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Abstract: Myxoid liposarcoma and Ewing sarcoma are the two most common tumor types that are
characterized by the FET (FUS, EWSR1 and TAF15) fusion oncogenes. These FET fusion oncogenes are
considered to have the same pathological mechanism. However, the cellular similarities between cells
from the different tumor entities remain unknown. Here, we profiled individual myxoid liposarcoma
and Ewing sarcoma cells to determine common gene expression signatures. Five cell lines were
analyzed, targeting 76 different genes. We employed unsupervised clustering, focusing on self-
organizing maps, to identify biologically relevant subpopulations of tumor cells. In addition, we
outlined the basic concepts of self-organizing maps. Principal component analysis and a t-distributed
stochastic neighbor embedding plot showed gradual differences among all cells. However, we
identified five distinct and robust subpopulations using self-organizing maps. Most cells were
similar to other cells within the same tumor entity, but four out of five groups contained both
myxoid liposarcoma and Ewing sarcoma cells. The major difference between the groups was the
overall transcriptional activity, which could be linked to cell cycle regulation. We conclude that
self-organizing maps are useful tools to define biologically relevant subpopulations and that myxoid
liposarcoma and Ewing sarcoma exhibit cells with similar gene expression signatures.

Keywords: Ewing sarcoma; myxoid liposarcoma; self-organizing maps; single-cell analysis; unsuper-
vised grouping

1. Introduction

More than 20 forms of sarcomas and leukemias are characterized by FET (FUS, EWSR1,
TAF15) fusion oncogenes (FET sarcomas and leukemias) that result from chromosomal
translocations [1]. This group of fusion oncogenes shares 5′ regions of the FET genes that
are juxtaposed to various transcription factors, resulting in abnormal chimeric transcription
factors. These FET fusion oncogenes are believed to be causative in tumor development [2].
FET sarcomas and leukemias most often develop during childhood and early adulthood
and are currently treated with advanced surgery, chemo- and radiotherapy. The two most
common tumor entities carrying the FET family fusion oncogenes are myxoid liposarcoma
(MLS) and Ewing sarcoma (EWS). A majority of MLSs carry the FUS-DDIT3 fusion onco-
gene, while the most prevalent fusion oncogene in EWS is EWSR1-FLI1. FET sarcomas and
leukemias are genetically stable, with few additional mutations [3,4]. Despite their genetic
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similarities, FET sarcomas and leukemias have not been directly compared at the cellular
level. Tumors, including FET sarcomas and leukemias, are heterogeneous, including several
tumor subpopulations with different biological functions and cellular characteristics [5–7].

Conventional RNA sequencing and quantitative PCR (qPCR) methods only provide
information about average gene expression levels that are indirectly correlated to quantita-
tive changes within specific cellular subpopulations. Consequently, in pathological states,
such as cancer, it is usually not possible to determine if perturbations of gene expression
detected in the tissues are due to modifications in the relative composition of different
cell types or to changes in the gene expression profile of a specific subpopulation. These
limitations become particularly challenging to overcome when studying minority popula-
tions, such as therapy-resistant and cancer stem cells, whose identification is elusive due to
their low prevalence and lack of exclusive markers. To overcome these challenges, several
single-cell approaches have been developed during the last decade, especially for mRNA
analysis [8,9]. Single-cell data analysis is generally more complex than traditional gene
expression profile analysis, since the data are noisy due to low transcript levels, and because
previously unknown subpopulations first need to be defined before in-depth comparisons
can be made.

To address these issues, both supervised and unsupervised data analysis algorithms
have been developed and adapted to single-cell gene expression analysis [10,11]. A self-
organizing map (SOM), also known as a Kohonen neural network, is a powerful tool for
the unsupervised grouping or clustering of samples [12,13]. The term “self-organizing”
refers to the network’s capability to learn and organize samples without any output value
associated to them, i.e., assigned sample classes [14]. Additional developments, such
as counter-propagation neural networks, have rendered the SOM a supervised tool for
grouping and classification [15,16]. However, the use of SOMs to identify subpopulation of
tumors cells using gene expression profiling has been poorly studied.

