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Abstract: This study aims to introduce a fluorescence-based chemosensing method for Zn2+ in
aqueous suspensions and untreated surface waters, conditions which generally hinder the application
of conventional optochemical sensing platforms. A macrocyclic fluoroionophore was covalently
bonded to a silica-coated magnetic nanoparticle and applied according to a predetermined protocol
for analyzing trace amounts of Zn2+ under rarely investigated conditions. Utilizing the reversible
complexation of the immobilized fluoroionophore, rapid regeneration was carried out via simple
acidification after the magnetic-assisted solid-phase extraction of the particles. Forming inclusion
complexes with Zn2+ with the receptor units of the particles leads to a significant enhancement in
fluorescence intensity at 370 nm, above the detection limit of 5 ppb, with a dynamic linear range
of quantification of 15–3000 ppb in a pH range of 5.5–7.5. Practical applicability was confirmed
by analyzing untreated river water and an aqueous suspension of pumpkin seed flour as real and
relevant heterogeneous multicomponent samples of predetermined sample composition and natural
Zn2+ content. Our practical approach aims to broaden the applicability range of optochemical sensing
platforms for Zn2+.

Keywords: magnetic nanoparticle; fluorescence; zinc; molecular recognition

1. Introduction

The contamination of samples with sensor molecules or the presence of perturbation-
causing physical contaminants (precipitates, insoluble particles in suspensions, colloids, etc.)
can hold back the potential of optochemical sensing among analytical techniques. Sensor
molecules are usually immobilized to solid carriers to overcome these limitations [1–3]. One
favorable option is anchoring them to magnetic nanoparticles (MNPs), which also provides
a simple magnetic facilitated recovery [4]. Following these considerations, we decided to
covalently attach a Zn2+-selective fluorescent macrocycle to the surface of a silica-coated MNP
to gain a multiple-use chemosensing platform for Zn2+. We intended to focus especially on
suspensions and untreated surface water samples, as their investigation is considered as the
bottleneck of ion-selective optochemical analysis by using conventional optode devices (i.e.,
membrane, optical fiber, flow-through, film and waveguide optodes). In the cases of the
mentioned types of optodes, the presence of physical contaminants—i.e., large particles, sand,
slurry, macromolecular contaminants, etc.—can hinder applicability, as these contaminants
tend to cover the active signaling sites, thus partially blocking the way of light on the source
or detector side.

Zn2+ plays a crucial role in biology [5]; thus, many selective applications have been
developed for its determination in various samples [6,7]. However, most of them lack
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appropriate selectivity, especially in distinguishing Cd2+ and Zn2+, owing to their quite
similar properties and usual copresence in nature [8]. Compared to the most commonly in-
vestigated slightly contaminated aqueous samples, optical chemosensing in heterogeneous
solid–liquid systems, like real soil samples or suspensions, is more challenging, and would
present great potential [8]. Although the typical concentration of Zn2+ in groundwater is
around 0.04 ppm, the concentration in drinking water is usually higher due to plumbing
networks [9]. From the aspect of sensor development, the limit of detection (LOD) of the
new applications should meet the permissible Zn2+ concentration in drinking water, which
is currently 5 ppm [9]. The rising industrial activities inevitably cause an increased Zn2+

content in rivers and soils, which can reach 20 and 500 ppm, respectively [10,11].
The benefits of combining the advantageous selectivity of supramolecular interactions

and the specific surface properties of nanomaterials are well-known and lead to the de-
velopment of numerous useful tools, both for academia and industry [12–17]. Combining
nanostructural carriers and molecular cages simultaneously provides the regenerability,
separability, high surface area, adsorption capacity, etc. [12–17]. Crown ethers are among
the oldest synthetic receptors. Despite their less advanced selectivity compared to that
of 21st-century sensor molecule alternatives, they are still widely used due to their struc-
tural simplicity and better availability. They have also been used for several decades in
ion-selective optochemical sensing. In the case of the first generation of optodes, crown
ethers had the role of selectoionophores, while optical signals were induced via the indi-
rect protonation process of a chromoionophore at the same time [18]. As the proposed
sensor molecule contains the fluorophore as a subunit of its coordination sphere, it can
perform both molecular recognition and direct-type optical signaling. The advantage of
using the ion-selective macrocycles instead of the most commonly applied introduction
of simple functional groups in the particle surface is their improved selectivity. It is at-
tributed not only to the lack of size-, shape- and polarity-specific molecular cages, but
also to the occurrence of only charge-driven intermolecular interactions with simple func-
tionalized surfaces. Polar functional groups on the particle surface, especially negatively
charged ones (i.e., –COO−, –S−), can coordinate not only competing cations with the same
chemical character and charge, but unfortunately, they also provide unspecific binding
sites for various contaminants in the samples (organic content, physical contaminants
containing biomolecules, natural surfactants, etc.) in contrast to neutral crown ethers as
stereoelectronic host molecules with a multipoint binding ability. However, it is also true
that macrocycle-functionalized nanoparticles are naturally more expensive due to the need
for preparing receptor units and their difficult subsequent immobilization on the surface,
while the introducible number of binding sites would be far behind that provided by simple
surface functional groups.

Surface functionalization plays a critical role in this type of application, as the chem-
ical properties as well as the number of ligands and functional groups on the surface of
the NPs largely influence their charge, dispersibility, and colloidal stability, as well as
the hydrophilicity/hydrophobicity, processability, and interactions with the medium [19].
Furthermore, suitable functional groups or coatings on NPs enable the controlled function-
alization via covalent binding of functional molecules, such as crown ethers, as synthetic
receptors capable of providing molecular recognition. We used a commercially available
silica-coated MNP as a prefunctionalized core of the sensing unit. For further modification,
we applied an upgraded specific version of a reported method, which was successfully
used previously in our research group for functionalizing silica gel surfaces with crown
ethers [20]. In the context of the present work, we also proved that this method is suitable
for the surface modification of silica-coated MNPs—not only for spherical silica gels—by
providing a molecular linker of a proper length (3 C-C-bond-length) for preserving optimal
complexing properties. It was also important to consider that the applied functionalized
NPs needed to show proper colloidal stability in water, even after post-coating modifi-
cations, besides providing the unchanged complexation of the receptor. To preserve the
relatively sensitive sensor molecule in its original form, mild reaction conditions should
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be applied for the chemical modification of the MNP surface. Furthermore, allowing
for bioanalytical applicability and the minimization of unspecific adsorption sites with-
out any further surface passivation strategies—which might cause the inactivity of the
receptor—were also required [19,21]. This means avoiding the introduction of a large num-
ber of highly polar, especially negatively charged, functional groups, which can coordinate
several cations without a predetermined selectivity. The proposed silica-coated core was
previously applied many times while satisfying the former essential requirements [22–27].

Due to the enhanced importance of rapid chemosensing and the inherent advantages
of fluorescent detection, recent research shows tremendous growth in the number of
published papers focusing on the fluorescent detection of Zn2+ [28,29]. Among them, the
following can be highlighted in the context of the present paper:

Kim et al. reported a naphthylamide- and Fe3O4-containing NP for the selective
detection of Zn2+ [8]. The NP had a naphthalimide and a dipicrylamine moiety as the Zn2+-
coordinating subunit and catechol-linked Fe3O4 as the magnetic core. A weak fluorescence
was obtained at 527 nm upon excitation at 370 nm in DMSO-HEPES buffer, while the
presence of Zn2+ induced the fluorescence enhancement. The NP was exploited for the
detection and removal of Zn2+ from soil samples [8].

Li et al. reported a new fluorescent and surface-enhanced Raman spectroscopic dual-
mode Zn2+ probe based on a modified gold NP [30]. Since Zn2+ caused the self-aggregation
of the particles and a parallel fluorescence enhancement at 425 nm, it enabled a selective
chemosensing application, even the detection of the distribution of Zn2+ in single cells,
with an excellent biocompatibility and low cytotoxicity [30].

