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Abstract: In recent decades, many research efforts have been dedicated to finding highly sensitive
devices for fast and reliable identification and quantification of an expanding range of analytes. As
a result, there has been an increased number of publications dedicated to this area and a consequent
increase in the number of review papers on the subject. However, unlike most review articles, we
chose to explore the impact of supramolecular arrangement (or deeper, when possible, approaching
the molecular organization) and assembly variables on sensing performance. This review briefly
discusses the methods used to determine the molecular organization of thin films. We also examine
various deposition techniques, including Langmuir-Blodgett, Langmuir-Schaefer, Layer-by-Layer
assembly, electrodeposition, and spray pyrolysis, describing mainly (but not limited to) the advances
in the last five years in developing thin films for sensors, with a particular emphasis on how the
supramolecular arrangement can influence the sensing properties of these films.

Keywords: supramolecular arrangement; thin film; Langmuir-Blodgett; Langmuir-Schaefer;
Layer-by-Layer; electrodeposition; spray pyrolysis

1. Introduction

Chemical sensors are defined by the International Union of Pure and Applied Chem-
istry (IUPAC) as devices that transform chemical information into an analytically useful
signal [1]. According to Araujo, Reddy, and Paixão [2], chemical sensors are devices that
respond to an analyte based on a chemical reaction (or recognition) and can be used for the
qualitative or quantitative determination of species being analysed in order to provide an
analytical output. For detection purposes, a variety of materials can be applied as recogni-
tion elements, and the way this (or these) material is organized or assembled as a thin film
is decisive to the success of the detection. When considering “the way” they are organized,
one should delve into the material deposition method, going further to the supramolecular
arrangement level and deeper at the species interacting between the sensing material and
the target. The term “supramolecular chemistry” refers to interactions and structures
originated by noncovalent intermolecular forces [3]. When considering “supramolecular
arrangement”, its scope extends beyond molecular organization, encompassing the latter
and including other aspects such as crystallinity, surface morphology, and thickness. In
this review paper, we approach the influence of the supramolecular arrangement in sensor
applications and, when possible, we specifically address the molecular organization in thin
films. The term spatial orientation (or simply orientation) is preferred when refer to the
organization of nanostructures such as one or two-dimensional materials.

Considering the range of possibilities available today, simple approaches such as the
Layer-by-Layer (LbL) self-assembly [4] or more sophisticated ones such as the Langmuir-
Blodgett (LB) [5,6] enable nanoscale control over desired characteristics through controllable
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experimental parameters. For instance, they allow control over morphology, which can be
interesting to particles or molecules adsorption due to the increased surface area, or also
provide the possibility of tunning the charge transfer aiming applications such as electrical
(impedimetric and chemiresistive) or electrochemical sensors.

In this review, we discuss methods to manipulate materials to form thin films towards
the manufacture of sensing surfaces. We start with the LB and Langmuir-Schaefer (LS)
techniques, which are based on forming an ordered monolayer on the air-water interface
and the transference of this monolayer onto a solid substrate. Perhaps, this one allows
the most precise control over the thickness and the molecular organization in thin films.
Next, we delve into the topic of the LbL technique. Based on the spontaneous adsorption of
materials onto a solid substrate, the simplicity and versatility of this technique make it the
most employed functionalization strategy for many applications. Following, we discuss
the electrodeposition methods, which appear as a rapid and environmentally friendly way
to modify electrodes. Thus, avoiding lengthy and tiring reactions as well as the use of
harmful reagents. Finally, we have commented on the spray pyrolysis approach, based
on spraying the precursor solution onto a heated solid, leading to thermal decomposition
and film formation. The scalability and simplicity of the setup are the advantages of this
method, which has gained attention in many application fields.

2. The Investigation of Molecular Organization

The study of supramolecular arrangements involves understanding the principles
governing the formation, stability, and properties of these structures. Moreover, by manipu-
lating supramolecular arrangements, new functional thin films can be developed for several
applications, especially sensors. The manipulation of supramolecular arrangement can be
performed by changes in experimental parameters such as solvent [7], chemical structure,
chain substitution [8,9], deposition techniques [10,11] as well as heat treatments [12]. Specif-
ically, to examine the molecular organization, techniques such as FTIR (Fourier Transform
Infrared Spectroscopy) and XRD (X-ray Diffraction) can be used individually or combined
to provide valuable insights helping to understand its effect on their properties.

Vibrational spectroscopy is one of the most used techniques to determine organization
at the molecular level. For FTIR, due to the molecular organization and the interaction
between the electric field of the incident radiation and the molecular electric dipole of the
molecule during the vibration, the spectra can present differences in their band intensities.
Thus, this relation is called the selection rule [8,13–15] and refers to the conditions under
which a vibrational mode of a molecule will give rise to an observable absorption band in
the infrared spectrum.

Based on the selection rule in FTIR measurements, the intensity of the signal I is propor-

tional to the scalar product of the dipole moment µ and the electric field E: I α (
→
µ ·
→
E)2 [16].

The absorption signal is intense when the dipole moment of the vibration mode is parallel
to the electric field of the infrared (IR) beam. Thus, for a better determination of molecular
organization through a film surface, FTIR characterization can be performed by reflection
and transmission modes [8]. The reflection mode using an incident beam angle of 80◦ is
typically employed [8], but in some cases, the attenuated total reflection (ATR) mode can
be used by taking the measurement very close to the film surface [17–21]. Essentially, in the

reflection mode, the
→
E is polarized mostly perpendicular to the substrate surface (Figure 1),

thus promoting a strong signal for vibration modes with a dipole moment perpendicular
to the substrate surface, while the vibration modes with a dipole moment parallel to the
substrate tend to be suppressed. The opposite effect is expected in the transmission mode,

where the
→
E is polarized parallel to the substrate surface (Figure 1). The signal is strong

for vibration modes with a dipole moment parallel to the substrate surface, while the
absorption signal for vibration mode with a dipole moment perpendicular to the substrate
tends to be suppressed. It is possible to determine the molecular organization by comparing
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the contrasting signal (relative intensity) obtained from the spectra acquired in reflection
and transmission modes [8].
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Figure 1. (A) Transmission and reflection modes–FTIR spectra of ZnPc film and corresponding
representation of the electric field and surface selection rules. The ZnPc powder in the potassium
bromide (KBr) pellet spectrum references random orientation. (B) Illustration of the ZnPc molec-
ular organization in PVD films. Adapted with permission from [22]. Copyright 2010 American
Chemical Society.

When using this strategy, it is important to discard the influence of the substrate since
different surfaces may end up eliciting different molecular organizations. The reflection
mode is usually performed on a metal-covered surface, while the transmission analysis
requires an IR transparent substrate such as zinc selenide (ZnSe) or Germanium. On metal
surfaces, the chemical or strong physicochemical interactions of the film with the adhesion
organic layer (a self-assembled monolayer, SAM) can interfere with the supramolecular
arrangement. In this case, an intermediate oxide layer between the metal surface and the
film of interest avoids the chemisorption and consequently preserves the vibrational modes
from the film [23,24].

Another approach for analysing molecular organization involves the comparison
of the FTIR spectrum of the film collected in either reflection or transmission modes
to the spectrum of the monomer (powder precursor) dispersed in potassium bromide
(KBr, IR-transparent matrix) [8], assuming for the later a random distribution (isotropic
structure) [22,25]. Aroca and Thedchanamoorthy [8] described the molecular organization
of evaporated films of InCIPc (indium(III) chloro phthalocyanine), analysing the changes in
the relative intensities when comparing the spectrum of the powder in KBr pellet (random
orientation) to the transmission mode spectrum of a 25 nm-thick film onto KBr and to the
reflection mode spectrum of a 25 nm-thick film on a silver substrate. Zanfolim et al. [22]
investigated the organization of evaporated ZnPc (zinc phthalocyanine) films by analysis
of the spectra of a powder sample in KBr pellet by transmission mode, the 40 nm-thick film
onto ZnSe by transmission mode and a 40 nm-thick film on a silver substrate in reflection
mode, as shown in Figure 1. Through the comparison of the relative intensities of each
spectrum, observing the dominance of the out-of-plane stretching of the C–H band in the
transmission mode, which becomes weaker in the reflection mode, it was suggested that
the ZnPc molecules were preferentially organized with the macrocycle ring practically
perpendicular to the surface substrate [22].

Polarized infrared spectroscopy has been applied to the determination of molecu-
lar organization [26], for instance, grazing angle attenuated total reflection (GATR) [17],
p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) [27–29] and po-
larization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) have been
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reported [20,23,30–32]. The mentioned polarized infrared techniques measure the reflected
light and are used to study surface properties and molecular organization but differ in
the experimental setup and parameters. Fratczak, Uznanski, and Moneta [17] presented
an approach to investigate the molecular organization of pentacene on SiO2 surface by
comparing FTIR spectroscopy at transmission and by polarized attenuated total reflectance
geometry at GATR. In the s- and p-polarized GATR, it is possible to observe only vibration
modes with non-zero components of transition dipole moments parallel or perpendicular to
the surface [33]. Thus, the molecular organization was determined by comparing the band
intensities related to characteristic vibrations of chemical bonds: all vibrations (in-plane
and out-of-plane) were observed in the spectrum collected through the p-polarized beam,
while the spectrum originated from the s-polarized source depicted some bands gaining in-
tensity and others significantly reduced. Since the unpolarized IR beam at normal incidence
excites only the vibration modes with transition dipole components parallel to the substrate
surface, the comparison of band intensities of the transmission mode spectrum and the
s-polarized GATR spectrum helped to establish the molecular organization of pentacene,
which was with the molecules standing almost perpendicular to the SiO2 substrate [17].

Although Raman spectroscopy has been widely used to investigate the composition
and structure of materials, the analysis of molecular organization became restricted to
the case of surface-enhanced Raman scattering (SERS). For instance, in the case of SERS,
the selection rules favour the vibrations which occur perpendicular to the particle sur-
face [34]. Still, molecules or nanostructures adsorbed on the top of a plasmonic surface
can have their organization investigated by Raman spectroscopy [34] However, the con-
figuration of polarized Raman spectroscopy can be applied for this purpose, interpreting
the scattering intensities for different polarized scattering geometries [35]. Polymer fi-
bres [36], 2D materials [37,38] and nanotubes [39,40] have already been investigated. For
instance, angle-resolved polarized Raman spectroscopy (ARPRS) permits rotating the polar-
ization of incident light or rotating the sample in the plane [41]. Particularly for graphene
nanoplatelets, the intensity scattering of the Raman band depends on the axis of laser polar-
ization when the laser beam is parallel to the graphene sheet plane [37,42]. Based on this,
Li et al. [37] developed ways to establish the spatial orientation (correlated to molecular
organization, but considering the 2D graphene structure) of GO flakes in nanocomposites.

Especially for films obtained by Langmuir films (Langmuir-Blodgett, LB and Langmuir-
Schafer, LS), the molecular organization can be previously induced and investigated on
the air/water interface. Interpreting the π–A isotherm and the extrapolated mean area
allows us to infer the molecules or nanomaterials organization before the film transfer-
ence to a substrate [43,44]. However, it is important to consider that the transference
process to a solid substrate can induce a different organization [45]. Therefore, other char-
acterization techniques should confirm the organization post-transference. An interesting
example that represents the previous establishment of the organization by the formation
of Langmuir films occurs for one-dimensional (1D) nanomaterials, which carry extreme
anisotropic properties [46,47]. The barrier compression led to the formation of well-aligned
1D structures, which can be collected both by the horizontal or vertical dipping of the
substrate. Miao et al. [48] have synthesized ZnO nanowires (Figure 2A, in random ori-
entation) and aligned them by the barrier compression. Figure 2B,C depict a traditional
π–A isotherm with the different compression states (details in Section 3.1) and a scanning
electron microscopy (SEM) image of the aligned structures, respectively. The XRD analysis
(Figure 2D) of the collected LB film indicated a hexagonal wurtzite structure, which is
highly [100]oriented along the surface normal. Considering the XRD information allied
to high resolution-transmission electron microscopy (HRTEM) (Figure 2E), the authors
ascribed the topography depicted in Figure 2F.



Chemosensors 2023, 11, 524 5 of 48

Chemosensors 2023, 11, 524 5 of 50 
 

 

high resolution-transmission electron microscopy (HRTEM) (Figure 2E), the authors as-
cribed the topography depicted in Figure 2F. 

 
Figure 2. (A) SEM images of the as-synthesized ZnO nanowires, (B) the compression isotherm, and 
(C) SEM image of the ZnO LB film on Au-IDE-glass substrate. (D) XRD patterns of the ZnO LB film. 
(E) TEM image of the ZnO nanowire and HRTEM image (inset) depicting the lattice fringes. (F) 
Illustration of the v-groove topography of the ZnO film. Reprinted with permission from [48]. Cop-
yright 2020 American Chemical Society. 

Regarding crystalline materials, crystallography is also applied to determine the or-
ganization, specifically the three-dimensional arrangement of atoms or molecules within 
a crystal lattice. However, it may not be suitable for amorphous or disordered systems 
lacking long-range order. X-rays are directed at the crystal in XRD, and their interaction 
with the crystal lattice causes diffraction or scattering [49]. The resulting diffraction pat-
tern is recorded and analysed to extract information about the arrangement of atoms or 
molecules within the crystal. Therefore, the diffractogram reveals how individual units 
interact and organize themselves in the crystal structure, which is crucial for studying 
their properties. Rivalta et al. [50] investigated the molecular organization and phase of 
indigo molecules deposited on silica surfaces by XRD and micro-Raman spectroscopy, 
respectively. By the XRD peak position and the interplane distance (from Bragg s Law), it 
was possible to infer that indigo molecules are oriented alongside the (1 0 0) plane while 
the polymorph B was determined by the specific Raman spectrum. 

Currently, several techniques (or combinations of techniques) can be used to infer 
molecular organization in thin films. Despite being widely known that the molecular or-
ganization directly influences the properties of these films and, consequently, has a direct 
influence on the performance of sensors, due to the inaccessible experimental setup as 
well as complex and time-consuming data analysis, there are a relatively small amount of 
works that investigate molecular organization influence in sensors. Indeed, the works 
dedicated to this study demand an in-depth investigation, ultimately leading to a subject 
that fills a manuscript. On the other hand, most sensor application papers are worried 
about analytical performance. Here, we tried to find a balance or connection between the 

Figure 2. (A) SEM images of the as-synthesized ZnO nanowires, (B) the compression isotherm, and
(C) SEM image of the ZnO LB film on Au-IDE-glass substrate. (D) XRD patterns of the ZnO LB
film. (E) TEM image of the ZnO nanowire and HRTEM image (inset) depicting the lattice fringes.
(F) Illustration of the v-groove topography of the ZnO film. Reprinted with permission from [48].
Copyright 2020 American Chemical Society.