Here, we profiled the gene expression profiles of 5 FET sarcoma cell lines, 3 MLS,
and 2 EWS cell lines at the single-cell level to determine the differences and similarities
among FET sarcoma cells using qPCR. Raw data were preprocessed according to a standard-
ized workflow and visualized by principal component analysis (PCA) and a t-distributed
stochastic neighbor embedding (t-SNE) plot. Unsupervised SOMs were employed to iden-
tify the biologically relevant subpopulations of tumor cells. Next, we determined the
gene expression pattern of each SOM-identified subpopulation and its biological relevance.
We also reviewed and discussed the basics of SOMs, including the influence of specific
parameter settings.

2. Materials and Methods
2.1. Cell Culture

The myxoid liposarcoma cell lines 2645-94, 1765-92, and 402-91 were cultured in
RPMI 1640 GlutaMAX medium supplemented with 5% fetal bovine serum, 100 U/mL
penicillin, and 100 µg/mL streptomycin (all Thermo Fisher Scientific, Waltham, MA, USA).
The Ewing sarcoma cell lines TC-71 and SK-N-MC were cultured in Iscove’s Modified
Dulbecco’s medium supplemented with 10% fetal bovine serum, 100 U/mL penicillin, and
100 µg/mL streptomycin (all Thermo Fisher Scientific, Waltham, MA, USA). Cell passaging
was performed using 0.25% trypsin supplemented with 0.5 mM EDTA (Thermo Fisher
Scientific, Waltham, MA, USA).

2.2. Single-Cell Analysis

The cells were detached using 0.25% trypsin supplemented with 0.5 mM EDTA,
and then trypsin was inactivated with complete media. The cells were resuspended
in phosphate-buffered saline (Thermo Fisher Scientific) supplemented with 2% bovine
serum albumin (Sigma-Aldrich, St. Louis, MO, USA) and passed through a 70 µm cell
strainer (Corning Life Sciences, Amsterdam, The Netherlands) to remove cell aggregates.
Individual cells were collected into 96-well plates (Thermo Fisher Scientific, Waltham, MA,
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USA) that were prefilled with 5 µL lysis buffer per well, containing 1 µg/µL bovine serum
albumin supplied in 2.5% glycerol (Thermo Fisher Scientific, Waltham, MA, USA) diluted in
Ultrapure RNase & DNase free water (Thermo Fisher Scientific, Waltham, MA, USA) using
a BD FACSAria II (BD Biosciences, San Jose, CA, USA) as described [17]. Plates with single
cells were immediately frozen on dry ice and kept at −80 °C until subsequent analysis.

Reverse transcription was performed with the GrandScript cDNA Synthesis kit
(TATAA Biocenter, Gothenburg, Sweden). Ten microliter reactions, containing 1× Grand-
Script RT reaction mix, 1× GrandScript RT enzyme, and direct lysed cells, were prepared.
Reverse transcription was performed at 25 °C for 5 min and 42 °C for 30 min and terminated
at 85 °C for 5 min. Samples were diluted to 1:4 with TE buffer, pH 8.0 (Thermo Fisher
Scientific, Waltham, MA, USA). Targeted cDNA preamplification was performed in 30 µL
reactions containing 1× iQ Supermix (Bio-Rad, Hercules, CA, USA), 40 nM of each primer,
and 9 µL diluted cDNA. Preamplification and downstream qPCR were conducted with the
same primers, as described [18]. The primer sequences are shown in Table S1. The following
thermal profile was applied: 95 °C for 3 min followed by 20 cycles of amplification (95 °C
for 20 s, 55 °C for 3 min, and 72 °C for 20 s). The final elongation step was performed
for 10 min, and the samples were immediately frozen on dry ice and then diluted 1:4 in
TE buffer, pH 8.0, and stored at −20 °C until analysis. High-throughput single-cell qPCR
was performed on the BioMark system (Fluidigm, South San Francisco, CA, USA), using
the 96 × 96 Dynamic Array Chip for Gene Expression and EvaGreen-based detection [18].
Briefly, each 5 µL sample contained 2 µL preamplified and diluted cDNA, 2.5 µL 2× SsoFast
EvaGreen SuperMix (Bio-Rad Laboratories), 0.25 µL DNA Binding Dye Sample Loading
Reagent (Fluidigm, South San Francisco, CA, USA), 0.01 µL 100× ROX (Thermo Fisher
Scientific), and 0.24 µL nuclease free water. The 5 µL assay reaction contained 2.5 µL Assay
Loading Reagent (Fluidigm, South San Francisco, CA, USA) and 2.5 µL of mixed forward
and reverse primer pairs, with a final concentration of 2.5 µM. The dynamic array was
primed and loaded, as recommended by the manufacturer, using the IFC controller HX.
The system was run at 70 ◦C for 40 min for thermal mixing and 60 ◦C for 30 s, followed
by 95 ◦C for 60 s and 40 cycles of amplification at 96 ◦C for 5 s and 60 ◦C for 20 s. The
melting curve was registered from 60 ◦C to 95 ◦C, with 1 s per 0.5 ◦C increment. Data
were analyzed using the Fluidigm Real-Time PCR Analysis software (Fluidigm, South San
Francisco, CA, USA), applying the linear derivative baseline subtraction method and a
user-defined global threshold to obtain the cycle of quantification values. The specificity of
all assays was tested with gel electrophoresis.