A BODIPY-based Zn2+-selective fluorescence sensor was developed by Jia et al. [31].
The N,N-di(pyridin-2-ylmethyl)-ethane-1,2-diamine group provided a binding site for Zn2+.
In the absence of Zn2+, fluorescent monomers self-assembled to form NPs, which resulted
in a quenched fluorescence via aggregation. In the presence of Zn2+, it coordinated to the
aggregates, resulting in a returned fluorescence at 600 nm (while excited at 573 nm) [31].

Wu et al. reported a fluorescent Ag2S quantum dot, which emitted at 1100 nm (excita-
tion at 480 nm) [32]. In this case, the Ag2S nanocrystals with n-dodecylmercaptan-linked
thioglycolic acid functions could act as monodisperse spherical NPs in water, turning on a
fluorescent response for Zn2+. Upon the addition of Zn2+, it binds to the thioglycolic acids
on the particle surface, thereby forming a Zn-mercapto-derivative as a complex passivation
shell on the surface of the Ag2S quantum dots. This process restores surface defects, in-
hibits the non-radiation recombination pathway, and enhances the intensity of fluorescence
emission at 1100 nm, thus making the probe able to be used in the NIR-II fluorescence
detection of Zn2+ [32].

Pourfallah et al. reported the first 4-aminoquinoline-based reusable nanochemosensor
for Zn2+ [33] with PEG-linked Fe3O4@SiO2-PEG-4AQ and Fe3O4@SiO2-4AQ magnetic
cores. Red shift and a 13.5-fold fluorescent enhancement were observed upon complexation
with Zn2+, with a detection limit of 0.0065 µmol/L, showing a reversible operation upon
treatment with EDTA [33].

A fluorometric assay for Zn2+ was reported by Shen et al., which relies on the use of
an isothermal cycle to amplify the fluorescence signal, and of magnetic beads to completely
remove unreacted DNA detection probes [34]. The sensor had a detection limit as low as
33 fmol/L, and was successfully applied for the determination of Zn2+ in spiked tap water
and seawater samples, as well as in infant milk powder and breast milk [34].

Continuing these recent efforts, we aimed to create the first crown ether-functionalized
MNP for the fluorescent determination of Zn2+. Herein, we present a method which allows
for a uniquely simple regeneration, using only extraction with slightly acidic water, and
also a very high selectivity due to the inclusion-type complexation of the applied fluo-
roionophore. Furthermore, the introduced measurement protocol enables the component
selective analysis of suspensions, which can rarely be performed using other optochemical
sensors. Moreover, an analysis of real samples was performed without any preliminary
sample preparation (filtration, preconcentration/dilution, pH adjustment, etc.).
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2. Experimental
2.1. Materials and Instruments

The chemicals were purchased from Sigma-Aldrich Corporation (St. Louis, MO, USA,
owned by Merck, Darmstadt, Germany) and were used without further purification unless
otherwise noted. A commercially available silica-coated MNP, TurboBeads™ Silica, was
used as a magnetic nanocore for further functionalization. It has a carbon content of
≤14 wt%, a cobalt magnetic core, a magnetism of ≥100 emu/g mass saturation, a 20–40 nm
average diameter, a specific surface area of ≥15 m2/g, and high stability in the air (weight
gain in the air at 100 ◦C < 3 wt%).

An acridino-diaza-20-crown-6 ether containing reactive allyl groups (1, see Figure 1)
was used as a direct-type fluorescent sensor molecule [35]. Covalent attachment to the
silica-coated surface of the MNP was performed through the reaction of the allyl units via a
3-C-atom-containing molecular spacer.
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Figure 1. The applied Zn2+-selective fluorescent sensor molecule (1).

This fluoroionophore can fulfill receptor and signaling functions simultaneously. Its
selectivity was previously proved in a solution phase [35]. The ionophore preferred Zn2+

(logK = 5.6, ∆logK > 4.0 in each case) over 20 other potential competing cations (Rb2+, Li+,
Cs+, Mn2+, Fe2+, Ba2+, Sr2+, Hg2+, Cd2+, K+, Ni2+, Co2+, Na+, Cu2+, Ag+, Ca2+, Mg2+, Cr3+,
Pd2+, Pb2+) and showed a reversible complex formation with a 1:1 stoichiometry. Only
Al3+ and Bi3+ interfered, but these ions are rarely present as contaminants in practice. The
coordination of anions (H2PO4

−, NO3
−, HSO4

−, CH3COO−, F−, Cl−, Br−, I−) is also not
expected, even when the ionophore is protonated [35].

UV/Vis spectra were recorded on a UNICAM UV4-100 spectrophotometer, controlled
using the VIZION 3.4 software (ATI UNICAM, UK). Fluorescence emission spectra were
recorded on a Perkin-Elmer LS 50B luminescent spectrometer (PerkinElmer Inc., Waltham,
MA, USA) and were corrected using the FL Winlab 3.0 spectrometer software (PerkinElmer
Inc., Waltham, MA, USA). Quartz cuvettes with a path length of 1 cm were used in all cases.
Zn2+-acetate was used for preparing all artificial samples. Spectroscopic measurements
were carried out at room temperature (25 ± 1 ◦C). During the spectrophotometric titra-
tions, the solutions were added with a Hamilton-syringe to the aqueous solutions in the
spectrophotometric cuvette. The results were corrected with the background signal and the
dilution effect of the added solutions. OriginPro 8.6 (OriginLab Corp., Northampton, MA,
USA) software was used for the evaluation and visualization of the spectroscopic results.
Every reported point comes from at least three independent measurements.

For the pH measurements, a Mettler Toledo SevenEasy pH meter (Mettler Toledo,
Columbus, OH, USA), fitted with a Mettler Toledo Inlab microelectrode, was used. The
various pH values were adjusted with nitric acid and an aqueous sodium hydroxide
solution. The accuracy of the pH determinations was within ±0.1 unit.

In the cases of multielement sample compositions, like real samples, the element
masses were determined via inductively coupled plasma optical emission spectroscopy
(ICP-OES). Sample solutions of 5 mL were acidified with 50 µL of nitric acid (63 wt%).
The sample solutions were measured in simultaneous, multielement mode using a Labtest
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Plasmalab ICP-spectrometer (Labtest Equipment Company, Valparaiso, IN, USA) with a
40-channel Paschen–Runge vacuum polychromator with photomultiplier detectors. Addi-
tional information on the instrumentation and measurement settings can be found in the
Supplementary Materials.

In the case of selectivity studies, 23 different metal salts were used: carbonate counte-
rion: Rb2+, Li+, Cs+; sulfate counterion: Mn2+, Fe2+; hydroxide counterion: Ba2+; chloride
counterion: Sr2+, Al3+, Hg2+, Bi3+; iodide counterion: Cd2+; acetate counterion: K+, Ni2+,
Co2+, Na+, Cu2+, Ag+, Ca2+, Zn2+, Mg2+; nitrate counterion: Cr3+, Pd2+, Pb2+. These were
added separately to the aqueous colloid dispersion of the fluorescent MNP in the form of
50 mM aqueous solutions.

Validation was carried out by measuring untreated (containing floating physical
contaminants, e.g., sand, etc.) river water from the Danube and aqueous suspensions of
pumpkin seed flour. Detailed information regarding the composition of both the river
water and the flour can be found in the Supplementary Materials.

2.2. Determination of Limit of Detection and Quantitation and Response Time

The detection limits (LOD) and limit of quantitation (LOQ) were calculated by using
the data of the fluorescence titrations. To determine the signal-to-noise ratio, the fluores-
cence intensity of the MNP was measured nine times, and the standard deviation of these
blank measurements was determined. Three separate measurements of the emission inten-
sity were performed in the presence of Zn2+, and the average of the intensities was plotted
as a function of the Zn2+ concentration to determine the slope of the linear regression
(see Supplementary Materials). The LOD and LOQ were calculated based on a standard
method [36], as follows:

LOD =
3d
S

(1)

LOQ =
10d
S

(2)

where d is the standard deviation of the optical signal of the sensor membrane and S is
the slope of linear regression for the emission intensities as a function of the concentration
of Zn2+.

The response time was defined as the time required to reach 95% of a constant
optical response.