Regarding crystalline materials, crystallography is also applied to determine the
organization, specifically the three-dimensional arrangement of atoms or molecules within
a crystal lattice. However, it may not be suitable for amorphous or disordered systems
lacking long-range order. X-rays are directed at the crystal in XRD, and their interaction with
the crystal lattice causes diffraction or scattering [49]. The resulting diffraction pattern is
recorded and analysed to extract information about the arrangement of atoms or molecules
within the crystal. Therefore, the diffractogram reveals how individual units interact and
organize themselves in the crystal structure, which is crucial for studying their properties.
Rivalta et al. [50] investigated the molecular organization and phase of indigo molecules
deposited on silica surfaces by XRD and micro-Raman spectroscopy, respectively. By the
XRD peak position and the interplane distance (from Bragg s Law), it was possible to infer
that indigo molecules are oriented alongside the (1 0 0) plane while the polymorph B was
determined by the specific Raman spectrum.

Currently, several techniques (or combinations of techniques) can be used to infer
molecular organization in thin films. Despite being widely known that the molecular
organization directly influences the properties of these films and, consequently, has a direct
influence on the performance of sensors, due to the inaccessible experimental setup as
well as complex and time-consuming data analysis, there are a relatively small amount
of works that investigate molecular organization influence in sensors. Indeed, the works
dedicated to this study demand an in-depth investigation, ultimately leading to a subject
that fills a manuscript. On the other hand, most sensor application papers are worried
about analytical performance. Here, we tried to find a balance or connection between the
fabrication techniques, molecular organization (or supramolecular arrangement in general)
and the sensing application.
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3. Supramolecular Thin Films Assembly Techniques
3.1. Langmuir-Blodgett and Langmuir-Schaefer Assembly

The precise tuning of thin film growth and the possibility of achieving the desired
supramolecular arrangement is the main reason for choosing the Langmuir-Blodgett (LB)
and Langmuir-Schaefer (LS) depositions. Going back to 1917, Irving Langmuir demon-
strated the precise control of monolayer formation at the General Electric Labs [51]. Later
in 1935, his assistant Katharine Blodgett reported the sequential transferring of the floating
monolayer from the air/water interface to a solid substrate [51,52].

A Langmuir trough is necessary to fabricate LB or LS films, as shown in Figure 3A.
The trough consists of an inert Teflon recipient containing the aqueous subphase and some
characterization accessories, essentially, a surface pressure sensor (a Wilhelmy plate) to
monitor the different stages of the film organization. Other accessories, such as a surface
potential analyser, PM-IRRAS [53] and Brewster angle microscopy [54] can be added to
the set-up. A volatile solvent is used to suspend the material of interest (e.g., chloroform,
toluene, hexane), which is spread onto the aqueous subphase using a microsyringe. After
solvent evaporation, the compression of the moving barriers leads to a decrease in area.
As a result, the molecules are forced into an organized state, passing through the initial
gaseous phase (see Figure 3B (1)) to the liquid phase (2), followed by the condensed phase
(3) and finally, the collapse of the film (4) with the superposition of molecules [5,55].

Chemosensors 2023, 11, 524 6 of 50 
 

 

fabrication techniques, molecular organization (or supramolecular arrangement in gen-
eral) and the sensing application. 

3. Supramolecular Thin Films Assembly Techniques 
3.1. Langmuir-Blodgett and Langmuir-Schaefer Assembly 

The precise tuning of thin film growth and the possibility of achieving the desired 
supramolecular arrangement is the main reason for choosing the Langmuir-Blodgett (LB) 
and Langmuir-Schaefer (LS) depositions. Going back to 1917, Irving Langmuir demon-
strated the precise control of monolayer formation at the General Electric Labs [51]. Later 
in 1935, his assistant Katharine Blodgett reported the sequential transferring of the floating 
monolayer from the air/water interface to a solid substrate [51,52]. 

A Langmuir trough is necessary to fabricate LB or LS films, as shown in Figure 3A. 
The trough consists of an inert Teflon recipient containing the aqueous subphase and some 
characterization accessories, essentially, a surface pressure sensor (a Wilhelmy plate) to 
monitor the different stages of the film organization. Other accessories, such as a surface 
potential analyser, PM-IRRAS [53] and Brewster angle microscopy [54] can be added to 
the set-up. A volatile solvent is used to suspend the material of interest (e.g., chloroform, 
toluene, hexane), which is spread onto the aqueous subphase using a microsyringe. After 
solvent evaporation, the compression of the moving barriers leads to a decrease in area. 
As a result, the molecules are forced into an organized state, passing through the initial 
gaseous phase (see Figure 3B (1)) to the liquid phase (2), followed by the condensed phase 
(3) and finally, the collapse of the film (4) with the superposition of molecules [5,55]. 

 
Figure 3. (A) Schematics of a Langmuir trough after amphiphilic molecule monolayer formation; 
(B) π−A isotherm depicting different phases during the barrier compression: (1) gaseous, (2) liquid, 
and (3) condensed phases, (4) collapse of the film. (C) Representation of the molecular organization 
of Y, X, and Z−types of LB films. 

The thin film with a high organization can be transferred to a solid substrate as an LB 
or LS film. For the LB films, the substrate is vertically immersed or raised. For a 

Gaseous phase (1)

Condensed phase (3)

Liquid phase (2)

Collapse (4)

16 18 20 22 24 26 28 30

0

10

20

30

40

50

60
(4)

(3)

(2)

Su
rf

ac
e 

Pr
es

su
re

, Π
 (m

N
 m

-1
)

Area per Molecule, A (Å molecule-1)

(1)

Barrier compression direction

Y type X type Z type

A
B

C

Movable
barries

Subphase

Substrate

Dipper
Control

Wilhelmy
plate

Electrobalance

Figure 3. (A) Schematics of a Langmuir trough after amphiphilic molecule monolayer formation;
(B) π–A isotherm depicting different phases during the barrier compression: (1) gaseous, (2) liquid,
and (3) condensed phases, (4) collapse of the film. (C) Representation of the molecular organization
of Y, X, and Z–types of LB films.

The thin film with a high organization can be transferred to a solid substrate as an LB
or LS film. For the LB films, the substrate is vertically immersed or raised. For a hydrophilic
substrate, Y–type deposition is achieved by the first raising of the substrate from the
subphase, and consecutive immersion and raising cycles lead to molecules stacking in
a head-to-head and tail-to-tail configuration (Figure 3C). The X–type LB film is formed
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when the deposition occurs only during the substrate down stroke, whereas the Z–type
films are produced when the deposition occurs only during the substrate up stroke [52]. The
LS films, introduced by Irving Langmuir and Vicent Schaefer [55], involve the horizontal
contact of the substrate with the compressed Langmuir film. The LS method is preferred
for rigid monolayers, although it allows less control over deposition compared to the LB
films [56]. In-depth information on the subject of Langmuir monolayers and Langmuir-
Blodgett films can be found in M. Petty “Langmuir-Blodgett Films: an introduction” and
A. Ulman entitled “Langmuir-Blodgett Films: An Introduction to Ultrathin Organic Films
from Langmuir-Blodgett to Self-Assembly” [5,55]. Some recent review papers also bring
the essence of LB films [6,57].

Initially, the LB technique was solely used for amphiphilic molecules. However, it has been
expanded to include several materials to explore new applications. A plethora of literature exists
on the applications of LB and LS techniques with different materials, such as metal nanoparti-
cles [58–61], carbon nanotubes [62–65], graphene [66–69], biomolecules [70–72], metal-organic
frameworks [73,74], conjugated polymers [75] and others. The LB and LS techniques have
been used to fabricate hybrid films solely or combined with other approaches: (1) spreading
a mixture of materials [63,76], (2) spreading a material on the air-water interface, and using
the second material in the subphase [69,77]; (3) to assembly LB or LS films intercalated with
self-assembled layers [68,78–80].

The control of parameters such as molecular organization and thickness is very impor-
tant for sensor fabrication. Remarkably, the LB and LS techniques allow for the manipula-
tion of packing, wrinkling, and folding of graphene nanosheets [81,82], the control of the
packing density of metal nanoparticles [59–61], or the alignment of 1D materials [63,83,84].
A multitude of materials has been successfully applied as LB and LS films in sensing appli-
cations. However, due to space limitations, we will focus on a selected group of materials:
graphene derivatives, 1-D materials, and nanoparticles.

3.1.1. Graphene-Derivatives

Cote, Kim, and Huang [81] pioneered assembling single graphene oxide (GO) layers
by the LB assembly in 2008. The first thing to mention is that common solvents for
spreading solutions, such as chloroform or toluene, are inadequate for the hydrophilic
GO. To avoid aggregates, the spreading solution for GO is usually a mixture of water and
methanol [81,85]. The interactions between graphene sheets govern the film formation and
depend on the balance between the electrostatic repulsion and the Van der Waals attraction.
At the first stage of film compression, the GO sheets started to touch each other forming
a close-packed monolayer. With the decreasing area, thanks to the flexibility of the single
layer, the augmented surface pressure was dissipated as folding and wrinkling of sheets
at the touching points (edges) but keeping the interior flat. This edge-to-edge interaction
prevents the centre of the GO sheets from wrinkling until there is no space left when the
monolayer buckles. With further compression and consequent increase in the Van der
Waals forces, the face-to-face interaction led to a reversible flocculation between sheets
of similar sizes or an irreversible coagulation between sheets of very different sizes [81].
Following Cote’s pioneering work, Zheng et al. [86] fabricated transparent conductive LB
films using ultra-large graphene sheets. Despite the in-plane compression, they discovered
that the formation of wrinkling also depends on the evaporation of water molecules. For
instance, at a fast substrate-pulling speed, the water molecules become trapped, and their
evaporation induces the wrinkling of the sheets. Conversely, small-GO sheets allow easy
water evaporation, forming wrinkle-free films.

In 2017, Bonatout et al. [85] investigated GO sheets on an air-water interface by X-ray
reflectivity and XRD using synchrotron sources and pointed out that GO spontaneously
forms a bilayer of sheets interfaced between air and water by hydrogen-bonded water
bridges [85]. Unconventionally, Jaafar et al. [67] have used the LB technique to fabricate 3D
reduced graphene oxide (rGO) structures. This was achieved by collecting the film after the
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collapse pressure, producing a highly porous surface, which could be tuned by the number
of deposition layers.

As a result of the high hydrophilicity conferred by the plenty of oxygenated groups
on the GO structure, the accommodation of a variety of moieties is possible and makes
GO a functional substrate for anchoring biomolecules to create hybrid nanostructures. The
anchoring of nucleic acids [87–90], antibodies [91–93] and enzymes [69] were improved by
the use of GO layers. Chalmpes et al. [79] fabricated biohybrid graphene-based structures
by conventional and surfactant-assisted LS deposition for further self-assembly deposition
of cytochrome c (CYC), as presented in Figure 4A. For the conventional LS deposition, the
GO was spread (5:1 methanol: water mixture) onto the air-water interface, compressed to
the monolayer formation, and further removed as an LS film. For the surfactant-assisted
deposition, octadecylamine (ODA) is spread onto a subphase of an aqueous dispersion of
GO. The barrier compression led to the ODA-GO hybrid film formation at the air-water
interface, which is collected as an LS film. Further immersion of the substrates into the
CYC solution provided the GO-CYC and ODA-GO-CYC films. Atomic force microscopy
(AFM) images indicated a smoother distribution and higher coverage in the ODA-GO-CYS
LS film (Figure 4B(a) compared to the traditional LS (b)), with the images depicting flakes
with well-defined edges and negligible voids between them.

Interestingly, the ODA-GO-CYC presented no catalytic activity. Even with the ODA
increasing the interlayer space between GO nanosheets, thus enabling CYC molecules’
accommodation, their bulk moieties increase mass transfer limitations during biocatalysis
(hampers contact between enzyme and substrate). On the other side, the protein is anchored
to the edges of the GO in the GO-CYC LS films, which facilitates the enzyme-protein
interaction. Additionally, another reason could be related to hydrophobic interactions
between the alkyl chain of ODA and CYC, which could lead to decreased activity.

Miyazaki et al. [91] have compared GO depositions by different techniques for poste-
rior antibody immobilization. Aiming to take advantage of oxygenated groups from the
GO structure, GO was immobilized on the gold surface by SAMs of cysteamine and by
LB GO films collected on two different surface pressures (15 and 30 mN/m). Although
the LB films of GO provided high surface roughness, the transfer of the monolayers to
the substrate left uncovered spaces on the gold substrate, which hampered the antibody
loading. Also, the microscopy images indicated smaller GO sheets when compared to
the self-assembled GO film. This could be due to the fact that the small sheets were able
to float at the air-water interface while the large and heavy ones sunk into the subphase.
Solanski et al. [66] explored LB films of ordered GO on indium tin oxide (ITO) substrates
followed by hydrazine vapor reduction (creating reduced-graphene oxide–rGO) for Dengue
detection. Dengue NS1 protein target was detected by the NS1 antibodies covalently linked
on the rGO-coated ITO electrodes by electrochemical impedance spectroscopy (EIS) tech-
nique. The limit of detection (LOD) achieved was 0.081 ng mL−1 in human serum samples,
which is convenient since the target antigen level in humans varies from 0.01 to 2 µg mL−1

in primary and secondary infections.

3.1.2. One-Dimensional Materials (Nanowires and Carbon Nanotubes)

One-dimensional (1D) materials have anisotropic physical properties. It is essential to
control their alignment direction to achieve superior properties compared to the randomly
oriented structures. For instance, electronic transport is known to be better along the
alignment direction than those disordered and cross-linked networks [83,94,95]. Optical,
catalytic, and magnetic properties also differ in aligned 1D structures due to the coupling
effects and synergetic collective properties in oriented domains [83,96]. Valuable review
papers on the alignment of 1D materials have been published by Hu et al. [83], specifically
for nanowires by He et al. [97], for carbon nanotubes (CNTs) [46,64,65], and specifically
using the LS technique [98].
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permission from [79]. Copyright 2022 American Chemical Society.

Among the 1D materials, CNTs are one of the most widely investigated in sensing ap-
plications due to their interesting optical, electronic, and (electro)catalytic properties [99,100].
CNTs can be immobilized on solid substrates through direct growth or solution process-
ing for sensing purposes. The latter is preferred due to the mild operation conditions
(low temperature and pressure) involved and suitability for large-scale production. The
alignment of 1D nanomaterials through solution processes is discussed in [101]. The LB
technique, a solution-phase processing strategy, offers the advantage of allowing high-
density packing [46,101,102]. The first to align CNTs using the LB technique looks to be
Li et al. in 2007. Since then, LB and LS techniques have been explored to align nanotubes
for sensing applications.

To fabricate LB or LS films of CNTs, they were functionalized or mixed with am-
phiphilic molecules. Abdulla et al. [63] have functionalized multiwalled-CNTs (MWCNT)
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with polyaniline (PANI@MWCNT) to be spread on the Langmuir trough (Figure 5A). The
barrier compression led to the formation of well-aligned structures, and the horizontal or
vertical dipping of the substrate originated the LS or LB films, respectively. Figure 5B illus-
trates the TEM images and the corresponding phases in the compression isotherm from the
gaseous state (a), liquid-expanded (LE) (b and c), liquid-condensed (LC) (c), and solid (S)
(d) states, with the CNTs oriented parallel to the barrier. An application as a chemoresistive
NH3 gas sensor presented 2-fold superior performance compared to spin-coated sensors.
It is believed that the aligned PANI@MWCNTs created an easy pathway for the NH3 gas
interaction and facilitated electron transport through the ordered network [63].