2.3. Single-Cell Data Preprocessing

Data preprocessing was performed as previously described [19], using GenEx (version
7, Multid Analyses, Gothenburg, Sweden). Melting curve analysis was performed on all
qPCR samples, and data with aberrant melting temperatures were removed. Raw data
are shown in Table S2. A cycle of quantification cut-off value equal to >25 was used, and
values above this level were replaced with a value of 25. The cycle of quantification values
were transformed to relative quantities, assuming that a cycle of quantification of 25 was
equal to one molecule. Missing data were replaced with 0.5 molecules, and all data were
log2 transformed. The preprocessed data are shown in Table S2.

2.4. Single-Cell Data Analysis

Single-cell analysis and basic statistics, along with volcano and scatter plots, were
performed using GenEx. Preprocessed and autoscaled data were used in all PCA, t-SNE
plots, and SOMs. The perplexity in t-SNE was set to 10. The conceptual basis of SOMs
is discussed in Appendix A. Here, we applied a learning rate of 0.4 and a maximum of
150 iterations for all topologies. The topology design and number of neighbors were opti-
mized. We verified that our final SOM was not parameter-sensitive. The heat map analysis
was performed with mean values for each gene. Figure 1 was created with BioRender.com,
while Figures 2–4 were generated by GenEx and merged using BioRender.com.
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Figure 1. Experimental overview. (A) Overview of analyzed FET sarcoma cells. Three myxoid 
liposarcoma (MLS 2645-95, MLS 1765-92, and MLS 402-91) and 2 Ewing sarcoma (SK-N-MC and 
TC-71) cell lines were analyzed at the single-cell level. (B) Schematic overview of experimental steps, 

Figure 1. Experimental overview. (A) Overview of analyzed FET sarcoma cells. Three myxoid
liposarcoma (MLS 2645-95, MLS 1765-92, and MLS 402-91) and 2 Ewing sarcoma (SK-N-MC and
TC-71) cell lines were analyzed at the single-cell level. (B) Schematic overview of experimental steps,
from cell culture to final data analysis. In vitro cultured cells were harvested and collected as single
cells in 96-well plates using a fluorescence-activated cell sorter. The RNA in direct-lysed cells was
reverse transcribed to cDNA, followed by targeted preamplification and high-throughput qPCR.
Finally, raw data were preprocessed, and the expression profiles of single cells were analyzed by
different means. (C) In total, 76 differently expressed genes were assessed. Genes were grouped into
5 different cellular functions.
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to other cells originating from the same tumor entity, i.e., MLS versus EWS. The 

Figure 3. Identification of subpopulations. (A) Self-organizing map with 1 × 5 topology and
3 neighbors for all MLS 2645-94, MLS 1765-92, MLS 402-91, SK-N-MC, and TC-71 cells. (B) Re-
analysis of data with cell identities based on the SOM-defined groups from subplot A. (C) Principal
component analysis with cell identities based on the SOM-defined groups from subplot A. (D) t-
distributed stochastic neighbor embedding plot with cell identities based on the SOM-defined groups
from subplot A.
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3. Results
3.1. Single-Cell Profiling of Myxoid Liposarcoma and Ewing Sarcoma Cells