3. Results and Discussion
3.1. Surface Modification of Silica-Coated Magnetic Nanoparticles

The modification of the silica-coated surface-layer of the MNP (2) was carried out
based on a previously reported two-step procedure for modifying spherical silica gels [20].
Some changes were introduced to modify this reported method for MNPs.

A slurry of the silica-coated MNP (2, 150 mg) in dry toluene (1.5 mL) was heated
with magnetic stirring (using an external magnetic stirrer by exploiting only the magnetic
properties of the NP) to reflux under argon for 12 h. The formed water was removed by
adding a 3 Å molecular sieve (300 mg). After adding (γ-mercaptopropyl)-trimethoxysilane
(3, 300 µL, 1.53 mmol), the mixture was stirred in the above conditions for 48 h. The mixture
was cooled down to 25 ◦C the modified MNP (4) was collected by using an external magnet
and then washed sequentially with toluene (5.0 mL), CHCl3 (5.0 mL), MeOH (5.0 mL), and
CHCl3 (5.0 mL).

As a second step, the modified MNPs containing the reactive linkers (4) were directly
transferred to the reaction with crown ether (1) in the form of a slurry in CHCl3 (evaporation
to dryness should not be applied to avoid the aggregation of the MNPs). The slurry of the
linker-functionalized MNP (4, 1.0 mL), macrocyclic fluoroionophore (1, 30 mg, 0.06 mmol)
and 2,2′-azobis(2-methyl)propionitrile (AIBN, 3.0 mg, 0.02 mmol) in freshly distilled pure
and dry CHCl3 (2.0 mL), was heated with magnetic stirring at 50 ◦C under argon for
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48 h; two additional portions of AIBN (3.0 mg, 0.02 mmol each) were added after 12 and
24 h. After cooling to 25 ◦C, the fluorescent MNPs were collected with a permanent
external magnet and washed sequentially with CHCl3 (5.0 mL), MeOH (5.0 mL), and H2O
(3 × 5.0 mL). The synthetic steps of the functionalization are shown in Scheme 1.
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Scheme 1. Procedure for the functionalization of silica-coated MNPs (2).

The modification procedure caused a partial aggregation of the MNPs (probably due
to mechanical stirring and/or the bifunctional nature of the sensor molecule); thus, larger
ones formed in the suspension. These aggregates were separated via sedimentation to gain
a stable colloidal dispersion in water. The particles were added in the form of these aqueous
colloidal dispersions to the samples for fluorescence studies. All of the measurements
were performed within 24 h, while the colloidal dispersion of the functionalized MNPs
remained stable.

Neither combustion analysis nor FTIR measurements could be used for determining
the loading density of macrocycle 1, since the portion of them on the surface did not prove to
be enough for achieving a proper determination. That is why UV/Vis titration was carried
out to obtain a calibration curve for the fluoroionophore (1), and the portion of the attached
amount of the sensor molecule (1) was calculated according to the Lambert–Beer equation
(detailed information can be found in the Supplementary Materials). The results show that
the functionalized MNPs contain ~3.3 wt% covalently immobilized sensor molecules on
their surfaces. The presence of some non-fluorescent particles cannot be excluded; they,
just like inactive ionophores, reduce sensitivity by causing background signals. However,
the probability for particles to remain non-fluorescent is very small. A rough estimation for
the average number of immobilized crown ethers resulted in a number of about 1014 pieces
of molecules per nanoparticles. Five parallel measurements were carried out after proving
the effectiveness of removing the remaining unbonded sensor molecules. Centrifugation
and a subsequent spectrophotometrical investigation of the filtrate were used for checking
the presence of the physically (not covalently) adsorbed fluoroionophores.

3.2. Measurement Procedure

The Zn2+ content of samples in solution, or even in suspension, can be measured by
directly adding a water-based colloid dispersion of the functionalized MNPs (Step 1 in
Figure 2). The optimal ratio is as follows: 1.0 mg of MNPs in 1.0 mL of distilled water to
4.0 mL of sample (optimized for the linear working range of the probe, see Section 3.3).
Then, the samples need to be mechanically stirred to reach a homogeneous distribution
of dissolved Zn2+ in the medium (Step 2 in Figure 2). After stirring, some incubation
time is required to let the suspension sediment fall to the bottom of the vial. Following
sedimentation, the MNPs can be easily separated by using a permanent magnet externally
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(Step 3 in Figure 2); thus, the sediment and suspension phase of the sample can be removed
via pipetting. (In the case of homogeneous samples, analysis can be directly performed
without sedimentation.) During this process, a part of the sensor molecules form inclusion
complexes with the dissolved Zn2+ on the surface of the physically segregated MNPs. This
is followed by diluting the segregated MNP slurry to the volume corresponding to the
initial state (Step 4 in Figure 2). Finally, the content of the vial is shaken well to gain a
homogeneously distributed colloid again, and the latter, containing the macrocycle 1-Zn2+

complexes, is analyzed using a conventional fluorescent spectrophotometer to determine
the Zn2+ content based on the spectral changes (Steps 5–6 in Figure 2).
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Figure 2. The applied measurement protocol for sample analysis.

It is clear from the applied protocol that it only enables the determination of the
dissolved Zn2+ inside the heterogeneous samples. If there is a need to study the content of
the solid part of the samples, additional treatments of the samples (e.g., using strong acid)
have to be initially performed.

After the determination of Zn2+, the applied MNPs can be used several more times.
The regeneration, i.e., the removal of the complexed Zn2+ from the macrocycle cavity, can
be performed by using a slightly acidic (pH = 4.0 aqueous solution of nitric acid) extraction.
The dispersion should be diluted and shaken two times with an equivalent volume of the
acidic solution while separating the MNPs. The third extraction should be carried out with
an aqueous pH = 9.0 sodium hydroxide solution to convert fluoroionophore 1 back to its
neutral form. The mechanism of the facilitated decomplexation can be seen in Figure 3.
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Figure 3. Acid-induced decomplexation of the immobilized sensor molecule (1) on the surface of the
MNP during the regeneration cycle.

It is advantageous that no chelating additives (i.e., EDTA) are needed compared to
many other methods. The slightly acidic medium first causes the protonation of the basic
tertiary-N-atoms and then also the weakly basic acridine-N of the macrocycle (1), which
results in the loss of their electron donor ability, leading to the dissociation of the complexed
Zn2+ from the molecular cage.

3.3. Fluorescence Response to Zn2+

Since the prerequisite for detection is a solid-phase extraction process, during which
the sensor molecules bind the dissolved Zn2+ from the sample, the extraction ability was
investigated prior to the fluorescence response. This study was carried out by using single-
component, homogeneous samples in the concentration range of 15–3000 ppb Zn2+. The
extracted amount of Zn2+ was determined after applying the general measurement protocol
and the subsequent regeneration process (Section 3.2). Studies revealed that almost the
total amount of dissolved Zn2+ (>95% in each case) was reversibly complexed by the
immobilized sensor molecules during the solid-phase extraction process. The observed
high extraction ability was supported by the optimization: sensor molecules were present in
excess to the Zn2+ content in the entire concentration range of the quantitation. According
to the results, the extraction ability of the MNPs does not hinder optochemical analysis in
the linear working range of concentration. In the cases of analyzing highly heterogeneous
samples, the extraction ability is expected to decrease.

Initially, titration was carried out by using single-component, aqueous solutions of
Zn2+ of a wide concentration range. The obtained series of spectra can be seen in Figure 4.
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Figure 4. Series of spectra for fluorescence titration of the functionalized MNPs, using single-
component aqueous solutions of Zn2+ (λexcitation = 250 nm).

The emission peak wavelength was 370 nm and an 8.7-fold fluorescence enhancement
was observed in the 1.0× 10−8–2.0× 10−1 mol/L Zn2+ concentration range while applying
excitation at 250 nm. It is important to mention that not all of the immobilized sensor
molecules serve as active binding sites for Zn2+ due to the presence of numerous adverse
effects on ion-trap conformation.

