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Abstract: Herein, we describe the facile synthesis of spinel MgFe2O4 ferrite and its potential use as
a gas sensor using a straightforward and reliable sol–gel approach, i.e., the glycine-assisted auto-
combustion route. The novelty in obtaining the sensing material via the auto-combustion route is
its inherent simplicity and capability to produce the material at an industry scale. The said cost-
effective process makes use of simple metal salts (Mg and Fe-nitrates) and glycine in an aqueous
solution, which leads to the formation of spinel MgFe2O4 ferrite. A single-phase crystallinity with
crystallite sizes ranging between 36 and 41 nm was observed for the synthesized materials using the
X-ray diffraction (XRD) technique. The porous morphologies of the synthesized materials caused
by auto-ignition during the combustion process were validated by the microscopic investigations.
The EDS analysis confirmed the constituted elements such as Mg, Fe, and O, without any impurity
peaks. The gas-sensing ability of the synthesized ferrites was examined to detect various reducing
gases such as LPG, ethanol, acetone, and ammonia. The ferrite showed the highest response (>80%)
toward LPG with the response and recovery times of 15 s and 23 s, respectively. Though the sensor
responded low toward ammonia (~30%), its response and recovery times were very quick, i.e., 7 s and
9 s, respectively. The present investigation revealed that the synthesized ferrite materials are good
candidates for fabricating high-performance sensors for reducing gases in real-world applications.

Keywords: MgFe2O4; glycine combustion; gas sensors; reducing gases

1. Introduction

In a globalized automated life style, sensors play a key role in the comfort-with-safety
segment of human life. In the IoT (Internet of Things) development and extensive use in
smart home and smart city programs, sensors are directing other technologies to improve
the quality of life of individuals across the globe. Traditionally, gas sensors were restricted
to the detection of accidental discharge of gases in the industry sector and leak detection
in households. A growing challenge of environmental sustainability due to pollution
and increased greenhouse gas emissions led to the development of gas sensor research
and development. However, a new ecosystem for environmental monitoring is being
made possible by a fresh wave of miniaturization and cost reduction in the gas sensor
industry. The value of this asset, according to analysts at ID-Tech Ex, is expected to be USD
361 million in 2017, USD 2.4 billion in 2022, and more than USD 3 billion in 2027 [1]. In
view of this, amongst the various gas sensors such as electrochemical sensors, metal oxide
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sensors, and optical particle monitoring, metal oxide sensors possess many advantages
such as easy production, low cost, and compact size.

In the state of the art, metal oxides such as SnO2, ZnO, WO3, CuO, and In2O3 are
potential gas-sensing materials. There is an unprecedented volume of work being con-
ducted using nano-heterostructured oxides for gas sensing. For example, Wang et al.
reported a highly sensitive acetone gas sensor based on PtCu-modified WO3. The obtained
hollow spheres with 0.02% PtCu loading displayed high sensitivity (204.9 tower 50 ppm
CH3COCH3), good selectivity, and fast response/recovery speeds (3.4 s/7.5 s) at a very
low detection limit (0.01 ppm) [2]. In terms of ZnO, recently, Xin-Zhen and his co-workers
reported porous Zn2TiO4-ZnO microtubes for acetone sensing [3]. The developed micro-
tubes showed excellent acetone-sensing performance with a response of 33.4 for 100 µg/mL
acetone, with 6 and 16 sec response and recovery times, respectively. Regarding ferrite-type
metal oxides, Zhang et al. reported the development of CuFe2O4 hollow microspheres for
NH3/TMA sensing at low working temperatures. The response to 10 × 10−6 NH3 was
4.0 with a rapid response time of 32 sec and a response of 3.95 to TMA [4].

Their detection principle is based on the change in conductivity upon interaction with
a chemical species at the sensor surface, which is generally transition metal ferrites (e.g.,
Mn, Mg, Zn, Ni, Co, and Cd) with an AB2O4 formula [5–13]. We quote the term “easy
production” as one of its merits, amongst all the adopted synthetic routes, because the
glycine combustion process is a highly promising route because of several factors. The
factors include the ability to precisely control how the constituent ions are mixed, low
combustion heat (3.24 kcal/g), a self-propagating chemical mechanism, and many others.
Additionally, glycine functions as a fuel for combustion as well as a component of a complex
with metal ions that prevent the formation of selective precipitations [14,15].

Dalt et al. reported the synthesis of nanostructured MgFe2O4 ferrites using glycine as
fuel, and the observed results of the magnetic and structural characterizations reveal that
the material was ferromagnetic at room temperature [16]. The nanostructured MgFe2O4
powder with a varying degree of oxidizers (metal nitrates) was synthesized using a glycine-
based solution-combustion route by V. Rajendar et al. [17]. Deraz et al. reported the
synthesis of nano-magnetic magnesium ferrite particles using the glycine auto-combustion
route, where physicochemical properties of the material were investigated [18]. Little to no
work has been conducted on MgFe2O4 as a gas-sensing material [18,19].