We analyzed 353 single cells collected from 3 MLS (MLS 2645-94, MLS 1765-92, and
MLS 402-91) and 2 EWS (SK-N-MC and TC-71) cell lines (Figure 1A). Individual cells were
collected with a fluorescence-activated cell sorter and directly lysed. Cells were subse-
quently reverse transcribed, followed by targeted preamplification and high-throughput
qPCR (Figure 1B). We profiled 76 different genes, with the majority associated with cell
cycle regulation (Figure 1C). Additional genes were related to JAK-STAT signaling, apop-
tosis/cell death, TP53 regulation, and housekeeping functions. The last group includes
genes associated with different essential cellular functions. The basic statistics for all genes
and cell lines are summarized in Table S3, including the mean expression and variability
calculated as standard deviation. We observed large expression level variability between
and within cell lines, which was expected and in agreement with reported data [20,21]. For
example, Figure S1 (Supplementary Materials) shows the variability of VIM and MCM7,
the two genes with the largest variation in relative expression values. VIM and MCM7
displayed 42,000 and 10,000 times difference in expression level between the cell with the
highest and lowest expression, respectively. Principal component analysis and a t-SNE plot
showed that cells from different tumor types and cell lines partly overlapped (Figure 2).

3.2. Identification of Subpopulations of Tumor Cells Using Self-Organizing Maps

Self-organizing maps were applied to identify subpopulations of cells originating
from all cell lines with similar gene signatures. The fundamentals of SOMs are outlined
in Appendix A. We tested several SOM topology designs, including 1 × 3, 1 × 4, 1 × 5,
1 × 6, 1 × 7, 1 × 8, 1 × 9, 1 × 10, 2 × 2, 2 × 3, 2 × 4, 2 × 5, and 3 × 3, with variable
numbers of neighbors. For the initial evaluation of different topologies, we studied whether
or not the cells were consistently grouped together in the same neuron. All topologies
that produced unstable SOMs, i.e., a variable subgrouping of cells, when repeated were
discarded. We also aimed to define biologically relevant subpopulations and identified 5
relevant subpopulations using a 1 × 5 topology with 3 neighbors (Figure 3A,B).

To validate this SOM topology in more detail, we first divided all samples into a
training dataset (n = 282) and a test dataset (n = 71). We randomly selected test samples and
maintained the proportion of samples of each cell type. Then, we generated 5 SOM groups
based only on the training dataset. All but 6 single cells grouped identically, compared
with the grouping using the complete dataset. Next, we classified all test cells into the
training SOM. All test cells were grouped into the same SOM groups used when all cells
were analyzed together. Hence, we concluded that the 1 × 5 topology with 3 neighbors
was highly reproducible.

To determine the biological relevance of these SOM-defined subpopulations we evalu-
ated the same autoscaled data by other complementary approaches. First, we visualized
the SOM-defined subpopulations by PCA (Figure 3C) and t-SNE (Figure 3D). Both PCA
and the t-SNE plot showed that the cells from the SOM-defined groups clustered together.
However, no SOM-defined group could easily be identified by visual inspection alone
in the PCA nor the t-SNE plot. The PCA score plots in Figures 2A and 3C are identical,
except that in the latter, the sample identities are based on the SOM group and not the cell
line. Principal components 1 and 2 explain 31% and 6% of all gene expression information,
respectively. The most informative genes in principal component 1 were GAPDH, CDK4,
MCM7, E2F4, EWSR1, RB1, STAT1, and VIM, while PLK1, E2F1, CCNA2, MCM5, CDC25C,
CCNB2, and MCM4 had the greatest influence in principal component 2 (Table S4).

Next, we evaluated the number of cells of each cell line that grouped into each SOM
group (Table 1). The number of cells varied between 53 and 87 in each SOM-defined group.
Table 1 shows that cells from all MLS cell lines were present in all SOM groups. In contrast,
no EWS cells were present in SOM group 2.
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Table 1. Number of cells present in each SOM-defined group.