Figure 5 shows the titration curve reported at the emission peak maximum of 370 nm.
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logarithm of the Zn2+ concentration.

The relative standard deviation was within 3.2%. A linear dynamic range of optical
response was obtained below 3000 ppb (F = 52.3·logcZn2+ + 682.8 ; R2 = 0.97). The LOD
was calculated as 5 ppb, while the LOQ was determined to be 15 ppb. The linearity is also
reliable (R2 = 0.99) at higher concentration levels, with an altered slope of the calibration
curve. However, quantitation was optimized for concentrations below 3000 ppb. For
determining higher Zn2+ concentrations, the relative quantity of the MNPs needs to be
increased, attributed to the limited binding capacity of the immobilized fluoroionophores.

It is noteworthy to mention that an incubation time is required to reach the equilibrium
of complex formation to obtain a constant response. It usually takes more time in the case of
immobilized ionophores compared to dissolved ones. Studies were carried out to determine
the smallest sufficient time of magnetic stirring before fluorescent determination (Figure 6).
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(λexcitation = 250 nm, λdetection = 370 nm).

In the case of the studied samples, a 10 min incubation proved to be enough to achieve
a constant signal with a lower deviation. However, depending on the heterogeneity of the
samples, more time might be needed.

3.4. Study on Reversibility and Reusability

To obtain insight into the regenerability of the proposed sensing nanoparticles, single-
component aqueous samples of the same Zn2+ concentration (5.0 × 10−7 mol/L) were
measured five times while reporting the observed optical response (Figure 7). Between ev-
ery repeated measurement, the earlier-mentioned slightly acidic treatment (see Section 3.2)
was applied for regeneration.
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samples (Fmeasured refers to the measured fluorescence intensity at 370 nm, while Fexpected corresponds
to the calibration curve at the same wavelength).

The results show that only marginal changes of less than 3.0% were observed between
the induced changes in fluorescence, which can be attributed to the effective covalent
immobilization and highly reversible complexation of the sensor molecules.

3.5. Study on Selectivity

Studies were also carried out on selectivity to prove that immobilization had no
effect on the complexation behavior of the fluoroionophore (1). The fluorescence change
was investigated in the equimolar presence of the previously mentioned metal salts (see
Section 2.1) upon excitation at 250 nm (Figure 8A), and after that, also under competitive
conditions in the simultaneous presence of all indifferent ions (Figure 8B).
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of potentially competing metal ions (A) and those under competitive conditions in the presence of
1.0 × 10−3 mol/L background electrolytes as a mixture of the 20 indifferent ions with 5.0 × 10−5 mol/L
individual concentrations, while adding 5.0 × 10−5 mol/L of Zn2+ (B) (λexcitation = 250 nm).

It can clearly be seen that no significant change (within 5.0%) was caused in the
fluorescence by the majority of the metal ions, except Al3+ and Bi3+. This interference
was expected from the preliminary studies on the free ionophore [35]. However, these
competing ions are rarely co-present with Zn2+ in real samples; thus, this competition
does not hinder practical applicability. We found that the equimolar copresence of the
20 metal ions, which proved to be indifferent, also did not influence the response toward
Zn2+ significantly. The deviance compared to the single-component Zn2+ sample was only
within 6%. This observation also indicates that the sensor molecules strongly coordinate
Zn2+, even in the presence of Cd2+, Pb2+, Hg2+, Co2+, Ni2+, and Cu2+, which are considered
typical competitors in similar chemosensing applications [8].

The obtained selectivity was compared with that of the dissolved ionophore [35] to
reveal the effects of nanocores and immobilization on both molecular recognition and
signaling. Based on the comparison, both the complexing and signaling properties of the
sensor molecule could quite effectively be preserved despite the covalent immobilization.
The presence of Zn2+ still caused the largest fluorescence enhancement without significant
shifts in the emission peak wavelength, while the addition of Al3+ and Bi3+ additionally
caused a slight bathochromic shift. None of the other studied ions showed significant
interference with the preferred ones. All of these observations are the same for the dis-
solved and immobilized sensor molecules. The enhancement of the fluorescence upon
the complexation of the preferred ions was smaller compared to the case of the dissolved
ionophores. It can be attributed to the fact that not all of the immobilized ionophores can be
considered active for complexation, and the optical effects of the non-fluorogenic nanocores
can also reduce the sensitivity of detection.

An exact explanation of selectivity cannot be given based on the similarities of the ionic
radii or the electronic configuration of the complexed cations. There are several reported
optochemical ionophores containing the same 4,5-dimethyleneacridine fluorophore unit,
such as our proposed sensor molecule. These structurally analogue sensor molecules typi-
cally show selectivity for soft electrophilic cations like Hg2+ [37], Cd2+ [37–40], Zn2+ [39],
Ni2+ [41], and Fe3+ [41,42]. This is attributed to their soft nucleophilic acridine-N and
two—usually tertiary—aliphatic N-atoms, which have lone electron pairs for coordination.
Thus, the observed selectivity is not surprising. After making an overview on recently
published Al3+- and Bi3+-selective sensor molecules, it can be seen that almost every coor-
dination sphere consists of a tertiary aliphatic N with a lone electron pair and additionally
coordinating O-centers within a 2–4-atom distance [43–48]. Among the studied competing
ions, the trivalent cations, i.e., Cr3+, interfere in general [47,48]. It is also important to
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mention that only one example could be found when selectivity toward Bi3+ and Al3+ were
investigated together, and this study also reported the competition of these two cations [43].

3.6. Study on pH Dependence

The pH values of the samples were varied by adding corresponding amounts of
aqueous solutions of nitric acid or sodium hydroxide to the aqueous colloid samples of the
MNPs containing 5.0 × 10−7 mol/L of Zn2+. The results can be seen in Figure 9.
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(λexcitation = 250 nm).

In the pH interval of 5.5 to 7.5, a constant signal was obtained, indicating a pH-
independent working range, which covers the most relevant pH range of the environmen-
tal and biological samples. Below pH = 5.5, the basic nitrogens of the sensor molecule
can accept protons, which causes a reduced stability of the Zn2+ complex, which can be
exploited effectively for regeneration (see Figure 3). The protonation of the ionophore
(1) can also take place in the absence of Zn2+. The pH range above 7.5 is not considered
relevant due to the expected precipitation of the dissolved Zn2+.

3.7. Validation by Analyzing Real Samples

Untreated river water and an aqueous suspension of pumpkin seed flour were mea-
sured as heterogenous multicomponent samples with a natural Zn2+ content. Detailed
information regarding these samples can be found in the Supplementary Materials. The
results were compared with those measured via ICP-OES (Table 1).

Table 1. Application of the fluorescence probe for determining the Zn2+ content of untreated river
water and an aqueous suspension of pumpkin seed flour.

River Water Aqueous Suspension of
Pumpkin Seed Flour

Real cZn2+
1 50 ppb 105 ppb

Ftheoretical
2 358 375

Fobserved 344 352
Determined cZn2+

3 27 ± 8 ppb 39 ± 11 ppb
1 The real concentration of Zn2+ measured via ICP-OES. 2 The theoretically expected fluorescence intensity for
Zn2+ based on its concentration measured via ICP-OES. 3 The concentration of Zn2+ calculated according to the
reported equation of the linear regression on the calibration curve (Section 3.3).

Real cZn2+ Ftheoretical FobservedDetermined cZn2+ Meeting our expectations, both the accu-
racy and precision are inferior to those of the ICP-OES method. The results show that lower
concentrations were determined using the proposed probe than the real concentration
of Zn2+ in all cases. This can be attributed to the fact that not all the Zn2+ contents can
be complexed with the fluoroionophore, and partial decomplexation can also take place
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during the magnetic-assisted solid-phase extraction of the MNPs. Moreover, in the cases
of highly contaminated heterogeneous samples, the extraction ability of the particles is
expected to decrease due to the nonspecific adsorption of the physical contaminants and the
hindered complexation of the sensor molecules. The measurements also revealed that only
about 10% of the total Zn2+ content of the pumpkin seed flour is dissolved in the sample
(the remaining amount is inside the solid part of the sample). Naturally, the proposed
probe is only suitable for giving a rough estimation for the dissolved form of Zn2+ without
any prior treatment of the sample.