Chemosensors 2023, 11, 524 10 of 50 
 

 

[99,100]. CNTs can be immobilized on solid substrates through direct growth or solution 
processing for sensing purposes. The latter is preferred due to the mild operation condi-
tions (low temperature and pressure) involved and suitability for large-scale production. 
The alignment of 1D nanomaterials through solution processes is discussed in [101]. The 
LB technique, a solution-phase processing strategy, offers the advantage of allowing high-
density packing [46,101,102]. The first to align CNTs using the LB technique looks to be Li 
et al. in 2007. Since then, LB and LS techniques have been explored to align nanotubes for 
sensing applications. 

To fabricate LB or LS films of CNTs, they were functionalized or mixed with am-
phiphilic molecules. Abdulla et al. [63] have functionalized multiwalled-CNTs (MWCNT) 
with polyaniline (PANI@MWCNT) to be spread on the Langmuir trough (Figure 5A). The 
barrier compression led to the formation of well-aligned structures, and the horizontal or 
vertical dipping of the substrate originated the LS or LB films, respectively. Figure 5B il-
lustrates the TEM images and the corresponding phases in the compression isotherm from 
the gaseous state (a), liquid-expanded (LE) (b and c), liquid-condensed (LC) (c), and solid 
(S) (d) states, with the CNTs oriented parallel to the barrier. An application as a chemo-
resistive NH3 gas sensor presented 2-fold superior performance compared to spin-coated 
sensors. It is believed that the aligned PANI@MWCNTs created an easy pathway for the 
NH3 gas interaction and facilitated electron transport through the ordered network [63]. 

 
Figure 5. (A) Schematic of LB assembly of PANI@MWCNTs on sensor transducer. (B) π−A isotherm 
of PANI@MWCNTs at the air-water interface and corresponding TEM images for each phase (a–d) 
and representation of the formation of aligned structures at the air-water interface with the barrier 
compression. Adapted with permission from [63]. Copyright 2020 American Chemical Society. 

Vertically aligned CNTs are also possible through the LB technique. Wang et al. [96] 
developed a method using ODA. Firstly, ODA was spread onto the trough, and after sol-
vent evaporation, a first compression would leave a layer of ODA molecules floating with 
some bevel angles. Then, after a careful spreading of MWCNT, an hour is lasted to allow 
ODA and MWCNTs to enwind each other to finally compress the barriers. The electro-
chemical sensor was tested for methylparaben after transferring it to a glassy carbon elec-
trode (GCE). The best electrochemical performance was achieved with two layers of 
MWCNTs. The possible reason is that the second one supplemented some imperfections 
left by the first deposited layer. Adding a third layer augmented the film resistance caused 
by the non-conductive ODA. The GCE/MWCNTs voltammetric sensor presented a linear 
range of 1 × 10−6 to 8 × 10−5 mol L−1 and a LOD of 4 × 10−7 mol L−1. The same group used a 
similar approach with PANI-CSA (polyaniline base doped with camphor sulphonic acid) 
to produce PANI-vertically aligned MWCNTs (MWCNTs-PANI-LB/GCE) [84]. The elec-
trochemical investigation in the probe solution revealed the charge transfer resistance de-
creasing from MWCNTs-PANI-LB/GCE < MWCNT/GCE (dropcast) < bare GCE. This was 
reflected in the daidzein detection, widely used in treating cardio-cerebrovascular 

Figure 5. (A) Schematic of LB assembly of PANI@MWCNTs on sensor transducer. (B) π–A isotherm
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Vertically aligned CNTs are also possible through the LB technique. Wang et al. [96]
developed a method using ODA. Firstly, ODA was spread onto the trough, and after solvent
evaporation, a first compression would leave a layer of ODA molecules floating with some
bevel angles. Then, after a careful spreading of MWCNT, an hour is lasted to allow ODA and
MWCNTs to enwind each other to finally compress the barriers. The electrochemical sensor
was tested for methylparaben after transferring it to a glassy carbon electrode (GCE). The
best electrochemical performance was achieved with two layers of MWCNTs. The possible
reason is that the second one supplemented some imperfections left by the first deposited
layer. Adding a third layer augmented the film resistance caused by the non-conductive
ODA. The GCE/MWCNTs voltammetric sensor presented a linear range of 1 × 10−6 to
8 × 10−5 mol L−1 and a LOD of 4 × 10−7 mol L−1. The same group used a similar ap-
proach with PANI-CSA (polyaniline base doped with camphor sulphonic acid) to produce
PANI-vertically aligned MWCNTs (MWCNTs-PANI-LB/GCE) [84]. The electrochemical
investigation in the probe solution revealed the charge transfer resistance decreasing from
MWCNTs-PANI-LB/GCE < MWCNT/GCE (dropcast) < bare GCE. This was reflected in
the daidzein detection, widely used in treating cardio-cerebrovascular diseases. Compared
to the randomly dispersed MWCNTs, the MWCNTs-PANI-LB/GCE presented a wider
linear range (1 × 10−7–9 × 10−6 mol L−1) and a lower LOD of 8 × 10−8 mol L−1 [84].

The sensing application of nanowires (NWs) has also been explored. However, to
take advantage of their 1D nature (i.e., almost monocrystalline perfection, atomically sharp
termination, and small diameter, close to the electron confinement limit), the orientation
of NWs must be controlled. ZnO nanowires-based LB/LS films demonstrated interesting
gas-sensing properties [48,95]. As a result of the high hydrophilicity of the ZnO nanowires,
a functionalization with amphiphilic surfactants is needed to allow their floating at the air-
water interface, as with palmitic acid [95] or 2-dodecanthiol [48]. Baratto et al. [95] worked
on the Langmuir film formation with the NWs parallel to the barrier, which was further



Chemosensors 2023, 11, 524 11 of 48

collected by the LS technique onto Au electrodes. Annealing was performed to improve
the contact between NWs and Au electrodes and to remove the palmitic acid. The aligned
ZnO-NWs sensor was suitable to detect NO2 either at 200 ◦C or at room temperature, while
the drop cast film (random orientation) presented no correlation between relative response
and NO2 concentration. Without orientation, there is a strong dependence on the response
with the percolation through the interconnections between the NWs, which depends on the
preparation conditions.

Concerning NWs, the possibility of creating aligned structures is of great interest to
SERS researchers. Pioneering work of Tao et al. [103] in 2003 used the LB technique to
fabricate aligned AgNWs film. The NWs with pentagonal cross-section and pyramidal
tips were previously capped with poly(vinyl pyrrolidone)—PVP to turn the NWs’ surface
hydrophobic, thus preventing aggregation. The formed AgNWs monolayer became well-
aligned parallel to the barrier, and the LB film was transferred to a silicon wafer for SERS
application. The enhancement factor was 105 and 109 for 2,4-dinitrotoluene and Rhodamine
6G, respectively. Recently, Sheng et al. [104] have fabricated ordered LB TeNWs film to
further immerse in HAuCl4 aqueous solution. After the reduction, the ordered Te-Au
hetero NWs film was tested as a SERS substrate. The enhancement factor using 3,3′-
diethylthiatricarbocyanine iodide (DTTCI) as a probe was calculated as ~106 and ~105 for
the ordered and disordered (dropcast film) SERS substrate, respectively. Due to the orderly
and close arrangement of the plasmonic gold nanoparticles (AuNPs), there is a greater
number of hot spots in the ordered film, while in the disordered one, the AuNPs are
dispersed (far apart from each other). Additionally, the Te-Au hetero NWs film exhibits
excellent uniformity and flexibility. Interestingly, a test using a polarized laser indicated
that the local field that dominates the SERS signal is perpendicular to the NW template in
the axial direction, while the intensity is independent of the angle of polarized light for the
disordered film [104].

3.1.3. Nanoparticles

Regarding sensing platforms based on the surface plasmons, for instance, SERS, which
is based on localized surface plasmon resonances (LSPR), and SPR (surface plasmon reso-
nance) sensing approaches, the deposition techniques through monolayers are interesting
due to the possibility of controlling the nanoparticles organization and the packing density
by means of adjustment of the moving barriers. Although this message sounds very ap-
pealing from the perspective of various sensing applications, achieving a high degree of
surface coverage of metal nanoparticles is still a challenge. Swierczewski and Bürgi [59]
have discussed the differences between manufacturing films of purely hydrophobic metal
nanoparticles to typical amphiphilic molecules. The absence of hydrogen bonds to stabi-
lize the Langmuir layer introduces the main challenge to ordering and transferring the
films [59]. Experimental conditions such as the chosen capping ligand (length and chemical
nature, their density on the metal core) influence the steric repulsion and the Van der Waals
attractions between the particles. Effects such as affinity between the capping ligand and
the spreading solvent are also relevant.

The possibility of tunning the hot spots during the fabrication of the plasmonic architec-
tures has attracted attention to the subject of SERS [60,61,105–107]. While the conventional
self-assembly method provided a limited surface coverage (~50%) as a result of the steric
hindrance [108], the LB deposition allowed much higher coverage of Au nanoparticles due
to the controllable surface pressure of the monolayer (above 90% for spherical nanoparti-
cles) [109,110]. An alternative approach in which the metal ions are adsorbed on the top
of an organic Langmuir monolayer for further photoreduction also provided significant
surface coverage (76%), as well as the use of LB films of silica nanoparticles followed by
gold sputtering [111,112].

Tahghighi et al. [60] created a SERS substrate through AuNP monolayers at the air-
water interface. Nanoparticles were capped with 1-dodecanthiol and PEG-SH to prevent
aggregation. The excess (non-adsorbed) PEG-SH was removed by centrifugation before sus-
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pension in chloroform and spreading. The monolayer was transferred to a (3-aminopropyl)
triethoxysilane (APTES)-modified substrate and used as seeds for electroless deposition
of Au. A probe molecule (4-mercaptobenzoic acid, 4-MBA) was dropped on the substrate
to analyse the SERS performance. The SERS intensity increases with the lateral pressure,
corresponding to an increase in particle density, until it reaches a maximum at the pressure
of ~13 mN m−1 (corresponding to the limit of the monolayer stability). Progressive com-
pression leads to the collapse of the monolayer, multilayered aggregates, and decreased
signal [60]. For the Au nanostars, the maximum amplification was found in films deposited
at 10 mN m−1, lower than in the spherical ones since high packing densities may cause
interdigitation between neighbouring nanostars [61].

Turning our attention to the use of the LB technique in the fabrication of magnetic
nanoparticle films, it is worth noting that this subject remains understudied due to the self-
aggregation process, which limits the suspension stability. Pandey et al. [113] presented
the coating of iron oxide nanoparticles (IONPs) with poly(lactic-co-glycolic acid)—Plg
to provide stability and active sites for the immobilization of antibodies against E. coli
O157:H7. The EIS-based sensor provided a LOD of 3.0 CFU mL−1. In a study developed
by Khasraw et al. [114], the application of an external magnetic field during the fabrication
process of the monolayer of stearic acid-capped IONPs improved the packing density of
the nanoparticles. It is possible to form striped structures aligned to the direction of the
external magnetic field [114].

3.1.4. Other Materials

Due to the fashionable molecular organization, countless materials have been applied
to sensing platforms and fabricated by the LB or LS techniques. Due to space limitations,
we have chosen to discuss a bit about porphyrins, phthalocyanines (Pc), and biomolecules.

Porphyrins and Pc are largely investigated due to their stimuli-responsive properties.
Katsuhiko Ariga has particularly reviewed the LB and the LbL strategies to fabricate films
of porphyrins and related molecules [115]. Maximino et al. [116] have highlighted the
versatility of fabricating thin films of metallic Pc through different techniques (LB, LS, LbL,
PVD, and electrodeposition). Concerning the use of a Langmuir trough, the rigid nature of
the pristine porphyrin floating monolayers appeared to hamper the transferring by the LB
technique in some cases, and most works have used the LS transferring method [117–120].
Bettini et al. [117] tested three bis-porphyrin compounds (metal-free, Ni, and Co complexes)
LS films for histidine detection. A previous interaction study with the Langmuir monolayer
revealed that the interaction with the aminoacid promotes conformation changes in the
porphyrin, with an important role of the central metal ion [117]: a partially closed struc-
ture for NiNiPo2 (tweezer structure) and an opened anti-conformation for the CuCuPo2.
By SPR, which is based on changes in the local refractive index very close to the sens-
ing surface [121], the angle of minimum reflectivity varied as a function of the histidine
concentration, with two ranges of linearity: 10−9 to 10−6 and 10−6 to 10−4 M. The same
research group developed a sensor for chiral discrimination between L- and D-histidine
through an LS film of cubane-bridged bisporphyrin (H2por-cubane-H2por). Again, the
sensor is based on conformation changes provoked by each one of the chiral structures:
L-histidine promotes the stabilization of the anti-conformer of the porphyrin molecules,
while D-histidine promotes the tweezer conformation [118].

Phthalocyanines (Pc) electroactive and electrocatalytic properties have also attracted
interest in developing electrochemical sensors [10,11,120,122,123]. Ermakova et al. [119]
prepared LS films of porphyrin-5-ylphosphonate diesters for mercury(II) ions. To the
monolayer formation, the π stacking was avoided by the bulky diethoxyphospohoryl and
mesityl groups, chemically introduced for this purpose. The selectivity of the dual sensor
(absorbance and fluorescence) composed of 10-layer LS film is based on the coordination
of the interfering metals (Cu2+, Zn2+, Cd2+, and Pb2+) to the donor heteroatoms at the
periphery of the macrocycle. The LOD of this reusable thin-film (tested over six cycles)
sensor is ~10−8 M. Akyüz and Koca [120] combined the LB technique to electrochemical
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deposition to fabricate a sensor for pesticides. An LB film of terminal alkynyl substituted
manganese phthalocyanine (MnPc-TA) film was assembled on ITO electrodes for further
4-azidoaniline (N3-ANI) reaction to the MnPc-TA alkynyl groups. Finally, the hybrid
MnPc-TA/N3-ANI film was electropolymerized to be tested as an electrochemical sensor
for fenitrothion, eserine, and diazinon. By the square-wave voltammetry, the sensor was
selective only for fenitrothion, with a LOD of 0.049 µmol dm−3.

Biomolecules have also been applied by the LB technique. One of the main features
can be attributed to the LB films of enzymes, which keeps their activities (if not improved)
for longer periods compared to the homogeneous suspension [70,71]. Usually, a matrix
of phospholipids provides a friendly environment for the biomolecules. For that, the
lipid monolayer is formed at the air-water interface to further enzyme adsorption (from
subphase [69], injected into the water subspace after the spreading of the lipid [70] or
injected below the formed lipid monolayer [71,124]). This allows the enzyme to adapt,
reaching the minimum free energy to conserve its secondary structure and thus preserve
its catalytic property [125]. Additionally, the combination of enzymes with conjugated
polymers to provide structural conservation and improved energy transfer in sensing
applications was also explored [75,126].