SOM 1 SOM 2 SOM 3 SOM 4 SOM 5

MLS 2645-94 23 22 19 9 3
MLS 1765-92 4 33 4 9 9
MLS 402-91 44 32 2 1 5
SK-N-MC 0 0 7 24 29
TC-71 5 0 41 21 7
All MLS cells 71 87 25 19 17
All EWS cells 5 0 48 45 36

Total number of cells 76 87 73 64 53

SOM group 1 was comprised mainly of MLS 2645-94 and MLS 402-91 cells with only 5
EWS cells; SOM group 2 consisted of cells from all 3 MLS cells lines; SOM group 3 exhibited
mainly TC-71 cells, some MLS 2645-94 cells, and a few cells from each of the other cell
lines; SOM group 4 was comprised mainly of EWS cells; and SOM group 5 was comprised
mainly of SK-N-MC cells. These data showed that cells were primarily similar to other cells
originating from the same tumor entity, i.e., MLS versus EWS. The differences between cells
from the different cell lines for a specific tumor type were small. Nonetheless, several cells
displayed gene expression signatures similar to cells in the other tumor entity, indicating
common cellular phenotypes, regardless of their origin.

We evaluated the differences in mean expression and standard deviation of individual
genes between the SOM groups (Figure 4, Table S3). The number of significantly regulated
genes when comparing individual SOM groups was high, ranging from 29 to 69 genes
(Table S5). The major difference between the SOM groups was their overall mean gene
expression level (Figure 4). SOM group 1 displayed the highest mean expression of all genes,
while SOM group 5 showed the lowest mean expression. Consequently, most individual
genes were downregulated in the same pattern, from SOM group 1 to SOM group 5, but
to a different extent. We also analyzed the average expression of all cells in each SOM
group when the genes were grouped according to their cellular functions (Table 2). Again,
we observed the same trends for all gene groups, with gradually decreasing expression
levels from SOM group 1 to SOM group 5. This observation was also supported by a
correlation analysis of the entire dataset (Table S6). Essentially, all genes were positively
correlated with each other and 14% of all possible Spearman’s correlation coefficients were
>0.5. Interestingly, principal component 1 of the PCA and dimension 2 of the t-SNE plot
revealed an ordering pattern related to this feature (Figure 3C,D). The SOM groups that
did not follow the same internal pattern were SOM group 2 and 3. SOM group 2 displayed
a similar overall mean expression as SOM group 3. Here, 21 and 8 genes were up- and
downregulated when comparing SOM group 2 with SOM group 3, respectively (Table S5).

Table 2. Average gene expression of single cells in SOM-defined groups.

Cell Cycle
Regulation

JAK-STAT
Signaling

Apoptosis/Cell
Death

TP53
Regulation

Housekeeping
Functions

SOM 1 5.08 1 3.71 3.84 3.26 6.11
SOM 2 3.66 2.56 2.69 2.03 5.01
SOM 3 3.37 2.17 2.24 2.13 4.74
SOM 4 2.11 1.37 1.58 1.23 3.88
SOM 5 0.67 0.13 0.47 0.00 2.46

1 Relative mean expression levels are shown in log2-scale, averaging all cells and genes in each individual
gene group.

4. Discussion

FET sarcomas and leukemias are subjected to multimodal treatment with extensive
surgery, chemo- and radiotherapy, but they lack targeted therapies. The causative FET
fusion oncoproteins interact with the SWI/SNF chromatin remodeling complex, resulting
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in epigenetic changes and deregulated genes [1]. Possible drug targets include the FET
fusion oncoprotein itself, interaction partners of the SWI/SNF complex, and downstream
signaling pathways. For example, MLS and EWS cell lines have been shown to be sensitive
to the inhibition of BRD4, an interaction partner of the SWI/SNF complex [22]. JAK1/2
inhibition has also been demonstrated to decrease the number of cells with cancer stem cell
properties, which are features associated with chemotherapy resistance in MLS [23]. We
speculate that an optimal therapy has the potential to be effective in the treatment of all
FET sarcomas and leukemias. However, identification of this target requires an improved
understanding of tumor cell heterogeneity, both between and within each FET sarcoma
and leukemia entity.

Here, we studied individual MLS and EWS cells, focusing on genes related to cell
cycle regulation, JAK-STAT signaling, apoptosis/cell death, and TP53 regulation, as these
signaling pathways are essential in most tumor cells. To identify biologically relevant
subpopulations, we applied SOMs for unsupervised grouping, since PCA and t-SNE failed
to identify any distinct subpopulations. The 1 × 5 SOM topology using 3 neighbors was
optimal to obtain a reproducible subgrouping, with associated biological relevance. When
we increased the number of SOM groups, we found no additional biological relevance
for the additional groups of cells. Furthermore, larger topologies also generated unstable
SOMs and required longer computation times.