4. Evaluation of the Results through Comparisons with Other Methods

The most recent and relevant reported works on the NP-based selective fluorescent
optosensing of Zn2+ were collected to put the obtained results into context and support the
evaluation of the properties of the proposed probe (Table 2).

Table 2. Main operating characteristics of the recently reported, most relevant NP-based fluorescent
probes for Zn2+.

NP Type
Magnetic Property

(
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mine-naphthalimide-dipicolylamine 
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N-(2-(bis(pyridine-2-ylmethyl)amino)ethyl)-2-
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✗ 1.8 × 10−5 65–7848 [30] 

BODIPY-based self-assembled NPs ✗ 4 65–654 [31] 
Water-soluble Ag2S quantum dots ✗ 50 50–2616 [32] 

4-Amino-2-methyl-8-(trifluoromethyl)quino-
line functionalized silica-coated Fe3O4 nano-

magnet 
✓ 0.4 not reported [33] 

DNAzyme-modified magnetic microbeads ✓ 2.2 × 10−6 6.5 × 10−6–0.72 [34] 
8-Amimoquinoline(N-(quinolin-8-yl)-2-(3-(tri-
ethoxysilyl) propylamino)acetamide) function-

alized silica-coated Fe3O4 nanomagnet 
✓ not reported not reported [49] 

Carbon dots from glucose combined with non-
bounded fluorogenic quercetin 

✗ 131 131–6540 [50] 

Magnetic functionalized terbium coordination 
polymer-adsorbent 

✓ 14 14–10,464 [51] 

Commercially available silica-coated Tur-
boBeadsTM functionalized with fluorogenic 

crown ether 
✓ 5 15–3000 present work 

1 Refers to the nature of the core of the NP, whether it is magnetic (✓) or not (✗). 

or
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Determined 𝑐௓௡మశ 3 27 ± 8 ppb 39 ± 11 ppb 
1 The real concentration of Zn2+ measured via ICP-OES. 2 The theoretically expected fluorescence 
intensity for Zn2+ based on its concentration measured via ICP-OES. 3 The concentration of Zn2+ cal-
culated according to the reported equation of the linear regression on the calibration curve (Section 
3.3). 

Meeting our expectations, both the accuracy and precision are inferior to those of the 
ICP-OES method. The results show that lower concentrations were determined using the 
proposed probe than the real concentration of Zn2+ in all cases. This can be aĴributed to 
the fact that not all the Zn2+ contents can be complexed with the fluoroionophore, and 
partial decomplexation can also take place during the magnetic-assisted solid-phase ex-
traction of the MNPs. Moreover, in the cases of highly contaminated heterogeneous sam-
ples, the extraction ability of the particles is expected to decrease due to the nonspecific 
adsorption of the physical contaminants and the hindered complexation of the sensor 
molecules. The measurements also revealed that only about 10% of the total Zn2+ content 
of the pumpkin seed flour is dissolved in the sample (the remaining amount is inside the 
solid part of the sample). Naturally, the proposed probe is only suitable for giving a rough 
estimation for the dissolved form of Zn2+ without any prior treatment of the sample. 

4. Evaluation of the Results through Comparisons with Other Methods 
The most recent and relevant reported works on the NP-based selective fluorescent 

optosensing of Zn2+ were collected to put the obtained results into context and support the 
evaluation of the properties of the proposed probe (Table 2). 

Table 2. Main operating characteristics of the recently reported, most relevant NP-based fluorescent 
probes for Zn2+. 

NP Type 
Magnetic Property 

(✓ or ✗) 1 
LOD 
(ppb) 

Linear Range of 
Optical Response 

(ppb) 
Reference 

Fe3O4 nanomagnet functionalized with dopa-
mine-naphthalimide-dipicolylamine 

✓ 3.5 × 10−2 0–1308 [8] 

N-(2-(bis(pyridine-2-ylmethyl)amino)ethyl)-2-
mercaptoacetamide modified gold NP 

✗ 1.8 × 10−5 65–7848 [30] 

BODIPY-based self-assembled NPs ✗ 4 65–654 [31] 
Water-soluble Ag2S quantum dots ✗ 50 50–2616 [32] 

4-Amino-2-methyl-8-(trifluoromethyl)quino-
line functionalized silica-coated Fe3O4 nano-

magnet 
✓ 0.4 not reported [33] 

DNAzyme-modified magnetic microbeads ✓ 2.2 × 10−6 6.5 × 10−6–0.72 [34] 
8-Amimoquinoline(N-(quinolin-8-yl)-2-(3-(tri-
ethoxysilyl) propylamino)acetamide) function-

alized silica-coated Fe3O4 nanomagnet 
✓ not reported not reported [49] 

Carbon dots from glucose combined with non-
bounded fluorogenic quercetin 

✗ 131 131–6540 [50] 

Magnetic functionalized terbium coordination 
polymer-adsorbent 

✓ 14 14–10,464 [51] 

Commercially available silica-coated Tur-
boBeadsTM functionalized with fluorogenic 

crown ether 
✓ 5 15–3000 present work 

1 Refers to the nature of the core of the NP, whether it is magnetic (✓) or not (✗). 

) 1
LOD
(ppb)

Linear Range of Optical
Response

(ppb)
Reference

Fe3O4 nanomagnet functionalized with
dopamine-naphthalimide-

dipicolylamine
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Determined 𝑐௓௡మశ 3 27 ± 8 ppb 39 ± 11 ppb 
1 The real concentration of Zn2+ measured via ICP-OES. 2 The theoretically expected fluorescence 
intensity for Zn2+ based on its concentration measured via ICP-OES. 3 The concentration of Zn2+ cal-
culated according to the reported equation of the linear regression on the calibration curve (Section 
3.3). 

Meeting our expectations, both the accuracy and precision are inferior to those of the 
ICP-OES method. The results show that lower concentrations were determined using the 
proposed probe than the real concentration of Zn2+ in all cases. This can be aĴributed to 
the fact that not all the Zn2+ contents can be complexed with the fluoroionophore, and 
partial decomplexation can also take place during the magnetic-assisted solid-phase ex-
traction of the MNPs. Moreover, in the cases of highly contaminated heterogeneous sam-
ples, the extraction ability of the particles is expected to decrease due to the nonspecific 
adsorption of the physical contaminants and the hindered complexation of the sensor 
molecules. The measurements also revealed that only about 10% of the total Zn2+ content 
of the pumpkin seed flour is dissolved in the sample (the remaining amount is inside the 
solid part of the sample). Naturally, the proposed probe is only suitable for giving a rough 
estimation for the dissolved form of Zn2+ without any prior treatment of the sample. 

4. Evaluation of the Results through Comparisons with Other Methods 
The most recent and relevant reported works on the NP-based selective fluorescent 

optosensing of Zn2+ were collected to put the obtained results into context and support the 
evaluation of the properties of the proposed probe (Table 2). 

Table 2. Main operating characteristics of the recently reported, most relevant NP-based fluorescent 
probes for Zn2+. 