The present study focused on fabricating a compact-size gas sensor based on spinel
MgFe2O4 ferrite material via the glycine combustion process. Moreover, a varying degree
of oxidizer (Fe-nitrate) with respect to oxygen (MgFe2-xO4-δ, x = 0, 0.05, and 0.1) was
investigated against the gas response competence at different operating temperatures
ranging from 475 to 725 K. Furthermore, the ferrite preparation strategy was described in
relation to the structural and morphological research.

2. Experimental Details
2.1. Materials Used

To synthesize the ferrite materials, glycine (C2H5NO2), magnesium (Mg(NO3)2 6H2O),
and ferric nitrate (Fe(NO3)3 9H2O) were employed as procured without any further pro-
cessing. All chemicals were of reagent grade and procured from S.D. fine chemicals.

2.2. Synthesis Protocol

In a typical synthesis process, the necessary amount of glycine was added after the
stoichiometric amount of nitrate salts (3:5 moles, based on the total oxidizing and reducing
valence of the oxidizer and reductant) which had been dissolved in double-distilled water.
The reaction mixture was stirred well to produce a homogenous solution, and then the
obtained solution was heat treated roughly to 425 K. The viscosity of the solution gradually
rose while staying within the bounds of the natural law (Figure 1a). However, once the
percolation threshold was crossed, the viscosity increased, and the solution entered the
jelly phase (no-liquid state). The resulting gel underwent additional heat treatment at a
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slightly higher temperature (450–475 K). This induced the frothing of the gel, with the
evaporation of water molecules from the gel body. The gel began draining into a rapid
flameless auto-combustion reaction with the evolution of significant amounts of gaseous
products not long after the water molecules had completely evaporated. The process started
from the hottest zones of the reaction mixture, ending in voluminous MgFe2O4 xerogel
powder. The raw powder was then calcined in air for 2 h at 775 K to remove any remaining
unreacted salt species and their byproducts (if any), yielding the pure compound.
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2.3. Characterization Techniques

To identify the crystal structure of MgFe2O4 powder, XRD (Bruker D2 with CuKα-1
radiations of wavelength 1.5406 Å) was utilized. The morphological and elemental distri-
bution analysis of the developed ferrites were studied by FESEM with EDAX (HITACHI
SU5000). The gas-sensing analysis of the ferrites is described in the following sub-section.

2.4. Sensor Design and Measurement

Due to the compact size of the sensor, the as-synthesized ferrite materials were de-
posited on the electrode surface using a screen-printing technique as thick films. For this,
a temporary binder (ethyl cellulose and butyl carbotyl acetate) was used to prepare the
thixotropic paste of calcined MgFe2O4 powder. The thick films were then heat treated at
973 K for 2 h.
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The resistance of the thick films in air and with test gas was determined as a function
of time at various operating temperatures and test gas concentrations. The formula used to
determine the gas response was as follows:

S (%) =
Ra − Rg

Ra
× 100 (1)

where Ra and Rg, respectively, represent the sensor’s resistance in the absence of test gas
and the presence of air. Through the repeatability and reproducibility of the studies, the
performance of the fabricated sensors was validated.

3. Results and Discussion

The formation of ferrite with magnesium from their respective metal salts is high-
lighted in Figure 1b. Here, glycine acts as a gelation agent as well as fuel, through a
redox reaction. The initial reactions produce metal hydroxides, which then go through
polycondensation to produce polymeric or cluster-like polyoxometallates. These clusters
undergo structural and temporal evolution, resulting in a colloidal gel of iron–magnesium
metal oxide nanoparticles [20].

Regarding the role of glycine, it has zwitterion (meaning “dual” in German) charac-
teristics. Two distinct end groups, namely carboxylic (–COOH) and amino (–NH2), can
be used to create complexes [21–23]. It forms a complex with the relevant metal ions by
functioning as a bidentate ligand (a ligand having two teeth or atoms that coordinate
straight to the central metal atom). Moreover, it increases the solubility of metal ions,
hence preventing selective precipitation. Figure 1c illustrates the aforementioned feature of
glycine in generating a stable metal complex.

3.1. Crystallographic Properties of the Prepared Ferrite Materials

By using grazing incidence X-ray diffraction, the crystal structure of annealed MgFe2-xO4-δ
(x = 0, 0.05, and 0.1) films was confirmed (Figure 2). The ferrite films had the very same
Bragg reflection characteristics that are indicative of the spinel MgFe2O4 structure. The
relative strengths of the various reflections resulting from various crystal plane reflections
correspond to (2 2 0), (3 1 1), (4 0 0), (422), (5 1 1), and (4 4 0), clearly confirming the
formation of single-phase spinel-type MgFe2O4-δ. The values of the d-spacing and average
lattice parameters match those in the JCPDS files for MgFe2O4 (No. 73-1720). Table 1
shows the average crystallite size and average lattice parameter of stoichiometric and
non-stoichiometric ferrite material. Because the ionic radius of Mg2+ ions is higher (0.64 Å)
than that of Fe3+ ions (0.72 Å), the linear increase in the lattice constant with the x value
indicates the lack of Fe3+ ions. The improvement in the average crystallite size is attributed
to following Vegard’s law [24]. The crystal development was constrained by the lower
phase formation of stoichiometry, which favored its use in gas sensing.