We found that the major difference between the SOM-defined groups was the overall
mean expression of all analyzed genes. Here, we used non-confluent cell cultures with
active cell division. Consequently, the cells were expected to be in different cell cycle
phases, which will result in an increased amount of total mRNA towards the end of the
cell cycle [5,24]. Most in vitro cultured cells are in the G1 phase. Hence, we speculate that
cells in SOM groups 2 to 5 are mainly in the G1 phase, while most cells in SOM group 1
belong to the G2/M phase. This is supported by a high expression of the G2/M marker
genes CCNA2 and CCNB2 [5] in SOM group 1. Cell cycle-associated genes, along with
many additional genes, are upregulated during the cell cycle [24]. In our study, most
selected and analyzed genes, including genes related to JAK-STAT signaling, apoptosis/cell
death, TP53 regulation, and housekeeping functions, were directly or indirectly related to
cell cycle regulation. This was confirmed by the correlation analysis between gene pairs,
which mainly revealed positive correlation coefficients. CCND1 was one of few genes that
displayed a divergent expression pattern compared to the other cell cycle regulation genes
among the SOM groups. CCND1 was highly expressed in SOM groups 3 and 4 compared
with SOM group 2. Interestingly, SOM group 2 only consisted of MLS cells, while SOM
groups 3 and 4 mainly consisted of EWS cells. This indicates that CCND1 may be differently
regulated in MLS compared with EWS. As a majority of all genes displayed the lowest
expression in SOM group 5, we speculate that some of these cells are partly senescent, a
cell state that is associated with low transcriptional activity. However, we cannot rule out
that some SOM group 5 cells were in an early apoptotic state, despite the fact that none
of the genes related to apoptosis/cell death, such as BID and CASP3, were upregulated.
The transcription factor MYC was upregulated in SOM group 3 compared with all other
SOM groups. MYC is known to affect the total amount of mRNAs in cells [25,26], which
may contribute to the observed cell heterogeneity. In addition to cell type and cell cycle
phase, factors such as cell size [27] and age [28] may also affect the total mRNA level in
individual cells. Despite significant histopathological differences, we observed that many
MLS and EWS cells shared similar gene expression signatures, particularly in relation
to cell cycle regulation. A limitation with our approach is that we performed targeted
mRNA analysis. In the future, whole transcriptome analysis may reveal more similarities
and differences between FET sarcoma and leukemia cells, possibly identifying a common
therapy target. Furthermore, our experimental in vitro approach to culture MLS and EWS
cells in a monolayer enrich for cellular phenotypes related to cell proliferation. The analysis
of tumor cells directly prepared from tumor tissue or 3D culture systems that mimic in vivo
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conditions will most likely display more distinct phenotypes and even larger heterogeneity
among FET sarcoma and leukemia cells.

5. Conclusions

In conclusion, we have shown that biologically relevant subpopulations of MLS and
EWS cells can be identified by single-cell gene expression profiling combined with SOMs.
Myxoid liposarcoma and EWS cells displayed distinct gene expression profiles, but a subset
of MLS and EWS cells demonstrated similar gene expression signatures. Most observed
cell heterogeneity was related to cell cycle regulation and overall transcriptional activity.
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Appendix A

As for other types of artificial neural networks, SOMs are constituted by a set of
neurons. The key objective of a SOM is to assign similar samples to the same or neighboring
neurons. Neurons are processing units with mathematical functions defined by numerical
coefficients called weights. The number of weights is usually equal to the number of
experimental variables, and each weight can be viewed as a coefficient that determines the
numerical output of the mathematical function behind the neuron. The weights are typically
initiated with random values that undergo a steady evolution throughout successive
iterations called epochs. The use of purely randomized numbers is not computationally
efficient [13]. Instead, random numbers close to the average values of the input variables
can be used [15].
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In contrast to other types of artificial neural networks, the neurons of the SOMS are
organized in a graphically regular shape, usually on a two-dimensional linear, rectangular,
or hexagonal grid [12]. A graphical representation can be provided not only for the net,
but also for the groups of samples. This feature simplifies the final interpretation of the
SOM and its associated data. The two-dimensional geometric ordering of neurons in the
grid is called topology, and it represents the structure of the multivariate input data when
optimized [12], i.e., the pattern underlying the collection of samples, here single cells,
used to develop and/or train the SOM. In more technical terms, a SOM can be defined as
a nonlinear projection method that compresses the topographic relations of the original
sample space into a two-dimensional topographical map [13,16]. This mapping is not a
strict Euclidean space, but a regular array of neurons [13].

