pH sensor, suitable for a broad
range of pH detection (4.0 to 11.0), especially from 5.0 to 8.0.
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Figure 5. Fluorescence intensity changes of MPMC probe (black line) and MPMC-Cu2+ complexes
(red line) under different pH values in phosphate buffer system (λex = 358 nm, λem = 548 nm).

3.5. Study of the Response Time of MPMC Probe to Cu2+

The response time of the MPMC probe in determining copper (II) ions was obtained.
The variation of the fluorescence intensity at 548 nm with the reaction time of the MPMC
probe along with Cu2+ is shown in Figure 6. After the addition of copper (II) ions, the
fluorescence intensity of the MPMC probe declined markedly within 1 min then achieved
an equilibrium after 2 min.
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3.6. Contact Mode Detection between MPMC Probe and Cu2+

To explore the binding ratio of the MPMC probe to Cu2+, different ratios of the MPMC
probe to Cu2+ (1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1) were prepared. As the molar fraction
changed, the fluorescence characteristics were analyzed, and Job’s plot curve is illustrated
in Figure 7. With the molar fraction varying from 1:9 to 5:5, the fluorescence intensity
decreased first, while the fluorescence intensity was almost unchanged in the range from
5:5 to 9:1. The molar fraction corresponding to the minimum fluorescence intensity of the
MPMC probe appeared at 0.5, indicating that MPMC-Cu2+ complex was formed by 1:1.
The possible binding mechanism of MPMC to Cu2+-induced fluorescence changes is shown
in Figure 8.
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Figure 8. The proposed sensing mechanism of MPMC to Cu2+ in the system.

3.7. The Test Paper for Cu2+ Ions

To study the multifunction applications of the solid-state MPMC probe for its high
efficiency and simplicity, the recognition of Cu2+ by MPMC was performed on pre-treated
paper. Filter papers were steeped in MPMC probe dissolved in an ethanol-saturated
solution (1.0 × 10−3 mol/L) for a few seconds to obtain test strips. Afterward, solid-state
experiments were carried out by drying test strips in air and treating with an aqueous
solution of Cu2+ (1.0 × 10−3 mol/L). Under sunlight, test strips before and after solid-state
experiments presented white and yellow colors, respectively, as seen in Figure 9. In the
same way, the color became light yellow and blue under 365 nm UV light, respectively [42].
Thus, the solid-state method for detecting Cu2+ with the naked eye was both economical
and convenient.
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Figure 9. Photographs showing the color changes of the MPMC probe (1.0 mM) before and after
addition of Cu2+ (1.0 mM) under (a) sunlight and (b) 365 nm UV light.

4. Conclusions

A fluorescent probe with highly selective and sensitive performance based on coumarin
and pyrazole Schiff base has been synthesized. The fluorescence emission behaviors of
the MPMC probe towards diverse metal ions were detected, and the probe exhibited high
sensitivity and selectivity towards Cu2+ over other metal ions via the quenching of its fluo-
rescence. Furthermore, the existence of other metal actions made no apparent difference
to the fluorescence intensity of the MPMC-Cu2+ system; that is, MPMC displayed a good
anti-interference ability. Job’s plot of MPMC and copper ions indicated that the detection
limit was 10.23 nM (R2 = 0.9612) for the assayed actions, with a stoichiometric ratio of 1:1
for MPMC and Cu2+. Additionally, the color of the MPMC probe solution changed from
nearly colorless to yellow in the presence of Cu2+ in visible light, and the color change
could be observed by the naked eye. Similarly, the color resolved from bright yellow into
blue in ultraviolet light. Moreover, the MPMC probe was reusable. The pH effect of the
MPMC probe on Cu2+ had a broad range of pH detection (4.0 to 11.0, especially from 5.0
to 8.0). The response time of the MPMC probe for determining Cu2+ was within 1 min.
The recognition of Cu2+ by MPMC performed on pre-treated paper under sunlight and UV
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light both had a distinct colour change. In conclusion, the MPMC probe could be applied
to recognize Cu2+ in the environment; moreover, applications in biological systems may be
achieved in future.
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