Regarding biosensing applications, Scholl et al. [69] have investigated the enzymatic
activity of penicillinase (PEN) in lipid LB films in the presence of GO. For the Langmuir
film formation, the lipid dimyristoylphosphatidic acid (DMPA) was spread at the air-water
interface on a subphase containing GO and the enzyme. Additive shifts to higher areas
for PEN and GO were verified (compared to pristine DMPA monolayer), indicating their
interpenetration on the DMPA monolayer. The synergy between the compounds leads to
a suitable molecular accommodation that preserves PEN activity [69].

3.2. Layer-by-Layer Assembly

Since its introduction by G. Decher in 1992 [127], the Layer-by-Layer (LbL) technique
has garnered significant attention for manufacturing thin films. It is a straightforward way
to create multilayered films through sequential and spontaneous adsorption of materials
that interact via Coulomb interactions, hydrophobic forces, Van der Waals forces, and hy-
drogen bonds [128]. The LbL technique enables precise control of molecular-level thickness
through experimental parameters. At the same time, its versatility allows for the function-
alization of surfaces with unlimited size and shape, making it an interesting approach to
develop new functional thin films exhibiting a synergistic combination of properties.

The traditional immersive LbL assembly, described in Figure 6, relies on the spon-
taneous adsorption of materials onto a solid substrate submerged in a stable aqueous
suspension. Following each immersion, the substrate undergoes washing to remove any
weakly adsorbed material and prevent cross-contamination. It is optional to perform a dry-
ing process (naturally in air or by nitrogen) after each step of immersion and washing. The
thickness can be easily regulated by controlling the number of deposited layers. Combining
two, three, or four different materials can create supramolecular arrangements with bi-, tri-,
quadrilayers, or even more, as desired.

About the requirements to manufacture a thin film through the LbL technique, the
substrate may be hydrophilic and preferably charged. Fortunately, functionalization strate-
gies are available for practically all surfaces of interest to precede the LbL assembly. For
instance, Au surfaces can be modified with SAMs of thiolated molecules to acquire charged
functional groups: 11-mercaptoundecanoic acid, 1-octanethiol, and 6-mercapto-1-hexanol
are common reagents to provide negatively charged surfaces via carboxyl or hydroxyl
groups. At the same time, cysteamine and APTS (a silane coupling agent) are employed to
surface functionalization with positive amine groups. Silica surfaces (as common substrates
of glass and quartz) can be cleaned to exhibit their natural hydrophilicity and negative
charges [129] or can be plasma activated and/or by the APTS method [130]. Other oxides,
such as titanium oxide, iron oxides, ITO, and fluorine-doped tin oxide (FTO), can also be
modified by APTS [130]. Another important point is that the materials of interest should
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be suspended in a homogeneous and stable aqueous dispersion, even though the LbL
deposition using organic solvents has already been reported [131,132].
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Figure 6. Schematic of the LbL fabrication: (1) a negatively charged solid substrate is immersed
in a suspension with positively charged material; (2) a washing is performed to remove weakly
adsorbed material and avoid cross–contamination; (3) the substrate is immersed in a negatively
charged suspension; (4) the washing process is repeated to allow removing of the weakly adsorbed
material. A first bilayer is formed.

Although initially proposed for charged polyelectrolytes, the LbL technique can be
applied to a wide range of materials, including metal nanoparticles, carbon-based materials,
and biomolecules. The LbL nanostructured films exhibit excellent stability and unique
properties, thus finding widespread use in the development of various electronic and
optical devices, such as energy generation and storage devices [133–135], as well as sensors
and biosensors [134–136].

Other LbL approaches are possible, such as spraying, spinning, and fluidic assembly.
However, we focus here on the traditional immersive self-assembly. More details about the
alternative LbL approaches can be found in [137,138]. The manufacture of sensors usually
accomplishes the modification of flat surfaces. However, another application that should be
mentioned here is the importance of the LbL assembly in colloids, especially in developing
drug delivery systems. More information on this theme can be found in recently published
review papers [139–141].

3.2.1. Graphene-Based Materials

The first study on LbL assembly of graphene dates from 2009 [142]. Shen et al. [142]
started with GO exfoliation to avoid graphene aggregation in an aqueous solution. GO was
further reduced and stabilized with poly(acrylic acid) (PAA) and poly(acryl amide) (PAM),
which introduced negative and positive charges on the graphene surface, respectively,
allowing the electrostatic LbL assembly. Since then, graphene derivatives have been largely
explored in LbL films. rGO is conductive and greatly applied to improve the charge transfer
between specific sensing reactions and the electrode. At the same time, the abundance of
oxygenated groups of the oxidized form (GO) enables improved biomolecule loading to
biosensing applications, which also allows improved sensitivity [92,143].
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The conductive property is the most sought-after for application as electrical and
electrochemical sensors [144]. However, the conductive form possesses the sp2 carbon
network, which is hydrophobic and non-water soluble, hampers the LbL assembly of
its pure form. Therefore, LbL films of graphene nanoplatelets originate from aqueous
exfoliation of GO and follow two alternatives: (1) chemical reduction prior to the LbL
assembly, usually functionalized or stabilized in charged polyelectrolytes to keep a stable
aqueous suspension [145–147]; (2) chemical [148], electrochemical [149–151] or thermal
reduction [152–154] post-assembly of LbL film of GO, which is applied as the negatively
charged material multilayered with a positively charged material.

Due to its solubility in water and the easy functionalization with polyelectrolytes, GO
has been combined with an infinitude of functional materials in aqueous media to stabilize
the reduced form to allow the manufacture of LbL films. Rodrigues et al. [145] prepared stable
dispersions using two polyelectrolytes, positively charged poly(diallyldimethylammonium
chloride) (PDDA) and negatively charged poly(styrenesulfonate) (PSS), to subsequent
chemical reduction with hydrazine, leading to the formation of rGO stabilized in PDDA
(GPDDA) and in PSS (GPSS). The LbL films of (GPDDA/GPSS)10 and an alternative
arrangement containing PAH stabilized-AuNPs ((GPDDA/GPSS)1(AuNP-PAH/GPSS)10)
were assembled on ITO electrodes and evaluated as an electrochemical sensor for the
pesticide methyl parathion (MP). Raman spectroscopy of these films indicated the D’ band
(absent in bulk material) assigned to surface graphene layers (not sandwiched between two
other layers), indicating the successful assembly of well-exfoliated graphene layers. While
there was a homogeneous distribution of MP molecules on the LbL film with the AuNPs,
the analyte was preferentially adsorbed on the graphene aggregates on the film without
AuNPs. The lower LOD by the (GPDDA/GPSS)10 film was justified by the facilitated
charge transfer provided by the proximity of MP and graphene, while the wider linear
range by the sensor with AuNP in the composition would be related to the higher analyte
distribution (more interaction sites) [145].

Unlike Rodrigues et al. [145], Al-Hamry et al. [152] produced PANI/GO LbL films
to perform a further thermal reduction. Likewise, Miyazaki et al. [149] performed an
electrochemical reduction after depositing alternating PDDA and GO layers. In the face of
the possibilities of reducing GO films, it is necessary to consider that chemical reduction
requires reagents for the reduction and stabilization of nanosheets but allows control of
the functionalization in suspension, whereas thermal and electrochemical reduction are
reagent-less processes but require heating and the application of a reduction potential,
respectively. Heat or applied potential is inherently applied to the entire film and can
alter the morphology and eventually compromise the integrity of polyelectrolytes/material
assembled GO.

LbL films of GO have also encountered applications in sensor development due to their
planar structure and/or the oxygen-containing functional groups [92,144]. For instance,
Oliveira et al. [143] deposited alternate layers of PAH:GO and PANI:poly(2-acrylamido-2-
methyl-1-propanesulfonic acid) on a p-Si/SiO2 chip. This LbL film was used as a support
layer to immobilize urease and penicillinase enzymes separately for later application as
urea and penicillin sensors. The LbL film provided a better adhesion of the enzymes and
an increased number of sensor units (bioreceptors) due to the rougher active surface area.
A 15% improvement in the average sensitivity was achieved with the LbL film modification.

3.2.2. Phthalocyanines (Pc)

Metal tetrasulfonated phthalocyanines (MTsPc) are water-soluble and versatile molecules
with supramolecular properties that make them suitable for LbL deposition [116]. Typically,
sulfonic groups in the MTsPc structure provide both water solubility and negative charges
to the LbL assembly. FeTsPc [155], CuTsPc [156,157], and NiTsPc [158–161] were applied
as an anionic material as alternated layers with a cationic polyelectrolyte such as PAH or
poly(ethylene imine) (PEI). Thus, the supramolecular arrangement of LbL films with Pc
derivatives can be evaluated based on factors such as LbL composition [161], the number
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of bilayers [155,156], pH of the solution [162], and by the combination with other materials
such as nanoparticles [157–160,163] and carbon materials [164,165].

Hybrid materials based on Pc and metal nanoparticles are widely explored for the
development of electrochemical and chemiresistor sensors [166]. The incorporation of
AuNPs in LbL film showed an increase in electron transfer due to the interaction of
–NH3+ from PAH and –SO3− from MTsPc, which improves the catalytic property for
electrochemical sensing of propylparaben [159], tartrazine [158], and pesticides [157,161].
Although the LbL assembly depends on the electrostatic attraction between the composite
layers (namely, between MTsPc and NPs), the MTsPc can also be LbL assembled based
on coordination via oxo bridges [160]. Ribeiro et al. [160] described significant changes
in UV-vis absorption spectra as well as the shift in Raman bands of NiTsPc after LbL
deposition with IONPs, ascribing to the mutual electrostatic and covalent interaction
(Ni(II)-O-Fe(III) oxo bridges). The unusual supramolecular arrangement allowed the
electrocatalytic oxidation of ethinyl estradiol (EE2), which was impossible with the NiTsPc
or IONPs alone [160]. The detection of EE2 was also evaluated by LbL films of MWCNTs
and different MPcs (FePc, MnPc, and CoPc) [164]. The oxidation performance depended on
the metal centre, with the higher oxidation achieved by CoPc [164]. The LbL combination
of Pc and carbon-derived materials is also promising in sensing applications [164,167].
Besides, the incorporation of Pc in LbL films is also explored for the development of
biosensors [167,168].

3.2.3. Metal Nanoparticles

Metal nanoparticles (MNPs) have been effectively incorporated into sensor devel-
opment through the LbL technique. As a result of their conductive and electrocatalytic
properties, MNPs are widely explored for electrical and electrochemical sensors. Due to
their plasmonic properties, Au, Ag, and Cu NPs are leveraged to develop optical sensors,
especially plasmonic ones.

MNPs are determining components of hybrid systems. Electrochemical sensing ap-
plications take advantage of the electrocatalytic property, augmented surface area, and
reduced charge transfer resistance promoted by the MNP-modified electrodes. MNPs usu-
ally come combined with other nanomaterials as Pc [157–159,163,168], carbon-based mate-
rials [145,165,169,170], clays [171,172], ionic liquids [168,173], among others. In addition,
MNPs have been combined with biomolecules for biosensing applications [169,174–177].
To contextualize, Salvo-Comino et al. [178] have combined materials with complimentary
functionalities by the LbL technique to build an enzymatic sensor for catechol: Pc as an
efficient electron mediator, the ionic liquid to improve the conductivity of the film, and
chitosan to create a suitable environment to the enzyme. They obtained a LOD at the
nanomolar level, which was lower than other assemblies found in the literature using LbL,
LB, and SAM approaches.

AuNPs are the most used mainly due to their chemical stability and facile surface func-
tionalization. Stable suspensions for the LbL assembly are usually achieved under reduction
by polyelectrolyte stabilization [145,165,179–181], ionic liquids [173], glutathione [175,177],
and citrate [89,182]. These stable suspensions can be applied as a component of the LbL as-
sembly combined with opposite-charged polyelectrolytes, nanomaterials, or ions. Another
approach is the immobilization of the AuCl4− anionic precursor onto the LbL assembly
to further reduction. This can be carried out by the adsorption of the ionic precursor onto
a pre-formed polyelectrolyte multilayer film [179,183] or by mixing AuCl4− ions with
polyelectrolytes to the LbL assembly [184,185] prior to the reduction.

Regarding optical sensor applications, the modification of optical fibre aiming LSPR
sensing has been recently reported [179,181,182,186]. The LbL technique allows the easy
and controllable assembly of AuNPs and AgNPs on the optical fibre surface providing
the LSPR signal (plasmon absorption band), which is sensitive to changes in the refractive
index of the surrounding medium. Another optical sensing approach is centred on the
fabrication of SERS substrates [187–190]. Highlights for the possibility of easily combining
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graphene and plasmonic particles uniting the fluorescence quenching of GO and signal
enhancement from MNPs for SERS detection [188,189].

Mariani et al. [191] described the LbL assembly of the positively charged PAH and
negatively charged citrate-capped AuNP on porous silicon (PSi) interferometers and
distributed Bragg reflectors (DBRs) (Figure 7A). The PAH/AuNP assembly enhanced
the Fraby–Pérot fringe contrast due to the increased reflectivity (Figure 7B). The mor-
phology of the LbL-modified PSi with AuNPs with 15 and 4 nm sizes were depicted in
Figure 7C and Figure 7D, respectively. Cross-sectional SEM and EDS analysis of PSi inter-
ferometers allowed verify that the smaller AuNPs (4 nm) efficiently decorated the inner
porous while the 15 nm-AuNPs poorly penetrated the inner surfaces [191]. The sensing
capability was evaluated by IAW (interferogram average over wavelength). Bulk and
surface refractive index sensing were assessed, resulting in a 4.5-fold increase by NaCl
infiltration and a 2.6-fold increase by bovine serum albumin (BSA) adsorption to the modi-
fied PSi. Figure 7E presents the sensorgram of IAW–IAW0 (average value of the spectral
interferogram upon the subtraction of the reflectance spectrum recorded after the injection
of NaCl and the reference reflectance spectrum recorded in buffer) over the injection of
different refractive index patterns. The corresponding calibration curve is illustrated in
Figure 7F. This PSi/PAH/AuNP interferometers demonstrated sensitivity by both photonic
(DBR stop-band) and plasmonic (LSPR) peaks to changes in the refractive index promoted
by bulk and surface changes [191].
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Figure 7. (A) Illustration of the LbL assembly steps of PAH/AuNP onto PSi interferometers: 1. Oxida-
tion of PSi to provide a net negative charge. 2. PAH layer (blue, positively charged). 3. Citrate–capped
AuNP layer (yellow, negatively charged). (B) Reflectance spectra recorded in the air of PSi interferom-
eters after oxidation, PAH deposition, and 15 and 4 nm size AuNP deposition. Top-view SEM images
of PSi/PAH/AuNP (with 15 (C) and 4 nm (D) AuNPs). (E) Sensorgram IAW–IAW0 vs. time following
the NaCl injection (1, 2, 5, and 10%) on nondecorated and 15 nm-AuNP decorated PSi interferometers.
(F) Calibration curve IAW–IAW0 in function of the refractive index from (E). Adapted from [191]
under the ACS AuthorChoice License.
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3.2.4. Biomolecules

Immobilizing proteins and other biological molecules on solid substrates by the LbL
technique is advantageous due to the ability to maintain controlled conditions such as pH
and temperature and entrapment of water molecules between the layers [192]. Although it
is not common to have studies describing the molecular organization of LbL films, there is
generally an investigation into the relationship between the number of layers or another
experimental parameter with the sensor performance. In general, the sensitivity increases
with the number of layers (with the augmented loading of biomolecules) until reaching
a maximum, followed by a plateau or even a decrease [193,194] caused by the limited
diffusion and/or hindered electron transfer in thick films [195]. So, the sensitivity can be
tuned by the number of layers.