Therefore, one of the first steps used to identify distinct subgroups of samples using
a SOM is to define its topology. Usually, the optimal topology cannot be determined in
advance. A general assumption is that if the dataset is known to contain a limited number
of groups, a coarse resolution will be sufficient, often where the number of neurons equals
the number of sample groups. In contrast, if complex structures and/or an unknown
number of sample groups are expected, larger neuron layouts may be needed [13]. A
common strategy is to define square maps of N × N neurons. In the end, the topology of
current SOMs, like those used here where counter-propagation layers do not exist to render
them supervised, has to be optimized on an ad hoc basis.

Once the topology is defined, the SOM training starts. A computing loop is set to
successively compare each sample to all neurons. The neuron which is most similar to
the sample being compared is called the winning neuron, and it becomes activated. Its
output is set to one, whereas the outputs of all other neurons are set to zero. However,
noise is present in experimentally obtained data. Hence, we know that future samples
will not be exactly like the ones used for training. A strategy to compensate for this
effect is to allow the surrounding neurons of the winning neuron to be partially activated.
This is performed by accepting a so-called Mexican hat approach in which the neurons
close to the winning neuron are more activated than the distal neurons following an
exponential function [29]. An alternative is to apply a Gaussian function that also decreases
the activation when moving away from the winning neuron [12]. To set the degree of
activation of the surrounding neurons, a neighborhood parameter, also called topological
distance, is used. In the first stages of the training loop, the size of the neighborhood is of
the same order as the net itself, but it rapidly decreases as training advances, and results
start to converge.

Most of the learning time is devoted to adapting the weights of only the winning
neurons [15]. The increment that is applied on each iteration, i.e., each time the samples are
presented to the overall network, is defined by Equation (A1) [30]:

∆wr = LR·
(

1− dr

dmax + 1

)
·
(

xi − wold
r

)
(A1)

where wr is the weight vector of neuron r; LR is the learning rate; dr is the topological
distance, i.e., the distance measured as the number of neurons which are between the
winning neuron and the neuron under consideration; dmax is the maximum size of the
neighborhood, which decreases during training; and xi is the vector with the experimental
values of sample i. Thus, the extent of the increment that is added to the weights depends
on the topological site of the neuron under consideration. Whenever the neighbor neuron
is close to the winning neuron, the weights will be modified significantly [16], whereas
neurons far away from the winning neuron will be less changed. The LR can be set as
indicated in Equation (A2) [30]:

LR = (LRstart − LRend)·
(

1− l
ltot

)
+ LRend (A2)
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with l being the number of actual iterations or training epochs; ltot is the number of total
iterations; and start and end denote the onset and end of the network training, respec-
tively. Note that Equations (A1) and (A2) proceed automatically, i.e., by unsupervised
learning [16].

The similarity between a sample and all neurons is evaluated to identify the winning
neuron. The most common approach is to consider the Euclidean distance as a measurement
of similarity. This is the difference between the experimental values of the sample and
the weights, balanced by the learning rate coefficient. In some software, this coefficient
can be defined by the user. A large coefficient may accelerate the initial learning process
but may also result in unstable SOMs. Therefore, most algorithms change the value of the
learning rate from higher values at the beginning to lower values at the final stages [15].
This training forces the winning neurons to specialize in a particular type of sample. The
procedure is repeated, either until convergence is reached or until a maximum number
of training epochs set by the user has been performed. Note that in each iteration, all
training samples are applied to the net. The last step consists of locating all samples in the
two-dimensional linear map representing the neurons, i.e., displaying their labels or codes.

It is important to validate the performance of a selected SOM with an independent
sample set that was not used in the initial training. Hence, overfitted models with poor
generalization capabilities can be avoided. Unfortunately, this final step is rarely presented
in reported studies. Finally, note that the optimal strategy to preprocess and scale raw
data must be tested using an empirical trial-and-error approach, developing preliminary
SOMs followed by evaluating their outputs. This may be time-consuming but should not
be circumvented so that the most reproducible and appropriate results are found.
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