NP Type 
Magnetic Property 

(✓ or ✗) 1 
LOD 
(ppb) 

Linear Range of 
Optical Response 

(ppb) 
Reference 

Fe3O4 nanomagnet functionalized with dopa-
mine-naphthalimide-dipicolylamine 

✓ 3.5 × 10−2 0–1308 [8] 

N-(2-(bis(pyridine-2-ylmethyl)amino)ethyl)-2-
mercaptoacetamide modified gold NP 

✗ 1.8 × 10−5 65–7848 [30] 

BODIPY-based self-assembled NPs ✗ 4 65–654 [31] 
Water-soluble Ag2S quantum dots ✗ 50 50–2616 [32] 

4-Amino-2-methyl-8-(trifluoromethyl)quino-
line functionalized silica-coated Fe3O4 nano-

magnet 
✓ 0.4 not reported [33] 

DNAzyme-modified magnetic microbeads ✓ 2.2 × 10−6 6.5 × 10−6–0.72 [34] 
8-Amimoquinoline(N-(quinolin-8-yl)-2-(3-(tri-
ethoxysilyl) propylamino)acetamide) function-

alized silica-coated Fe3O4 nanomagnet 
✓ not reported not reported [49] 

Carbon dots from glucose combined with non-
bounded fluorogenic quercetin 

✗ 131 131–6540 [50] 

Magnetic functionalized terbium coordination 
polymer-adsorbent 

✓ 14 14–10,464 [51] 

Commercially available silica-coated Tur-
boBeadsTM functionalized with fluorogenic 

crown ether 
✓ 5 15–3000 present work 

1 Refers to the nature of the core of the NP, whether it is magnetic (✓) or not (✗). 

3.5 × 10−2 0–1308 [8]

N-(2-(bis(pyridine-2-
ylmethyl)amino)ethyl)-2-

mercaptoacetamide modified
gold NP
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Determined 𝑐௓௡మశ 3 27 ± 8 ppb 39 ± 11 ppb 
1 The real concentration of Zn2+ measured via ICP-OES. 2 The theoretically expected fluorescence 
intensity for Zn2+ based on its concentration measured via ICP-OES. 3 The concentration of Zn2+ cal-
culated according to the reported equation of the linear regression on the calibration curve (Section 
3.3). 

Meeting our expectations, both the accuracy and precision are inferior to those of the 
ICP-OES method. The results show that lower concentrations were determined using the 
proposed probe than the real concentration of Zn2+ in all cases. This can be aĴributed to 
the fact that not all the Zn2+ contents can be complexed with the fluoroionophore, and 
partial decomplexation can also take place during the magnetic-assisted solid-phase ex-
traction of the MNPs. Moreover, in the cases of highly contaminated heterogeneous sam-
ples, the extraction ability of the particles is expected to decrease due to the nonspecific 
adsorption of the physical contaminants and the hindered complexation of the sensor 
molecules. The measurements also revealed that only about 10% of the total Zn2+ content 
of the pumpkin seed flour is dissolved in the sample (the remaining amount is inside the 
solid part of the sample). Naturally, the proposed probe is only suitable for giving a rough 
estimation for the dissolved form of Zn2+ without any prior treatment of the sample. 

4. Evaluation of the Results through Comparisons with Other Methods 
The most recent and relevant reported works on the NP-based selective fluorescent 

optosensing of Zn2+ were collected to put the obtained results into context and support the 
evaluation of the properties of the proposed probe (Table 2). 

Table 2. Main operating characteristics of the recently reported, most relevant NP-based fluorescent 
probes for Zn2+. 

NP Type 
Magnetic Property 

(✓ or ✗) 1 
LOD 
(ppb) 

Linear Range of 
Optical Response 

(ppb) 
Reference 

Fe3O4 nanomagnet functionalized with dopa-
mine-naphthalimide-dipicolylamine 

✓ 3.5 × 10−2 0–1308 [8] 

N-(2-(bis(pyridine-2-ylmethyl)amino)ethyl)-2-
mercaptoacetamide modified gold NP 

✗ 1.8 × 10−5 65–7848 [30] 

BODIPY-based self-assembled NPs ✗ 4 65–654 [31] 
Water-soluble Ag2S quantum dots ✗ 50 50–2616 [32] 

4-Amino-2-methyl-8-(trifluoromethyl)quino-
line functionalized silica-coated Fe3O4 nano-

magnet 
✓ 0.4 not reported [33] 

DNAzyme-modified magnetic microbeads ✓ 2.2 × 10−6 6.5 × 10−6–0.72 [34] 
8-Amimoquinoline(N-(quinolin-8-yl)-2-(3-(tri-
ethoxysilyl) propylamino)acetamide) function-

alized silica-coated Fe3O4 nanomagnet 
✓ not reported not reported [49] 

Carbon dots from glucose combined with non-
bounded fluorogenic quercetin 

✗ 131 131–6540 [50] 

Magnetic functionalized terbium coordination 
polymer-adsorbent 

✓ 14 14–10,464 [51] 

Commercially available silica-coated Tur-
boBeadsTM functionalized with fluorogenic 

crown ether 
✓ 5 15–3000 present work 

1 Refers to the nature of the core of the NP, whether it is magnetic (✓) or not (✗). 

1.8 × 10−5 65–7848 [30]

BODIPY-based self-assembled NPs
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Determined 𝑐௓௡మశ 3 27 ± 8 ppb 39 ± 11 ppb 
1 The real concentration of Zn2+ measured via ICP-OES. 2 The theoretically expected fluorescence 
intensity for Zn2+ based on its concentration measured via ICP-OES. 3 The concentration of Zn2+ cal-
culated according to the reported equation of the linear regression on the calibration curve (Section 
3.3). 

Meeting our expectations, both the accuracy and precision are inferior to those of the 
ICP-OES method. The results show that lower concentrations were determined using the 
proposed probe than the real concentration of Zn2+ in all cases. This can be aĴributed to 
the fact that not all the Zn2+ contents can be complexed with the fluoroionophore, and 
partial decomplexation can also take place during the magnetic-assisted solid-phase ex-
traction of the MNPs. Moreover, in the cases of highly contaminated heterogeneous sam-
ples, the extraction ability of the particles is expected to decrease due to the nonspecific 
adsorption of the physical contaminants and the hindered complexation of the sensor 
molecules. The measurements also revealed that only about 10% of the total Zn2+ content 
of the pumpkin seed flour is dissolved in the sample (the remaining amount is inside the 
solid part of the sample). Naturally, the proposed probe is only suitable for giving a rough 
estimation for the dissolved form of Zn2+ without any prior treatment of the sample. 

4. Evaluation of the Results through Comparisons with Other Methods 
The most recent and relevant reported works on the NP-based selective fluorescent 

optosensing of Zn2+ were collected to put the obtained results into context and support the 
evaluation of the properties of the proposed probe (Table 2). 

Table 2. Main operating characteristics of the recently reported, most relevant NP-based fluorescent 
probes for Zn2+. 

NP Type 
Magnetic Property 

(✓ or ✗) 1 
LOD 
(ppb) 

Linear Range of 
Optical Response 

(ppb) 
Reference 

Fe3O4 nanomagnet functionalized with dopa-
mine-naphthalimide-dipicolylamine 

✓ 3.5 × 10−2 0–1308 [8] 

N-(2-(bis(pyridine-2-ylmethyl)amino)ethyl)-2-
mercaptoacetamide modified gold NP 

✗ 1.8 × 10−5 65–7848 [30] 

BODIPY-based self-assembled NPs ✗ 4 65–654 [31] 
Water-soluble Ag2S quantum dots ✗ 50 50–2616 [32] 

4-Amino-2-methyl-8-(trifluoromethyl)quino-
line functionalized silica-coated Fe3O4 nano-

magnet 
✓ 0.4 not reported [33] 

DNAzyme-modified magnetic microbeads ✓ 2.2 × 10−6 6.5 × 10−6–0.72 [34] 
8-Amimoquinoline(N-(quinolin-8-yl)-2-(3-(tri-
ethoxysilyl) propylamino)acetamide) function-

alized silica-coated Fe3O4 nanomagnet 
✓ not reported not reported [49] 

Carbon dots from glucose combined with non-
bounded fluorogenic quercetin 

✗ 131 131–6540 [50] 

Magnetic functionalized terbium coordination 
polymer-adsorbent 

✓ 14 14–10,464 [51] 

Commercially available silica-coated Tur-
boBeadsTM functionalized with fluorogenic 

crown ether 
✓ 5 15–3000 present work 

1 Refers to the nature of the core of the NP, whether it is magnetic (✓) or not (✗). 

4 65–654 [31]

Water-soluble Ag2S quantum dots
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Determined 𝑐௓௡మశ 3 27 ± 8 ppb 39 ± 11 ppb 
1 The real concentration of Zn2+ measured via ICP-OES. 2 The theoretically expected fluorescence 
intensity for Zn2+ based on its concentration measured via ICP-OES. 3 The concentration of Zn2+ cal-
culated according to the reported equation of the linear regression on the calibration curve (Section 
3.3). 