The LbL approach can be utilized to form multilayered structures of biomolecules, as
enzymes [147,195,196] or antibodies [197], or also used to build a matrix layer to preserve
the activity of biomolecules when immobilized as solid films [136,147,195,198,199]. The
LbL technique also enables the possibility of achieving a synergistic effect by combining
different materials. For instance, they can bring together the electrocatalytic property of
carbon materials for electrochemical sensing [200,201] and an adequate environment for
the biomolecule’s immobilization [198,202,203]. Chitosan, a biocompatible polysaccharide
found in crustaceous shells [204], is commonly used as a positively charged polyelectrolyte
to build LbL matrices able to maintain the biomolecule activity [201,202,205].

Regarding immunosensors, electrochemical sensors based on LbL films as a support
for antibody immobilization have been described [175,199,206]. Multilaminate composite
films were fabricated by negatively charged AuNPs and positively charged Fc@MgAl-LDH
(MgAl layered double hydroxides containing ferrocene-carboxylic acid) and used as a sup-
port for antibody anchoring and detection of cancer biomarkers [199,206]. Zhang et al. [206]
have used (AuNP/Fc@MgAl-LDH) films for electroluminescence (ECL) detection of prostate-
specific antigen (PSA) through a sandwich immunoassay. In this immunosensing approach,
an primary (or capture) antibody is immobilized on the solid surface and works captur-
ing the antigen from sample, and another antibody called secondary antibody, which is
labelled and binds to the antigen-antibody complex, providing the detectable signal [207].
The film (AuNP/Fc@MgAl-LDH) was used to immobilize the primary antibody. After
incubation with the target PSA, a label composed of luminol and a secondary antibody
(Ab2) supported on a metal-organic framework (MOF) was left to incubate on the surface.
The optimum response was achieved with 12 bilayers-(AuNP/Fc@MgAl-LDH) film. The
synergy between the materials in the LbL assembly was crucial: MgAl-LDH provided an
ideal microenvironment for the uniform immobilization of Fc while the Fc carboxyl groups
allowed the Ab anchoring and the AuNPs were responsible for improving the electron
transfer of the system. Finally, the peroxidase-like catalytic activity of MOF-supported Ab2
and luminol improved the ECL intensity to detect PSA.

As an interesting example of an LbL-based enzymatic sensor, Welden et al. [203] have
developed a field-effect biosensor (Figure 8A) for penicillin through the modification of
an electrolyte-insulator semiconductor capacitor (EISCAP) with an LbL film of PAH and
TMVCys-Bio (Tobacco Mosaic Virus exposing cysteine residue and biotinylated). Following
this, streptavidin-functionalized penicillinase was anchored to build the sensor. Compared
to a surface in the absence of PAH (direct immobilization of TMVCys-Bio), the LbL assembly
provided a higher surface coverage (Figure 8B) thanks to the partial neutralization of the
negative net charge of the TMV particles provided by the PAH layer, thus diminishing
the Coulomb repulsion between neighbouring tubes. Since the operation principle of the
sensor is based on the local pH changes (the enzymatic reaction produces protons), the
signal was firstly assessed for various pH (Figure 8C) and then for penicillin (Figure 8D).
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PAH and TMVCys-Bio (TMV exposing cysteine residue and biotinylated) followed by streptavidin–
functionalized penicillinase. (B) Comparison of the surface coverage in the presence of PAH in the
LbL structure and its absence by direct immobilization of TMVCys-Bio observed by SEM images in
two different magnifications. Sensing responses for (C) different pH values between 5 and 9 and
(D) penicillin solutions with different concentrations from 0.1 mM to 5 mM. Reprinted from [203].
Copyright 2023, with permission from Elsevier.

3.3. Electrochemical Deposition

Electrodeposition (ED) is a technique used to modify a conductive substrate, coating
it with a thin layer of a specific material through an electrochemical process. It involves
the use of an electrolytic cell, and the material deposition is performed based on the
principle of electrolysis [208,209]. Through a controlled potential, during the redox reaction
(oxidation or reduction), the material is deposited at the conductive substrate surface
as a film. The success of ED depends on several factors, including the composition of
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the electrolyte solution, the electrical current and voltage applied, the duration of the
process, and the substrate surface preparation. These factors can influence the thickness,
uniformity, and quality of the deposited layer. The film deposition can be performed using
the electrochemical cell of two or three electrodes, as illustrated in Figure 9.
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Figure 9. Illustration of an electrochemical cell for film deposition using (A) two or (B) three electrodes.
(A) represents the deposition by electrophoresis technique and in (B) by the potentiodynamic or
potentiostatic modes.

Electrophoresis performs ED by applying electrolysis between an anode and cathode,
named electrophoretic deposition (EPD). The EPD involves the application of an electric
field to drive the movement of charged particles toward the substrate, resulting in their
deposition onto the substrate [209]. The deposited film by EPD is usually from metallic,
ceramic, polymer, or composite materials [209]. The material suspension should contain
charged particles that migrate under the influence of an electric field, i.e., the positive
particles depositing through migration toward the cathode substrate (negatively charged)
(Figure 9A(a)), and the negatively charged particles towards the anode substrate (positively
charged) (Figure 9A(b)).

The supramolecular arrangement can be controlled by adjusting the deposition pa-
rameters, including the electric field strength, deposition time, particle concentration, and
suspension composition [209]. Cai et al. [210] described the formation of polyaniline/cobalt
porphyrin (PANI/CoTPP) by one-step self-assembled ED method (2.0 V, 100 s, 2 cm of
electrode distance) with the deposition occurring on the anode (ITO- polyethylene tereph-
thalate (PET) flexible working electrode). The sensing performance for ammonia detection
through the PANI/CoTPP-based electrode was modulated by CoTPP monomer concen-
tration. The increase in CoTPP concentration leads to the formation of large aggregates
and high roughness, thus providing many ammonia gas adsorption sites and enhancing
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the charge transfer rate. The film formed using 0.7 mmol/L CoTPP demonstrated higher
sensitivity with a LOD of 0.83 ppm [210].

ED can also be performed in a voltammetric cell composed of a reference electrode,
a counter-electrode, and a working electrode, where the deposition of the material occurs
(Figure 9B). In this setup, the potential is applied between the reference and working
electrode, and it can be performed in both potentiodynamic and potentiostatic modes. In
the potentiodynamic ED, the electrode potential is varied during the deposition steps to
achieve specific coating properties providing information about the ED mechanism cycle-
by-cycle [211]. In potentiodynamic mode, the supramolecular arrangement, including
the morphology and thickness of the film, can be controlled by the deposition rate (scan
rate) [212], the number of potential cycles, and the potential range. On the other hand, the
potentiostatic ED maintains a constant electrode potential for a uniform and controlled
deposition, and parameters such as applied potential and time can be controlled [10].

In general, ED films on a conductor substrate have their supramolecular arrangements
evaluated, attempting to understand their morphology (microscopy images) and the effect
on their electrical properties (voltammetric and impedance measurements). Therefore, the
optimization as a sensor is performed using techniques such as EIS and cyclic voltammetry
in an inert supporting electrolyte or with a redox probe such as [Fe(CN)6]3−/[Fe(CN)6]4−.
An extensive list of materials is used for both potentiodynamic and potentiostatic deposition
modes. Bellow, a summary of recent works is organized in a group of materials, discussing
mainly the effect of the supramolecular arrangement and applications as sensors.

3.3.1. Polymers and Organic Films

Conducting polymers have emerged as promising high-performance materials due
to their tuneable sensitivity adjusted by formation techniques [213,214]. The conduct-
ing polymers such as thiophene [215–217], aniline [218,219], and pyrrole [217,220] can
be obtained by ED, especially by potentiodynamic mode due to the possibility of under-
standing the mechanism of electrochemical polymerization [221]. The supramolecular
arrangement and the properties of conducting polymers can be tuned by changes in the
electrolyte solution, monomers, pH, doping, and electrochemical parameters such as po-
tential range and ED time [217,221,222]. Phenazine, phenoxazine, and phenothiazine
derivatives [223–225] are other examples of species with the possibility to form electrode-
posited polymers, such as methylene green [226,227], methylene blue [228–230], neutral
red [231,232], Nile blue [233], and others [223,234]. In general, all electrodeposited materials
presented some enhancement or suppression of electrical properties due to changes in
the ED stage. Olean-Oliveira et al. [234] described the role of the anion size used in the
electrochemical polymerization of poly(thionine) on its electrical properties. The potential
for radical cation formation depends on the anion size, with the large ones demanding
lower potential application. The anion size also influences the polymer redox behaviour by
limiting the movement of anions through the polymer matrix [234]. The effect of anion or
polyelectrolytes on the electrochemical polymerization of conducting polymers and their
efficiency in detecting ammonia was reported by Gribkova et al. [235] and Patois et al. [236].

Eventually, a previous electrode modification can be performed before the ED. Silva,
Queiroz, and Brett [226] electrodeposited methylene green on the GCE surface previously
modified with Fe2O3NP (iron oxide nanoparticles)-chitosan. The poly(methylene green)
(PMG) was electrodeposited in an ethaline deep eutectic solvent and an aqueous solution
for comparison. The ED was performed by applying 15 potential cycles between −0.6
and +0.8 V at a scan rate of 50 mV s−1. Different Fe2O3NP loadings (0.2%, 0.5%, and
1.0% w/v). were evaluated, which influenced growth, surface morphology, and charge
transfer (Figure 10). The Fe2O3NP0.2/GCE presented the best polymer film growth, and
when tested to detect the antibiotic 4,4-diaminodiphenylsulfone, a LOD of 0.33 µmol/L
was achieved.
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The ED of biomimetic polymers has attracted attention due to their biocompatibil-
ity and strong adhesive properties [237,238]. Besides, recent studies have revealed the
development of a supramolecular arrangement that exhibits characteristics reminiscent
of a 2D-ordering material [239,240]. Almeida et al. [241] described the effect of co-ED of
polydopamine and laccase through one-step potentiostat deposition for application as
the phenolic sensor. Incorporating laccase does not significantly affect a polydopamine
film’s redox behaviour, optical properties, and morphology. However, it alters the film’s
charge transfer properties, thickness, and hydrophilicity. The polydopamine-laccase film
presented a LOD of 0.14, 0.09, and 0.29 µmol/L for caffeic acid, rosmarinic acid, and gallic
acid, respectively [241].

3.3.2. Cilodextrins

Cyclodextrins (CD) are cyclic oligosaccharides formed by glucose molecules, joined by
glycosidic linkages, which allowed the formation of a truncated cone structure, which can
be classified according to chain sizes as alfa, beta, and gamma (α-CD, β-CD, γ-CD) [242].
The cone-like structure has been a recent property explored in the formation of sensors
by CD ED. Pereira et al. [243] discussed the electrochemical polymerization of β-CD in
different experimental conditions. Diverse experimental parameters were tested until
establishing the optimized conditions: potential range of −1.3 to 0.9 V at 100 mV/s,
electrolyte at pH 5 with β-CD concentration of 6 mmol/L under agitation and in the
absence of dissolved oxygen.

Due to the hydrophobic inner cavity, the β-CD can host biomolecules (bio-recognition
probes). Chang et al. [244] described the electrochemical polymerization using the potential
range of −1.0 to +1.0 V at 20 mV/s and 10 potential cycles. Following, the β-CD allowed
the immobilization of the aptamer fragment (amino-modified aptamer fragment 1, AF1)
through covalent bound with carboxylic acid functionalized adamantane using EDC/NHS
chemistry. The modified electrode demonstrated an enhanced charge transfer after inserting
AuNPs on the electrode surface. The voltammetric detection of 17β-estradiol achieved
a LOD of 6.3× 10−14 mol/L [244]. The β-CD has also been incorporated within conducting
polymers and carbon derivatives, playing an important role in detecting many target
molecules, such as biomolecules, drugs, pesticides and others [245–251].
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3.3.3. Phthalocyanines (Pc)

The porphyrins and Pc have demonstrated interesting results for sensing applica-
tions [252] due to their structural properties, such as π-conjugated bonds, chemical and
thermal stability, and self-organization [253]. Due to their high supramolecular stabilization
and adsorption on the conducting surfaces, these molecules have been used to create ED
films for sensing and electrical devices [254–257]. The porphyrins also draw attention due to
the possibility of their ED through the metal-free porphyrins [212,258]. Kusmin et al. [258]
demonstrated the effect of the substituents in porphyrins and investigated how the poten-
tiostatic or potentiodynamic modes influence the film deposition, leading to changes in the
supramolecular arrangement, including surface morphology and molecular structure [258].
For instance, the films of meta-substituted hydroxyphenylporphyrin exhibited a blocking
effect on the electrochemical reaction, while the para-substituted hydroxyphenylporphyrin
allowed the fabrication of polymeric films with a thickness of up to 300 nm and high
specific conductivity [258]. Furthermore, the morphology is influenced by both chemical
substitution and ED mode. A homogeneous distribution was observed for porphyrin
films formed by potentiodynamic mode, while large aggregates were observed for the
potentiostatic mode, as shown in the AFM images (Figure 11).
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Metal Pc is a versatile molecule for film deposition through potential application [259,260].
Iron phthalocyanine (FePc) can be electrodeposited using dynamic and static modes [260].
Besides, the supramolecular arrangement of FePc films can be controlled by the deposition
technique, as well as variations in the ED parameters [10,261]. When electrodeposited in
the potentiostatic mode, the film exhibited variations in its optical and electrical properties
with the ED time. Specifically, a flat-on molecular organization was observed after 1800 s of
ED at −1.5 V [10]. The FePc films applied to catecholamine detection presented a LOD of
0.28 and 0.56 µmol/L to dopamine and L-dopa, respectively [261]. The properties of Pc ED
films can also be modulated through the incorporation of rGO, as reported by Charles and
Mashazi [262]. In this case, the ED of rGO and cobalt tetraamino phthalocyanine (CoTAPc)
demonstrated a synergic effect on the electron transfer, which allowed the simultaneous
detection of dopamine and paracetamol with a low LOD, 0.095 and 0.104 µmol/L, respec-
tively [262]. The synergic effect between Pc and rGO was also observed for other deposition
methods [263].