Meeting our expectations, both the accuracy and precision are inferior to those of the 
ICP-OES method. The results show that lower concentrations were determined using the 
proposed probe than the real concentration of Zn2+ in all cases. This can be aĴributed to 
the fact that not all the Zn2+ contents can be complexed with the fluoroionophore, and 
partial decomplexation can also take place during the magnetic-assisted solid-phase ex-
traction of the MNPs. Moreover, in the cases of highly contaminated heterogeneous sam-
ples, the extraction ability of the particles is expected to decrease due to the nonspecific 
adsorption of the physical contaminants and the hindered complexation of the sensor 
molecules. The measurements also revealed that only about 10% of the total Zn2+ content 
of the pumpkin seed flour is dissolved in the sample (the remaining amount is inside the 
solid part of the sample). Naturally, the proposed probe is only suitable for giving a rough 
estimation for the dissolved form of Zn2+ without any prior treatment of the sample. 

4. Evaluation of the Results through Comparisons with Other Methods 
The most recent and relevant reported works on the NP-based selective fluorescent 

optosensing of Zn2+ were collected to put the obtained results into context and support the 
evaluation of the properties of the proposed probe (Table 2). 

Table 2. Main operating characteristics of the recently reported, most relevant NP-based fluorescent 
probes for Zn2+. 

NP Type 
Magnetic Property 

(✓ or ✗) 1 
LOD 
(ppb) 

Linear Range of 
Optical Response 

(ppb) 
Reference 

Fe3O4 nanomagnet functionalized with dopa-
mine-naphthalimide-dipicolylamine 

✓ 3.5 × 10−2 0–1308 [8] 

N-(2-(bis(pyridine-2-ylmethyl)amino)ethyl)-2-
mercaptoacetamide modified gold NP 

✗ 1.8 × 10−5 65–7848 [30] 

BODIPY-based self-assembled NPs ✗ 4 65–654 [31] 
Water-soluble Ag2S quantum dots ✗ 50 50–2616 [32] 

4-Amino-2-methyl-8-(trifluoromethyl)quino-
line functionalized silica-coated Fe3O4 nano-

magnet 
✓ 0.4 not reported [33] 

DNAzyme-modified magnetic microbeads ✓ 2.2 × 10−6 6.5 × 10−6–0.72 [34] 
8-Amimoquinoline(N-(quinolin-8-yl)-2-(3-(tri-
ethoxysilyl) propylamino)acetamide) function-

alized silica-coated Fe3O4 nanomagnet 
✓ not reported not reported [49] 

Carbon dots from glucose combined with non-
bounded fluorogenic quercetin 

✗ 131 131–6540 [50] 

Magnetic functionalized terbium coordination 
polymer-adsorbent 

✓ 14 14–10,464 [51] 

Commercially available silica-coated Tur-
boBeadsTM functionalized with fluorogenic 

crown ether 
✓ 5 15–3000 present work 

1 Refers to the nature of the core of the NP, whether it is magnetic (✓) or not (✗). 

50 50–2616 [32]

4-Amino-2-methyl-8-
(trifluoromethyl)quinoline functionalized

silica-coated Fe3O4 nanomagnet
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Determined 𝑐௓௡మశ 3 27 ± 8 ppb 39 ± 11 ppb 
1 The real concentration of Zn2+ measured via ICP-OES. 2 The theoretically expected fluorescence 
intensity for Zn2+ based on its concentration measured via ICP-OES. 3 The concentration of Zn2+ cal-
culated according to the reported equation of the linear regression on the calibration curve (Section 
3.3). 

Meeting our expectations, both the accuracy and precision are inferior to those of the 
ICP-OES method. The results show that lower concentrations were determined using the 
proposed probe than the real concentration of Zn2+ in all cases. This can be aĴributed to 
the fact that not all the Zn2+ contents can be complexed with the fluoroionophore, and 
partial decomplexation can also take place during the magnetic-assisted solid-phase ex-
traction of the MNPs. Moreover, in the cases of highly contaminated heterogeneous sam-
ples, the extraction ability of the particles is expected to decrease due to the nonspecific 
adsorption of the physical contaminants and the hindered complexation of the sensor 
molecules. The measurements also revealed that only about 10% of the total Zn2+ content 
of the pumpkin seed flour is dissolved in the sample (the remaining amount is inside the 
solid part of the sample). Naturally, the proposed probe is only suitable for giving a rough 
estimation for the dissolved form of Zn2+ without any prior treatment of the sample. 

4. Evaluation of the Results through Comparisons with Other Methods 
The most recent and relevant reported works on the NP-based selective fluorescent 

optosensing of Zn2+ were collected to put the obtained results into context and support the 
evaluation of the properties of the proposed probe (Table 2). 

Table 2. Main operating characteristics of the recently reported, most relevant NP-based fluorescent 
probes for Zn2+. 

NP Type 
Magnetic Property 

(✓ or ✗) 1 
LOD 
(ppb) 

Linear Range of 
Optical Response 

(ppb) 
Reference 

Fe3O4 nanomagnet functionalized with dopa-
mine-naphthalimide-dipicolylamine 

✓ 3.5 × 10−2 0–1308 [8] 

N-(2-(bis(pyridine-2-ylmethyl)amino)ethyl)-2-
mercaptoacetamide modified gold NP 

✗ 1.8 × 10−5 65–7848 [30] 

BODIPY-based self-assembled NPs ✗ 4 65–654 [31] 
Water-soluble Ag2S quantum dots ✗ 50 50–2616 [32] 

4-Amino-2-methyl-8-(trifluoromethyl)quino-
line functionalized silica-coated Fe3O4 nano-

magnet 
✓ 0.4 not reported [33] 

DNAzyme-modified magnetic microbeads ✓ 2.2 × 10−6 6.5 × 10−6–0.72 [34] 
8-Amimoquinoline(N-(quinolin-8-yl)-2-(3-(tri-
ethoxysilyl) propylamino)acetamide) function-

alized silica-coated Fe3O4 nanomagnet 
✓ not reported not reported [49] 

Carbon dots from glucose combined with non-
bounded fluorogenic quercetin 

✗ 131 131–6540 [50] 

Magnetic functionalized terbium coordination 
polymer-adsorbent 

✓ 14 14–10,464 [51] 

Commercially available silica-coated Tur-
boBeadsTM functionalized with fluorogenic 

crown ether 
✓ 5 15–3000 present work 

1 Refers to the nature of the core of the NP, whether it is magnetic (✓) or not (✗). 

0.4 not reported [33]

DNAzyme-modified
magnetic microbeads
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Determined 𝑐௓௡మశ 3 27 ± 8 ppb 39 ± 11 ppb 
1 The real concentration of Zn2+ measured via ICP-OES. 2 The theoretically expected fluorescence 
intensity for Zn2+ based on its concentration measured via ICP-OES. 3 The concentration of Zn2+ cal-
culated according to the reported equation of the linear regression on the calibration curve (Section 
3.3). 

Meeting our expectations, both the accuracy and precision are inferior to those of the 
ICP-OES method. The results show that lower concentrations were determined using the 
proposed probe than the real concentration of Zn2+ in all cases. This can be aĴributed to 
the fact that not all the Zn2+ contents can be complexed with the fluoroionophore, and 
partial decomplexation can also take place during the magnetic-assisted solid-phase ex-
traction of the MNPs. Moreover, in the cases of highly contaminated heterogeneous sam-
ples, the extraction ability of the particles is expected to decrease due to the nonspecific 
adsorption of the physical contaminants and the hindered complexation of the sensor 
molecules. The measurements also revealed that only about 10% of the total Zn2+ content 
of the pumpkin seed flour is dissolved in the sample (the remaining amount is inside the 
solid part of the sample). Naturally, the proposed probe is only suitable for giving a rough 
estimation for the dissolved form of Zn2+ without any prior treatment of the sample. 