3.3.4. Carbon Derivatives

Carbon derivatives are widely applied in electrode modification for sensor devel-
opment [264–267]. In general, the carbon derivatives such as single-walled carbon nan-
otubes (SWCNTs), MWCNTs, and GO are deposited on the conducting electrode surface
by drop casting technique followed by the ED of other functional materials forming hy-
brid films [231,232,268,269]. For example, Gallay, Eguílaz, and Rivas [269] developed
a glucose sensor based on the deposition of the enzyme onto a previously modified GCE.
This modification encompassed the casting of avidin(Av)-MWCNT suspension onto the
electrode followed by the ED of ruthenium nanoparticles (RuNPs) (constant potential of
−0.6 V) to produce GCE/Av-MWCNT/RuNPs. The synergy between MWCNT and RuNPs
allowed an increased catalytic property towards peroxidase reduction, with a LOD of
65 nmol/L. Thus, biotinylated-Glucose Oxidase (biot-GOx) was self-assembled, producing
the GCE/MWCNT-Av-RuNP/biot-GOx, with a LOD to glucose equal to 3.3 µmol/L. In
addition, the authors emphasize the importance of the supramolecular arrangement, with
the GCE/Av-MWCNTs/RuNPs composition better than the GCE/RuNPs/Av-MWCNTs
motivated by the lower accessibility of RuNPs through the Av-MWCNTs layer, as well as
to a less efficient deposition of Av-MWCNTs onto a previous RuNPs modified-electrode.
As pointed out by this example, when constructing a biosensor, the ED stage may be
conducted before the immobilization of biomolecules, such as enzymes, DNA, proteins,
and antibodies [270].

Alternatively, hybrid structures can also be generated by one-step co-ED of carbon-based
materials mixed with other materials [271,272], as demonstrated by Sen and Sarkar [271]. They
co-electrodeposited AuNPs, PEDOT (poly(3,4-ethylenedioxythiophene), and functionalized
MWCNTs on the surface of GCE. Initially, a stable colloid suspension of Au-PEDOT-
MWCNT was prepared, followed by applying a potential range of −0.9 to +1.8 V through
nine potential cycles with a scan rate of 50 mV/s [271]. The ED enhanced the effective
surface area, sensitivity, and selectivity of the sensor for simultaneous detection of uric acid,
xanthine, and hypoxanthine, demonstrating a LOD in the nanomolar range (199.3, 24.1;
90.5 nmol/L, respectively) [271].

Graphene derivatives have also attracted considerable attention for electrode modifica-
tions [248,273–276]. Kanagavalli et al. [277] electrochemically reduced GO (ErGO) on GCE,
performing 20 cycles between 0 to −1.5 V at 50 mV/s (Figure 12A). The ErGO/GCE was
investigated by in-situ Raman and X-ray photoelectron spectroscopic (XPS), revealing the
ErGO surface with an abundant graphitic carbon network with residual oxygenated func-
tional groups, which favours the electropolymerization of melamine (3 mmol/L melamine
monomer in 0.5 mol/L H2SO4 and 5 mmol/L KCl with 20 potential cycles between 0 to
1.6 V at 100 mV/s) (Figure 12B) [277]. The ED of polymelamine (PM) was confirmed by the
increase in the Raman band between 1720 and 1760 cm−1, corresponding to the formation
of an amine-substituted C=O functional group (Figure 12C). The SEM images also indicated
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increased surface roughness after PM deposition (Figure 12A,B). The amperometric mea-
surements indicated a catalytic effect of PM/ErGO/GCE for acyclovir when compared to
ErGO/GCE, GO/GCE, PM/GCE, and bare GCE (Figure 12D). Modifying the GCE surface
with ErGO before PM ED allowed modulating the sensing properties to detect acyclovir,
resulting in a very low LOD (137.4 pmol/L) [277].
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Figure 12. Cyclic voltammogram recorded during the (A) electrochemical reduction of GO/GCE
to ErGO/GCE (0.1 mol/L PBS at pH 7.0 and 50 mV/s), and (B) electrochemical polymerization of
melamine on ErGO/GCE (20 potential cycles at 100 mV/s in 0.5 mol/L H2SO4 containing 3 mmol/L
melamine and 5 mmol/L KCl), and respective SEM images. (C) Emerging Raman band between 1720
and 1760 cm−1 observed during the PM formation. (D) Current density and anodic peak potential
for acyclovir oxidation using the different modified electrodes. Adapted with permission from [277].
Copyright 2023 American Chemical Society.

3.3.5. Nanoparticles

Metal oxide [278–283] and metal [215,284,285] nanoparticles have also been electrode-
posited for the development of sensors [286]. The metal oxide nanoparticle films can be
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prepared by the potentiodynamic or potentiostatic modes or using both combined [283].
The potentiodynamic mode is assigned to the nucleation step, while the potentiostatic
mode is to the particle growth, as reported by Dumore and Mukhopadhyay [283] study-
ing the ED of SiO2NPs. The authors explored the effect of the ED time (100 to 800 s)
on the electrocatalysis towards H2O2 reduction [283]. The optimized parameters (po-
tential of −0.85 V for 600 s) provided a high electrocatalytic effect with a sensitivity of
67.6 µA/mmol cm2 [283]. The electrocatalytic effect was improved by additional ED of
platinum nanoparticles (PtNPs) and selenium nanoparticles (SeNPs). The sequence and
the duration of the ED of each layer influence the morphology and electrocatalytic effect on
H2O2 detection. The best performance was obtained for PtNPs-SeNPs-SnO2NPs@FTO with
flower, spherical and irregular shapes, while the SnO2NPs@FTO presented only spherical
and irregular shapes [283]. The PtNPs-SeNPs-SnO2NPs@FTO demonstrated a sensitivity
of 104.8 µA/mmol cm2 and a LOD of 0.01 mmol/L for H2O2 [283].

The AuNPs are also easily electrodeposited at the conductor surface for both po-
tentiodynamic [268,287,288] and potentiostatic modes [257,289–292]. Compared to usual
chemical routes, ED is advantageous mainly for being environmentally friendly, avoiding
the use of reducing agents and stabilizers, which can hamper the conducting and catalytic
properties. The supramolecular arrangement can be modulated by variations in the poten-
tial, electrolysis time, and ED precursor solution, changing principally the size and shape
of nanostructures [286]. Due to the great number of works based on the electrodeposited
AuNP films towards sensing applications, Table 1 summarizes the ED conditions, morphol-
ogy, and sensing applications. The ED of AuNPs begins with the adsorption and reduction
of AuCl4− ions. Nucleation and growth occur simultaneously at potentials more negative
than −0.8 V [286,293].

Table 1. List of electrodeposited AuNP film-based sensors: electrodes, precursor solution, ED
conditions, morphology, and sensing applications.

Substrate Solution ED Conditions Size/Shape Application/LOD Ref.

Carbon paper HAuCl4·3H2O
(0.1%) solution −0.2 V for 120 s 400 nm/spherical Voltammetric sensor for

glyphosate/0.03 µmol/L [257]

MoS2/SPE
1:1 (v:v) of HAuCl4

and H2PtCl6 in
0.2 mol/L Na2SO4

−0.5 V for 100 s a 110−130 nm/
spherical

Voltametrica sensor for
latic acid/0.33 µmol/L [284]

AC/GCE
5.0 mmol/L

HAuCl4·3H2O in
0.05 mol/L H2SO4

−1.0 V for 30 s 125 nm/
non-uniform

Voltammetric sensor for
ciprofloxacin/0.20 nmol/L [289]

FPC
0.5 mmol/L

HAuCl4·3H2O in in
0.5 mol/L H2SO4

−0.9 to 200 s typical mellow and
full shape

Voltammetric sensor for
imidacloprid/61 nmol/L [292]

N-rGO/GCE
0.1 mmol/L HAuCl4

in 0.1 mol/L PBS
(pH 6.0)

−0.2 to −1.3 V, 20
cycles, 50 mV/s spherical

Simultaneous
voltammetric detection of
uric acid/0.9 nmol/L and

xanthine/90 pmol/L

[294]

PMD/PGEs
0.5 mmol/L

HAuCl4·3H2O in
0.1 mol/L KCl

−1.0 to 0.2 V,
10 cycles, 100 mV/s 50 nm/spherical Voltammetric sensor for

darifenacin/0.94 µmol/L [287]

NF/CD 6.0 mmol/L HAuCl4
in 0.1 mol/L KNO3

−0.8 to 0.4 V,
20 cycles, 50 mV/s clusters Voltammetric sensor for

dopamine/0.6 nmol/L [288]

GCE

0.25 mmol/L
HAuCl4+5 mmol/L
luminol in 0.5 mol/L

H2SO4

0 to 1.0 V, 20 cycles,
100 mV/s b 5 nm/spherical

Immuno sensor for
prostate

antigen/0.45 fg/mL
[290]



Chemosensors 2023, 11, 524 27 of 48

Table 1. Cont.

Substrate Solution ED Conditions Size/Shape Application/LOD Ref.

CNPs/GCE 5.0 mmol/L HAuCl4
−0.3 to 1.2 V,

10 cycles, 50 V/s spherical Voltammetric sensor for
arsenic/0.092 ppb [268]

SPCE * - 0.9 to 0 V, 5 cycles,
100 mV/s spherical Voltammetric sensor for

myo-inositol/1 nmol/L [295]

PANI/GCE HAuCl4 (1%) −0.2 V for 30 s clusters
electrochemiluminescence

immunosensor for 3-
nitrotyrosine/2.57 pmol/L

[296]

SPCE/ZnONR/
PMBDES

4.0 mmol/L HAuCl4
in 0.05 mol/L PBS

(pH 7.0)

−1.3 to 0.2 V,
10 cycles, 50 mV/s spherical

Voltammetric sensor for
serotonin

(5-HT)/1.91 nmol/L
[297]

ITO 0.05 mol/L HAuCl4
−0.2 to 1.3 V,

10 cycles, 50 mV/s 5.8 nm/spherical Electrochemical biosensor
for GM2A/5.8 fg/mL [298]

a—co-electrodeposition with platinum nanoparticles (bimetallic AuPt nanoparticles); b—co-electrodeposition with
luminol. GCE: glassy carbon electrode; MoS2: molybdenum disulphide; SPCE: screen-printed carbon electrode;
FPC: flexible printed circuit; N-RGO: nitrogen-doped reduced graphene oxide; PMD: poly-methyldopa; PGEs:
pencil graphite electrode; NF: Nafion; CD: cyclodextrin; CNPs: carbon nanoparticles; PANI: polyaniline; ZnONR:
zinc oxide nanorod; PMBDES: polymethylene blue (deep eutectic solvent); ITO: thin-oxide electrode; GM2A:
GM2 activator protein, * SPCE/Au as support for electrodeposition of 3-aminophenylboronic acid (3-APBA) with
myo-inosytol (MI) for molecularly imprinted polymer based MI sensor.

Regarding the co-ED of metal NPs with other materials, it can influence the final
shape [299] and size distribution [271,284]. Zhe et al. [299] described the co-ED of rGO,
β-CD, and AgNPs by cycling from 0 V to −1.5 V 30 times with a scan rate of 50 mV/s. The
composition allowed the formation of dendritic nanostructures, providing a large active
surface confirmed by FE-SEM images. Besides, the XRD reveals peaks at 38◦ (111), 44◦ (200),
64◦ (220), and 77◦ (311), indicating a standard face-centred cubic structure AgNPs [299]. The
film was applied for electrocatalytic oxidation of nitrite at low over-potential, presenting
a LOD of 0.24 µmol/L [299]. The co-ED of metal nanoparticles with other organic materials
has been used as a simple approach to tune the electrochemical performance and enhance
the sensitivity and selectivity of sensors [271,284,299].

Aiming biosensor development, the formation of electrodeposited AuNP films also
offers an easy functionality for anchoring biomolecules, such as enzymes, nucleic acids,
and antibodies [268,290,296,298,300]. Aydin, Aydin, and Sezgintürk [298] described the
construction of an immunosensor for GM2 activator protein (GM2A, a cancer marker)
following six steps (Figure 13). At first, AuNP ED was performed by potentiodynamic
mode, and in step 2, the electropolymerization of amine-functionalized thiophene (ThiAmn)
to produce poly-ThiAmn. Next, a layer of glutaraldehyde was added (step 3) to allow
the antibody (anti-GM2A) immobilization (step 4); the unspecific sites were blocked by
BSA (step 5); finally, perform the incubation with the antigen (GM2A). The thickness of the
ThiAmn polymer layer influenced the immunosensor performance: varying the number of
cycles (2, 5, and 10 potential cycles) between −0.5 and 2.5 V at 100 mV/s, the highest signal
was achieved with 5 cycles [298]. The ITO/AuNPs/P(ThiAmn)/anti-GM2A/BSA electrode
provided a very low LOD (5.8 fg/mL) for GM2A using the EIS technique (Nyquist plots and
the relationship between the charge transfer resistance—Rct versus GM2A concentrations
were presented in Figure 13B and Figure 13C, respectively) [298].
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Figure 13. (A) Schematic illustrating the ThiAmn monomer obtention and the electrochemical assay 
for analysis of GM2A. The modification consists of six steps: GNPs deposition (Step 1), ThiAmn 
electropolymerization (Step 2), glutaraldehyde treatment (Step 3), anti-GM2A immobilization (Step 
4), BSA blockage of free ends (Step 5), and GM2A capture by the biosensor (Step 6). (B) Nyquist 
diagram and (C) Rct of the ITO/AuNPs/P(ThiAmn)/anti-GM2A/BSA electrode after interaction with 
different GM2A concentrations. The frequency range was 0.05–50 kHz. Thi-Et: 3-thiopheneethanol, 
Thi-Et-Mes: 3-(2-(methylsulfonyl)ethyl)thiophene. Reprinted from [298]. Copyright 2023, with per-
mission from Elsevier. 
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Figure 13. (A) Schematic illustrating the ThiAmn monomer obtention and the electrochemical assay
for analysis of GM2A. The modification consists of six steps: GNPs deposition (Step 1), ThiAmn
electropolymerization (Step 2), glutaraldehyde treatment (Step 3), anti-GM2A immobilization (Step 4),
BSA blockage of free ends (Step 5), and GM2A capture by the biosensor (Step 6). (B) Nyquist diagram
and (C) Rct of the ITO/AuNPs/P(ThiAmn)/anti-GM2A/BSA electrode after interaction with different
GM2A concentrations. The frequency range was 0.05–50 kHz. Thi-Et: 3-thiopheneethanol, Thi-Et-
Mes: 3-(2-(methylsulfonyl)ethyl)thiophene. Reprinted from [298]. Copyright 2023, with permission
from Elsevier.

3.4. Spray Pyrolysis

Spray coating is a method in which a liquid solution containing the desired materials is
atomized and sprayed onto the substrate using a spray system. The sprayed material forms
a thin layer on the substrate as it is deposited. This technique is widely used for large-scale
coating applications, such as painting, protective and anticorrosive coatings [301–304]. There are
two specific techniques related to spray coating: spray cold and spray pyrolysis [305]. Spray
cold (SC) refers to the application of a coating or material at ambient or lower temperatures.
SC coatings can be solvent-based or water-based, depending on the specific requirements
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and composition of the coating material [306]. Spray pyrolysis (SP) is a technique used
to deposit thin films by thermally decomposing precursor materials in a spray form. The
process involves spraying a solution or suspension of precursors onto a heated substrate.
As the droplets contact the substrate, the precursor undergoes pyrolysis, resulting in the
deposition of a solid film on the surface. SP is often used to produce thin films in areas such
as thin-film solar cells, gas sensors, and electronic devices [307]. SC and SP offer advantages
in terms of ease of application, uniformity of coating, and adaptability to various substrates.
However, SP is the most reported method in the literature.

According to Workie et al. [305], during the 1950s and 1960s, SP was primarily utilized
for depositing metallic and semiconductor films. The main objective was to comprehend
the fundamental principles of this method and create uncomplicated precursor solutions
and process conditions capable of producing high-quality films. SP gained popularity in
the 1970s and 1980s for depositing oxide films, including titanium, zinc, and zinc-tin oxides.
During this period, the research began exploring surfactants, micelles, and polymers to
regulate the morphology of the deposited films. In the 1990s and 2000s, there was a notable
increase in SP applications to deposit a diverse range of materials, including composites,
alloys, and multilayer structures. This progress was followed by developing new precursor
solutions, such as organometallic precursors and precursors containing various metallic
species. These advances allowed the growth of intricate structures with precise control
over composition and morphology. Due to technological advances, SP has experienced
significant improvements, facilitating the deposition of a wide range of materials and
utilizing more advanced precursor solutions. These improvements have enhanced the
ability to control the morphology, composition, and structural properties of films produced
through this technique.

SP deposition involves spraying tiny droplets of a precursor solution, in the form
of aerosols, onto a heated substrate through a nozzle [308]. The quality of the resulting
film is influenced by factors such as solvent evaporation, droplet state, and chemical
reactions, which are, in turn, influenced by the size and momentum of the droplets [309–311].
A schematic illustration of the SP deposition process is presented in Figure 14.
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The SP technique comprises several components, including a spray gun, temperature
controller, liquid flux meter, pressure regulator, heater, thermocouple, and a metallic
airtight chamber. The spray gun can be attached to a rotor, facilitating its movement over
the substrate and allowing dynamic spraying. The spray nozzle breaks down the precursor
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solution into tiny droplets and this allows the solution to be sprayed effectively. The
spray nozzle rotor, driven by an electric gear motor, is controlled by a speed controller
to maintain a consistent spray rate. The heating element is a hot plate made of iron and
equipped with an electric heater. This setup can achieve a maximum temperature of
up to 600 ◦C [307]. A thermocouple is in contact with the hot iron plate to measure the
temperature of the substrate. The temperature controller regulates the temperature of the
iron plate to maintain desired conditions. The gas valve controls the carrier gas pressure,
ensuring proper spraying conditions. Generally, the spray system is kept inside a metallic
airtight chamber, which includes an exhaust to remove the gases emitted during the spray
deposition process. Next, we discuss the effect of SP deposition parameters on the structure
and organization of thin films.

3.4.1. Effect of Deposition Parameters

The SP method is highly effective in producing thin films with controlled morphol-
ogy and uniform particle sizes. A notable advantage of this technique is its versatility
in creating various nanostructures, which can achieve by adjusting parameters such as
precursor type, substrate temperature, flow rate, carrier gas, solvent type, and other de-
position variables [312]. The types of nanostructures that can be deposited using the SP
technique include nanorods [313], nanosheets [314], nanowires [315], nanospheres [316],
and nanoparticles [317], among others. Abdulrahman et al. [318] employed the SP tech-
nique to produce zinc oxide (ZnO) nanoflowers on silicon substrates for efficient ultraviolet
radiation detection. These flower-like clusters (Figure 15) are formed through a preferential
growth direction and are densely packed across the substrate surface. The ZnO nanoflowers
exhibited a morphology composed of tightly packed nanoneedles. The authors attributed
the remarkable photoresponse of the ZnO nanoflowers device to their high surface-to-
volume ratio and enhanced crystal performance. These results highlighted the efficacy of
the low-cost SP technique in creating highly photoconductive ZnO nanodevices for various
applications in photoelectronic.
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ficacy of the low-cost SP technique in creating highly photoconductive ZnO nanodevices 
for various applications in photoelectronic. 

 

Figure 15. SEM images of ZnO nanoflowers at different magnifications: (A) 5 µm, (B) 1 µm,
(C) 500 nm, and (D) cross-section of ZnO nanoflowers grown on a porous silicon substrate with
a magnification of 1 µm. Reprinted from [318]. Copyright 2022, with permission from Elsevier.
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The main parameters of the SP technique and their impacts on the characteristics of
thin films are mentioned below:

1. Solution flow rate: the flow rate of the spray solution affects the thickness and
uniformity of the deposited film. Higher flow rates lead to thicker films resulting in
less uniformity and more defects, on the other hand lower flows lead to thinner films
and may result in no percolation. Therefore, it is important to optimize the flow rate
to achieve the desired film thickness and uniformity. Yusuf et al. [319] investigated
the influence of the solution flow rate on the structural, morphological, and electrical
properties of molybdenum oxide films. The arriving spray on the silicon substrate
was controlled by varying the solution flow rate (ranging from 3.0 to 1.5 mL/min) at
the substrate temperature of 300 ± 5 ◦C. XRD analysis allowed verify the changes in
the crystallite size as the flow rate decreased. A morphological study using FE-SEM
and AFM demonstrated the reducing grain size with decreasing flow rate, which
promotes the homogeneity and smoothness of the film. In a study conducted by
Zargou et al. [320], thin films of ZnO were deposited on glass substrates using a spray
solution volume of 60 mL at 300 ◦C and employing different spray rates of 5, 10, 15,
and 20 mL/h. They observed that the solution flow rate had a significant impact on
the physical and structural properties of the thin films. The ZnO thin film deposited at
a solution flow rate of 15 mL/h exhibited remarkable characteristics displaying high
transparency, with a transmission rate of 99.1%. Additionally, this film demonstrated
the highest electrical conductivity in dark conditions. Moreover, it exhibited the lowest
carrier concentration, activation energy, and resistivity among the tested deposition
conditions. Overall, the findings emphasized the notable influence of the solution flow
rate on the properties of the ZnO thin films, particularly highlighting the favourable
attributes achieved at a flow rate of 15 mL/h.

2. Solution composition: the composition of the spray solution, which includes the pre-
cursor materials and solvents [321], dramatically influences the chemical composition
and stoichiometry of the resulting film. Modifying the concentration and ratio of
precursors can alter the film’s elemental composition, doping levels, and crystalline
structure [322].

3. Pyrolysis temperature: the substrate temperature during the deposition in SP impacts
the film’s crystallinity, grain size, and morphology [323]. Higher substrate temper-
atures promote crystallization and grain growth, producing films with improved
crystallinity and larger grain sizes. Furthermore, uncontrolled high temperatures can
lead to film degradation or damage to the substrate. Ebin et al. [324] reported the
production of ZnO nanoparticles and porous particles using the ultrasonic SP method
through zinc nitrate precursor at different temperatures under an air atmosphere. The
ZnO particles were obtained in a hexagonal crystal structure, and the shape of the
crystallites changed from spherical to hexagonal as the reaction temperature increased
from 400 to 1000 ◦C. At the lowest reaction temperature, ZnO nanoparticles were
obtained, while at higher temperatures, ZnO porous particles were formed through
the aggregation of ZnO nanoparticles due to effective sintering. The results indicate
that the reaction temperature can be readily adjusted to manipulate the size and
morphology of ZnO nanostructures, highlighting the suitability of the SP method for
large-scale production due to its controllability. Al Ghamdi et al. [325] investigated
the influence of substrate temperature and solution concentration on the properties
of copper oxide (CuO) thin films. They deposited a series of CuO thin films on glass
substrates, varying the temperature between 400 and 650 ◦C and using two differ-
ent concentrations of copper salt. The structure and morphology of the films were
examined using XRD and SEM, while UV-visible spectroscopy was employed to
analyse their optical properties. A significant influence of substrate temperature on
the growth mechanisms and physical characteristics of the CuO films was verified:
the films primarily exhibited a single phase of CuO with an observed reduction in
crystallite size as the substrate temperature increased. Hameed et al. [326] fabricated
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nickel oxide (NiO) thin films on glass substrates using the SP technique at different
temperatures (300, 400, and 500 ◦C). Analysis of the XRD data confirmed the presence
of a cubic structure in the films, indicating their polycrystalline nature. Notably, it was
observed that at a temperature of 500 ◦C, the lattice constant of the thin films closely
approached the ideal lattice parameter of 4.176 Å for a cubic structure. Therefore, it
can be concluded that the thin films exhibited a desirable lattice constant at 500 ◦C.

4. Distance between the nozzle and substrate: the distance between the spray nozzle
and the substrate affects the film’s morphology and surface roughness. Generally, its
decrease results in a denser and smoother film due to the increased heat and mass
transfer efficiency [327]. Omar [328] studied the influence of the distance between
the nozzle and substrate on the morphological, structural, chemical composition, and
optical properties of ZnO thin films deposited using the SP technique. The morphol-
ogy of the thin film was examined using Scanning Tunnelling Microscopy (STM),
and it was observed that reducing the nozzle-substrate distance led to an increased
root mean square (rms) roughness. Specifically, the rms values were measured as
17.470 nm and 10.062 nm at 20 cm and 30 cm distances, respectively. The surface
morphology strongly influenced the optical properties, including transmittance and
the optical band gap, parameters of great importance to photovoltaic applications.

5. Spray pressure: the spray pressure influences the droplet size, spray pattern, and
film morphology. Higher pressure causes a lower solvent evaporation rate compared
to lower pressure, and this allows the solute crystal to grow in a relatively longer
time and thus larger nanoparticles are formed [327,329]. In addition, excessively high
pressure can cause droplet fragmentation or spray pattern distortion.

6. Deposition time: the deposition time must be controlled according to the desired
consistency and film quality requirements in order to avoid defects or degradation.
Hathot et al. [330] conducted a study to assess the influence of different deposition
times (4, 8, and 12 min) on the crystallinity, absorption, and electrical characteristics of
zinc sulfide thin films (ZSTFs). XRD analysis of the ZSTFs indicated the presence of
both hexagonal and cubic phases. The average crystallite size of the thin films ranged
from 27.81 to 31.54 nm, while the optical band gap energy varied between 2.7 and 3 eV.
The thin films exhibited low transmittance in the visible and infrared regions, with the
surface roughness playing a significant role in this characteristic. As the deposition
time increased, the refractive indices of the films also increased while the extinction
coefficients decreased. The thin films demonstrated excellent electrical and dielectric
properties, making them suitable for various applications.

By adjusting these deposition parameters in SP, it is possible to control the film’s
composition, structure, morphology, and properties. Optimization of these parameters is
crucial to achieving the desired film characteristics for specific applications, particularly
thin-film devices, e.g., thin-film transistors (TFTs) [331,332], electrolyte-gated transistors
(EGTs) [333–335], capacitors [310], diodes [336,337], solar cells [338,339], gas sensors [340],
etc. It is important to note that the specific device fabrication processes and materials may
vary depending on the desired application and the research advancements in the field.

3.4.2. Sensing Applications

The SP technique offers numerous advantages for fabricating different nanostructured
films for sensor applications. By adapting the composition, morphology, and properties
of these nanostructures, sensors can be designed to exhibit greater sensitivity, selectivity,
stability, and response time. For example, gas sensors have been developed with metal
oxide films using SP [341–343]. Metal oxide films, such as tin oxide (SnO) and zinc oxide
(ZnO), can exhibit changes in their electrical properties when exposed to specific gases,
enabling them to detect and quantify the gas concentration. Similarly, other types of
sensors, such as humidity [344,345] and biosensors [346], can be developed by incorporating
appropriate materials into the film composition. SP allows one to fabricate thin films that
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serve as active sensing elements with the material’s choice and the sensor’s specific design
depending on the target application and desired sensing capabilities.

Martínez-Saucedo et al. [347] investigated the impact of copper oxide film thickness
in a working electrode for a non-enzymatic glucose sensor. The CuO film was deposited
on a conductive nickel substrate by the SP technique, where diethanolamine (DEA) was
used as the reducing agent. The use of DEA offered the advantage of employing lower
deposition temperatures (290 ◦C), resulting in low-resistivity films suitable for building
glucose-sensing electrodes. The sensitivity (0.475 mAmM−1/cm2) obtained in a wide
glucose range (0–8 mM) enabled the quantification of glucose levels for diabetes mellitus
monitoring. This work demonstrated that a straightforward solution-based technique such
as SP could be utilized to produce functional glucose sensors.

In another study, Dong et al. [348] reported the fabrication of a modified GCE with
Ag-substituted ZnO nanoflowers to detect tyramine. The Ag-substituted ZnO nanoflowers
were synthesized on the GCE by the SP technique, revealing nanoflowers structures with
high porosity, surface area, and density. The structural analysis confirmed Ag incorporation
into the ZnO nanoflowers lattice, with ZnO adopting a hexagonal wurtzite structure
and silver exhibiting a face-centred-cubic phase. These results demonstrated that the
SP technique is highly promising for producing ZnO nanostructures. Amperometric
measurements indicated a rapid response of the Ag-substituted ZnO-modified GCE to
successive additions of tyramine, resulting in a linear range of 1–900 µM and a LOD of
0.03 µM. The interference study confirmed the selective and reliable response for tyramine.

The SP technique has also shown excellent results for the fabrication of mesoporous
SiO2 towards an efficient enzyme immobilization [349]. Using MWCNTs as a template,
Kumar et al. [349] synthesized SiO2 microparticles with a mesoporous multi-compartment
structure and open pores. These highly porous SiO2 particles were synthesized through
a post-treatment process of MWCNT-SiO2 composite particles, initially synthesized via
a one-pot SP process. Glutaraldehyde-functionalized porous SiO2 particles were then
employed to immobilize lipase. The enzyme immobilized on the highly porous SiO2
particles exhibited superior characteristics compared to previously reported immobilized
enzymes on MWCNTs and octylsepharose supports. The immobilized biocatalyst used for
constructing the biosensor demonstrated high sensitivity and increased stability compared
to previously reported lipase-based biosensors.

The advantages of different nanostructured films obtained by the SP technique for
sensor applications reside in their tuneable properties, large surface area, higher sensitivity,
selectivity, and stability. Researchers and engineers can use the capabilities of the technique
to develop innovative sensors with enhanced performance and features tailored to meet
the specific demands of various sensing applications.