4. Evaluation of the Results through Comparisons with Other Methods 
The most recent and relevant reported works on the NP-based selective fluorescent 

optosensing of Zn2+ were collected to put the obtained results into context and support the 
evaluation of the properties of the proposed probe (Table 2). 

Table 2. Main operating characteristics of the recently reported, most relevant NP-based fluorescent 
probes for Zn2+. 

NP Type 
Magnetic Property 

(✓ or ✗) 1 
LOD 
(ppb) 

Linear Range of 
Optical Response 

(ppb) 
Reference 

Fe3O4 nanomagnet functionalized with dopa-
mine-naphthalimide-dipicolylamine 

✓ 3.5 × 10−2 0–1308 [8] 

N-(2-(bis(pyridine-2-ylmethyl)amino)ethyl)-2-
mercaptoacetamide modified gold NP 

✗ 1.8 × 10−5 65–7848 [30] 

BODIPY-based self-assembled NPs ✗ 4 65–654 [31] 
Water-soluble Ag2S quantum dots ✗ 50 50–2616 [32] 

4-Amino-2-methyl-8-(trifluoromethyl)quino-
line functionalized silica-coated Fe3O4 nano-

magnet 
✓ 0.4 not reported [33] 

DNAzyme-modified magnetic microbeads ✓ 2.2 × 10−6 6.5 × 10−6–0.72 [34] 
8-Amimoquinoline(N-(quinolin-8-yl)-2-(3-(tri-
ethoxysilyl) propylamino)acetamide) function-

alized silica-coated Fe3O4 nanomagnet 
✓ not reported not reported [49] 

Carbon dots from glucose combined with non-
bounded fluorogenic quercetin 

✗ 131 131–6540 [50] 

Magnetic functionalized terbium coordination 
polymer-adsorbent 

✓ 14 14–10,464 [51] 

Commercially available silica-coated Tur-
boBeadsTM functionalized with fluorogenic 

crown ether 
✓ 5 15–3000 present work 

1 Refers to the nature of the core of the NP, whether it is magnetic (✓) or not (✗). 

2.2 × 10−6 6.5 × 10−6–0.72 [34]

8-Amimoquinoline(N-(quinolin-8-yl)-2-
(3-(triethoxysilyl)

propylamino)acetamide) functionalized
silica-coated Fe3O4 nanomagnet
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Determined 𝑐௓௡మశ 3 27 ± 8 ppb 39 ± 11 ppb 
1 The real concentration of Zn2+ measured via ICP-OES. 2 The theoretically expected fluorescence 
intensity for Zn2+ based on its concentration measured via ICP-OES. 3 The concentration of Zn2+ cal-
culated according to the reported equation of the linear regression on the calibration curve (Section 
3.3). 

Meeting our expectations, both the accuracy and precision are inferior to those of the 
ICP-OES method. The results show that lower concentrations were determined using the 
proposed probe than the real concentration of Zn2+ in all cases. This can be aĴributed to 
the fact that not all the Zn2+ contents can be complexed with the fluoroionophore, and 
partial decomplexation can also take place during the magnetic-assisted solid-phase ex-
traction of the MNPs. Moreover, in the cases of highly contaminated heterogeneous sam-
ples, the extraction ability of the particles is expected to decrease due to the nonspecific 
adsorption of the physical contaminants and the hindered complexation of the sensor 
molecules. The measurements also revealed that only about 10% of the total Zn2+ content 
of the pumpkin seed flour is dissolved in the sample (the remaining amount is inside the 
solid part of the sample). Naturally, the proposed probe is only suitable for giving a rough 
estimation for the dissolved form of Zn2+ without any prior treatment of the sample. 

4. Evaluation of the Results through Comparisons with Other Methods 
The most recent and relevant reported works on the NP-based selective fluorescent 

optosensing of Zn2+ were collected to put the obtained results into context and support the 
evaluation of the properties of the proposed probe (Table 2). 

Table 2. Main operating characteristics of the recently reported, most relevant NP-based fluorescent 
probes for Zn2+. 

NP Type 
Magnetic Property 

(✓ or ✗) 1 
LOD 
(ppb) 

Linear Range of 
Optical Response 

(ppb) 
Reference 

Fe3O4 nanomagnet functionalized with dopa-
mine-naphthalimide-dipicolylamine 

✓ 3.5 × 10−2 0–1308 [8] 

N-(2-(bis(pyridine-2-ylmethyl)amino)ethyl)-2-
mercaptoacetamide modified gold NP 

✗ 1.8 × 10−5 65–7848 [30] 

BODIPY-based self-assembled NPs ✗ 4 65–654 [31] 
Water-soluble Ag2S quantum dots ✗ 50 50–2616 [32] 

4-Amino-2-methyl-8-(trifluoromethyl)quino-
line functionalized silica-coated Fe3O4 nano-

magnet 
✓ 0.4 not reported [33] 

DNAzyme-modified magnetic microbeads ✓ 2.2 × 10−6 6.5 × 10−6–0.72 [34] 
8-Amimoquinoline(N-(quinolin-8-yl)-2-(3-(tri-
ethoxysilyl) propylamino)acetamide) function-

alized silica-coated Fe3O4 nanomagnet 
✓ not reported not reported [49] 

Carbon dots from glucose combined with non-
bounded fluorogenic quercetin 

✗ 131 131–6540 [50] 

Magnetic functionalized terbium coordination 
polymer-adsorbent 

✓ 14 14–10,464 [51] 

Commercially available silica-coated Tur-
boBeadsTM functionalized with fluorogenic 

crown ether 
✓ 5 15–3000 present work 

1 Refers to the nature of the core of the NP, whether it is magnetic (✓) or not (✗). 
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A comparison with data from the literature supports the competitiveness of the
developed method. Although the obtained LOD is three orders of magnitude lower
than the WHO acceptance limit for drinking water, it cannot be considered outstanding
among the other alternatives. It can be concluded that each reported method has its own
advantages; thus, users are responsible for choosing the most suitable one for the target
tasks, for example, based on the linear dynamic ranges. It is also important to note that
those methods, which reported the functionalization of typically single-use, non-magnetic
nanocores (indicated with ‘
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’ in Table 2) are not able to analyze strongly contaminated
samples, especially heterogeneous ones, such as suspensions. Furthermore, they themselves
can cause sample contamination, while in the absence of magnetic solid-phase extraction,
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the presence of the various background materials can strongly influence the optical response.
In general, the introduction of supramolecular host molecules, instead of exploiting simpler
functional group-driven coordination, contributes to reducing non-specific adsorption. This
was shown in the present case as well, since the applied probe showed less influence (i.e., a
weaker fluorescence response) from possible competing agents like Cd2+ or other metal
ions compared to the majority of the reported alternatives [8,31–34,50,51]. Also, many other
methods use chelating additives, like EDTA, for regeneration [8,33]. Comparisons with less
advanced Zn2+-selective fluorescent probes (e.g., the application of dissolved ionophores,
single-use materials and tests, optode membranes regardless of the type of ionophore
immobilization, etc.) are not discussed here. They need a more extended preliminary
preparation of samples, despite the fact that their applicability covers a narrower range of
analytical challenges.

5. Conclusions

The basic concept of our work involves overcoming the limitations of Zn2+-selective
ionophore-based fluorescent analyses in suspensions, which is considered one of the most
unfavorable conditions for optical chemosensing. We present here a simple alternative
for the covalent modification of a commercially available MNP core, which can also serve
as a starting point for future development by applying other ionophores. Qualitative
analyses were successfully performed, but the probe was only suitable for giving a rough
quantitative estimation for Zn2+ content. Applicability was clearly demonstrated, even
in real heterogeneous multicomponent samples, while comparison studies revealed a
competitive performance to previous results in the literature. The main advantages of the
present method are the lack of interference from Cd2+ and any relevant anions, the fast
and simple regeneration, no sample preparation in general, and the direct applicability
for heterogeneous samples. In addition, there is no obstacle to expanding the application
in the future of the proposed probe for the rarely investigated Bi3+ or for bioimaging in
living cells.
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for the optochemical responses in the presence of low concentrations of Zn2+.
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