4. Final Remarks

The central idea of modifying surfaces with thin films lies in the functionalities result-
ing from the synergistic effect of combined materials. Coatings through drop-casting of
mixtures may not fully harness the potential of this synergic effect. Some techniques ensure
a certain level of molecular organization as well as control over other supramolecular
arrangements. As a result, the properties can be fine-tuned through the manipulation of
experimental parameters. Different organizations dictate the film’s properties and, con-
sequently, its performance as a sensor. The LB technique, although requiring relatively
expensive equipment and being a laborious and time-consuming technique, persists due to
the possibility of fine control over molecular organization. The LbL technique continues to
be greatly used to produce multilayered thin films mainly due to its experimental simplicity.
Versatility is another term to define the LbL technique since substrates of any form or size
can be coated, and an infinite number of materials can be suspended as homogeneous
suspensions to be assembled as an LbL film. On the other hand, ED techniques have gained
prominence owing to their inherent simplicity, cost-effectiveness, rapidity, environmental
sustainability, manufacturability as well as scalability. This process offers advantages across
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a wide range of materials suitable for film deposition. However, it is important to note that
the material of interest must possess electrochemical activity, and naturally, the substrate
on which the deposition takes place should be conductive. The SP technique stands out
for its simplicity, versatility, efficiency, and low operational cost. Hybrid films can be
formed by precursor mixtures or intercalating suspensions to form multilayers. The main
disadvantages of the SP technique are the low yield of the solutions (waste of material)
and the need to control the chemical reactions that occur during the pyrolysis process.
The strong influence of the deposition parameters can be interpreted as an advantage
or a disadvantage. Morphological, structural, and electrical properties can be tuned but
demand an extensive study of many deposition parameters. Still, SP does not reach the
ideal of being able to manufacture very organized and reproducible films. Although it
was challenging to compile all of the work and ideas related to ultra-thin film applications
as sensors in recent years, we have attempted to gather important information about the
molecular organization and its relationship to sensor performance. Each technique presents
its characteristics, and all of them will still have a long future in sensor development.
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17. Frątczak, E.Z.; Uznański, P.; Moneta, M.E. Characterization of Molecular Organization in Pentacene Thin Films on SiO2 Surface

Using Infrared Spectroscopy, Spectroscopic Ellipsometry, and Atomic Force Microscopy. Chem. Phys. 2015, 456, 49–56. [CrossRef]
18. Bieri, M.; Bürgi, T. Adsorption Kinetics, Orientation, and Self-Assembling of N-Acetyl-L-Cysteine on Gold: A Combined ATR-IR,

PM-IRRAS, and QCM Study. J. Phys. Chem. B 2005, 109, 22476–22485. [CrossRef] [PubMed]
19. Osawa, M.; Ataka, K.I.; Yoshii, K.; Yotsuyanagi, T. Surface-Enhanced Infrared ATR Spectroscopy for in Situ Studies of Elec-

trode/Electrolyte Interfaces. J. Electron Spectros. Relat. Phenomena 1993, 64–65, 371–379. [CrossRef]
20. Hutter, E.; Assiongbon, K.A.; Fendler, J.H.; Roy, D. Fourier Transform Infrared Spectroscopy Using Polarization Modula-

tion and Polarization Selective Techniques for Internal and External Reflection Geometries: Investigation of Self-Assembled
Octadecylmercaptan on a Thin Gold Film. J. Phys. Chem. B 2003, 107, 7812–7819. [CrossRef]

21. Lang, P.; Hajlaoui, R.; Garnier, F.; Desbat, B.; Buffeteau, T.; Horowitz, G.; Yassar, A. IR Spectroscopy Evidence for a Substrate-
Dependent Organization of Sexithiophene Thin Films Vacuum Evaporated onto SiH/Si and SiO2/Si. J. Phys. Chem. 1995, 99,
5492–5499. [CrossRef]

22. Zanfolim, A.A.; Volpati, D.; Olivati, C.A.; Job, A.E.; Constantino, C.J.L. Structural and Electric-Optical Properties of Zinc
Phthalocyanine Evaporated Thin Films: Temperature and Thickness Effects. J. Phys. Chem. C 2010, 114, 12290–12299. [CrossRef]

23. Zawisza, I.; Wittstock, G.; Boukherroub, R.; Szunerits, S. Polarization Modulation Infrared Reflection Absorption Spectroscopy
Investigations of Thin Silica Films Deposited on Gold. 2. Structural Analysis of a 1,2-Dimyristoyl-Sn-Glycero-3-Phosphocholine
Bilayer. Langmuir 2008, 24, 3922–3929. [CrossRef]

24. Umemura, J.; Kamata, T.; Kawai, T.; Takenaka, T. Quantitative Evaluation of Molecular Orientation in Thin Langmuir-Blodgett
Films by FT-IR Transmission and Reflection-Absorption Spectroscopy. J. Phys. Chem. 1990, 94, 62–67. [CrossRef]

25. Früh, A.; Rutkowski, S.; Akimchenko, I.O.; Tverdokhlebov, S.I.; Frueh, J. Orientation Analysis of Polymer Thin Films on Metal
Surfaces via IR Absorbance of the Relative Transition Dipole Moments. Appl. Surf. Sci. 2022, 594, 153476. [CrossRef]

26. Hasegawa, T.; Takeda, S.; Kawaguchi, A.; Umemura, J. Quantitative Analysis of Uniaxial Molecular Orientation in Langmuir-
Blodgett Films by Infrared Reflection Spectroscopy. Langmuir 1995, 11, 1236–1243. [CrossRef]

27. Shioya, N.; Fujiwara, R.; Tomita, K.; Shimoaka, T.; Hasegawa, T. Simultaneous Analysis of Molecular Orientation and Quantity
Change of Constituents in a Thin Film Using PMAIRS. J. Phys. Chem. A 2020, 124, 2714–2720. [CrossRef] [PubMed]

28. Wang, C.; Sharma, S.K.; Olaluwoye, O.S.; Alrashdi, S.A.; Hasegawa, T.; Leblanc, R.M. Conformation Change of α-Synuclein(61—
95) at the Air-Water Interface and Quantitative Measurement of the Tilt Angle of the Axis of Its α-Helix by Multiple Angle
Incidence Resolution Spectroscopy. Colloids Surf. B Biointerfaces 2019, 183, 110401. [CrossRef] [PubMed]

29. Shioya, N.; Shimoaka, T.; Murdey, R.; Hasegawa, T. Accurate Molecular Orientation Analysis Using Infrared P-Polarized Multiple-
Angle Incidence Resolution Spectrometry (PMAIRS) Considering the Refractive Index of the Thin Film Sample. Appl. Spectrosc.
2017, 71, 1242–1248. [CrossRef] [PubMed]

30. da Silva, E.A.; Caseli, L.; de Almeida Olivati, C. Organization of Polythiophenes at Ultrathin Films Mixed with Stearic Acid
Investigated with Polarization-Modulation Infrared Reflection–Absorption Spectroscopy. Colloids Surf. A Physicochem. Eng. Asp.
2017, 529, 628–633. [CrossRef]

31. Brosseau, C.L.; Leitch, J.; Bin, X.; Chen, M.; Roscoe, S.G.; Lipkowski, J. Electrochemical and PM-IRRAS a Glycolipid-Containing
Biomimetic Membrane Prepared Using Langmuir-Blodgett/Langmuir-Schaefer Deposition. Langmuir 2008, 24, 13058–13067.
[CrossRef]

32. Sang, L.; Mudalige, A.; Sigdel, A.K.; Giordano, A.J.; Marder, S.R.; Berry, J.J.; Pemberton, J.E. PM-IRRAS Determination of
Molecular Orientation of Phosphonic Acid Self-Assembled Monolayers on Indium Zinc Oxide. Langmuir 2015, 31, 5603–5613.
[CrossRef]

33. Milosevic, M.; Berets, S.L.; Fadeev, A.Y. Single-Reflection Attenuated Total Reflection of Organic Monolayers on Silicon. Appl.
Spectrosc. 2003, 57, 724–727. [CrossRef]

34. Aroca, R. Surface-Enhanced Vibrational Spectroscopy; Wiley: Hoboken, NJ, USA, 2006; ISBN 9780471607311.
35. Tanaka, M.; Young, R.J. Review Polarised Raman Spectroscopy for the Study of Molecular Orientation Distributions in Polymers.

J. Mater. Sci. 2006, 41, 963–991. [CrossRef]
36. Svenningsson, L.; Nordstierna, L. Polarized Raman Spectroscopy Strategy for Molecular Orientation of Polymeric Fibers with

Raman Tensors Deviating from the Molecular Frame. ACS Appl. Polym. Mater. 2020, 2, 4809–4813. [CrossRef]

https://doi.org/10.1016/j.tsf.2020.137897
https://doi.org/10.1039/C4RA05417B
https://doi.org/10.1016/0584-8539(73)80022-4
https://doi.org/10.1063/1.1726462
https://doi.org/10.1016/0079-6816(87)90065-7
https://doi.org/10.1016/j.chemphys.2015.04.015
https://doi.org/10.1021/jp052409m
https://www.ncbi.nlm.nih.gov/pubmed/16853928
https://doi.org/10.1016/0368-2048(93)80099-8
https://doi.org/10.1021/jp034910p
https://doi.org/10.1021/j100015a036
https://doi.org/10.1021/jp1008913
https://doi.org/10.1021/la703651n
https://doi.org/10.1021/j100364a009
https://doi.org/10.1016/j.apsusc.2022.153476
https://doi.org/10.1021/la00004a032
https://doi.org/10.1021/acs.jpca.0c00111
https://www.ncbi.nlm.nih.gov/pubmed/32160467
https://doi.org/10.1016/j.colsurfb.2019.110401
https://www.ncbi.nlm.nih.gov/pubmed/31382050
https://doi.org/10.1177/0003702816676492
https://www.ncbi.nlm.nih.gov/pubmed/28534674
https://doi.org/10.1016/j.colsurfa.2017.06.035
https://doi.org/10.1021/la802201h
https://doi.org/10.1021/acs.langmuir.5b00129
https://doi.org/10.1366/000370203322005454
https://doi.org/10.1007/s10853-006-6595-7
https://doi.org/10.1021/acsapm.0c00762


Chemosensors 2023, 11, 524 36 of 48

37. Li, Z.; Young, R.J.; Wilson, N.R.; Kinloch, I.A.; Vallés, C.; Li, Z. Effect of the Orientation of Graphene-Based Nanoplatelets upon
the Young’s Modulus of Nanocomposites. Compos. Sci. Technol. 2016, 123, 125–133. [CrossRef]

38. Zhang, S.; Mao, N.; Zhang, N.; Wu, J.; Tong, L.; Zhang, J. Anomalous Polarized Raman Scattering and Large Circular Intensity
Differential in Layered Triclinic ReS2. ACS Nano 2017, 11, 10366–10372. [CrossRef] [PubMed]

39. Sereda, V.; Ralbovsky, N.M.; Vasudev, M.C.; Naik, R.R.; Igor, K.; States, U.; States, U.; Branch, M.M.; Directorate, M.; Air, W.; et al.
Polarized Raman Spectroscopy for Determining the Orientation of Di-D-Phenylalanine Molecules in a Nanotube. J. Raman
Spectrosc. 2016, 47, 1056–1062. [CrossRef]

40. Liu, T.; Kumar, S. Quantitative Characterization of SWNT Orientation by Polarized Raman Spectroscopy. Chem. Phys. Lett. 2003,
378, 257–262. [CrossRef]

41. Xu, B.; Mao, N.; Zhao, Y.; Tong, L.; Zhang, J. Polarized Raman Spectroscopy for Determining Crystallographic Orientation of
Low-Dimensional Materials. J. Phys. Chem. Lett. 2021, 12, 7442–7452. [CrossRef]

42. Li, Z.; Young, R.J.; Kinloch, I.A.; Wilson, N.R.; Marsden, A.J.; Raju, A.P.A. Quantitative Determination of the Spatial Orientation
of Graphene by Polarized Raman Spectroscopy. Carbon N. Y. 2015, 88, 215–224. [CrossRef]

43. Diego Fernandes, J.; Maximino, M.D.; Braunger, M.L.; Pereira, M.S.; De Almeida Olivati, C.; Constantino, C.J.L.; Alessio, P.
Supramolecular Architecture and Electrical Conductivity in Organic Semiconducting Thin Films. Phys. Chem. Chem. Phys. 2020,
22, 13554–13562. [CrossRef]

44. Garcia, M.P.B.; Martin, C.S.; Kavazoi, H.S.; Maximino, M.D.; Alessio, P. Perylene Nanostructured Films Optimization for Organic
Electronics: Molecular, Structural, and Electrochemical Characterization. Thin Solid Films 2023, 777, 139895. [CrossRef]

45. Hupfer, M.L.; Meyer, R.; Deckert-Gaudig, T.; Ghosh, S.; Skabeev, A.; Peneva, K.; Deckert, V.; Dietzek, B.; Presselt, M. Supramolec-
ular Reorientation during Deposition Onto Metal Surfaces of Quasi-Two-Dimensional Langmuir Monolayers Composed of
Bifunctional Amphiphilic, Twisted Perylenes. Langmuir 2021, 37, 11018–11026. [CrossRef] [PubMed]

46. Ma, Y.; Wang, B.; Wu, Y.; Huang, Y.; Chen, Y. The Production of Horizontally Aligned Single-Walled Carbon Nanotubes. Carbon
N. Y. 2011, 49, 4098–4110. [CrossRef]

47. Ackermann, T.; Neuhaus, R.; Roth, S. The Effect of Rod Orientation on Electrical Anisotropy in Silver Nanowire Networks for
Ultra-Transparent Electrodes. Sci. Rep. 2016, 6, 34289. [CrossRef]

48. Miao, J.; Lin, J.Y.S. Nanometer-Thick Films of Aligned ZnO Nanowires Sensitized with Au Nanoparticles for Few-Ppb-Level
Acetylene Detection. ACS Appl. Nano Mater. 2020, 3, 9174–9184. [CrossRef]
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Aksamitowska, S.; Jesionowski, T.; Rahimi, P.; et al. A Nanocomposite Consisting of Reduced Graphene Oxide and Electropoly-
merized β-Cyclodextrin for Voltammetric Sensing of Levofloxacin. Microchim. Acta 2019, 186, 438. [CrossRef] [PubMed]

249. Shrivastava, S.; Bairagi, P.K.; Verma, N. Spermine Biomarker of Cancerous Cells Voltammetrically Detected on a Poly(β-
Cyclodextrin)-Electropolymerized Carbon Film Dispersed with Cu-CNFs. Sens. Actuators B Chem. 2020, 313, 128055. [CrossRef]

250. Wang, R.; Wang, S.; Qin, C.; Nie, Q.; Luo, Y.; Qin, Q.-P.; Wang, R.; Liu, B.; Luo, D. An Electrochemical Sensor Based on
Electropolymerization of β-Cyclodextrin on Glassy Carbon Electrode for the Determination of Fenitrothion. Sensors 2022, 23, 435.
[CrossRef]

251. Ma, M.; Liang, J. Voltammetric Detection of 2-Aminoazotoluene Based on Electropolymerization of β-Cyclodextrin. Chem. Pap.
2023, 77, 2967–2976. [CrossRef]

252. Gonçalves, J.M.; Iglesias, B.A.; Martins, P.R.; Angnes, L. Recent Advances in Electroanalytical Drug Detection by Por-
phyrin/Phthalocyanine Macrocycles: Developments and Future Perspectives. Analyst 2021, 146, 365–381. [CrossRef]
[PubMed]

253. Gottfried, J.M. Surface Chemistry of Porphyrins and Phthalocyanines. Surf. Sci. Rep. 2015, 70, 259–379. [CrossRef]
254. Rubio, R.; Suarez, M.B.; Pérez, M.E.; Heredia, D.A.; Morales, G.M.; Durantini, E.N.; Otero, L.; Gervaldo, M.; Durantini, J.E.

Electropolymerized Porphyrin Films as Active Materials in Organic Supercapacitors. A Study of the Effect of Different Central
Metals. Electrochim. Acta 2023, 458, 142552. [CrossRef]
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