3.2. Surface Morphological Analyses by FE-SEM

Under SEM examinations, the colloidal method of forming a porous network structure
was investigated. The FE-SEM micrographs of stoichiometric and non-stoichiometric ferrite
material are shown in Figure 3. All the samples displayed a porous network structure with
discrete morphology, except for stoichiometric composition where organized connectivity
of the grains was observed (Figure 3a). As the stoichiometry of the ferrite was disturbed,
the network structure collapsed and led to the loss of grain connectivity (Figure 3b,c). This
agglomeration seems to increase with successive non-stoichiometry [25]. Though the observed
morphology puts restrictions on defining the shape and size of the grains, the average grain
size was observed to be less than 0.1 µm, indicating the nanocrystalline material.



Chemosensors 2022, 10, 361 5 of 15
Chemosensors 2022, 10, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 2. The XRD pattern of heat-treated MgFe2-xO4-δ (x = 0, 0.05, and 0.1) materials. 

Table 1. The crystallite size and lattice parameter of MgFe2-xO4-δ (x = 0, 0.05, and 0.1) materials. 

Sample ID 
Crystallite Size (nm) Lattice Parameter of Heat-

Treated Sample “a” As-Prepared Heat-Treated 
MgFe2O4 30 36 8.36 

MgFe1.95O4-δ 34 41 8.38 
MgFe1.9O4-δ 35 40 8.39 

3.2. Surface Morphological Analyses by FE-SEM 
Under SEM examinations, the colloidal method of forming a porous network struc-

ture was investigated. The FE-SEM micrographs of stoichiometric and non-stoichiometric 
ferrite material are shown in Figure 3. All the samples displayed a porous network struc-
ture with discrete morphology, except for stoichiometric composition where organized 
connectivity of the grains was observed (Figure 3a). As the stoichiometry of the ferrite was 
disturbed, the network structure collapsed and led to the loss of grain connectivity (Figure 
3b,c). This agglomeration seems to increase with successive non-stoichiometry [25]. 
Though the observed morphology puts restrictions on defining the shape and size of the 
grains, the average grain size was observed to be less than 0.1 µm, indicating the nano-
crystalline material. 

3.3. Elemental Analyses by EDS 
Following morphological investigations, elemental analysis/chemical characteriza-

tion of as-developed material was carried out using EDS analysis, and the results are 
shown in Figure 4a–c. The observed EDS spectra for the prepared ferrite materials clearly 
confirmed the presence of various elements, i.e., Mg, Fe, and O. The corresponding EDS 
data analysis (Table 2) indicates nearly 1:2 atomic ratios of Mg and Fe with a slightly lower 
oxygen content and is in good accord with the initial precursor concentration. This clearly 
indicates that the non-stoichiometric compound (MgFe1.95O4-δ) was achieved using the 
presented simple and facile synthesis process. 

Figure 2. The XRD pattern of heat-treated MgFe2-xO4-δ (x = 0, 0.05, and 0.1) materials.

Table 1. The crystallite size and lattice parameter of MgFe2-xO4-δ (x = 0, 0.05, and 0.1) materials.

Sample ID
Crystallite Size (nm)

Lattice Parameter of Heat-Treated Sample “a”
As-Prepared Heat-Treated

MgFe2O4 30 36 8.36
MgFe1.95O4-δ 34 41 8.38
MgFe1.9O4-δ 35 40 8.39
Chemosensors 2022, 10, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 3. SEM images of MgFe2-xO4-δ (x = 0 (a), 0.05 (b), and 0.1 (c)) ferrite, respectively. 

 

Figure 3. SEM images of MgFe2-xO4-δ (x = 0 (a), 0.05 (b), and 0.1 (c)) ferrite, respectively.



Chemosensors 2022, 10, 361 6 of 15

3.3. Elemental Analyses by EDS

Following morphological investigations, elemental analysis/chemical characterization
of as-developed material was carried out using EDS analysis, and the results are shown in
Figure 4a–c. The observed EDS spectra for the prepared ferrite materials clearly confirmed
the presence of various elements, i.e., Mg, Fe, and O. The corresponding EDS data analysis
(Table 2) indicates nearly 1:2 atomic ratios of Mg and Fe with a slightly lower oxygen
content and is in good accord with the initial precursor concentration. This clearly indicates
that the non-stoichiometric compound (MgFe1.95O4-δ) was achieved using the presented
simple and facile synthesis process.
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Table 2. EDS quantitative analysis of MgFe2-xO4-δ (x = 0, 0.05, and 0.1) materials.

Element
MgFe2-xO4-δ (x = 0) MgFe2-xO4-δ (x = 0.05) MgFe2-xO4-δ (x = 0.1)

Wt% At% Wt% At% Wt% At%

O 18.02 39.54 19.43 41.03 53.71 68.09
Mg 10.94 15.80 13.01 18.08 37.08 30.95
Fe 71.03 44.65 67.55 40.88 9.19 0.95

3.4. Gas-Sensing Properties

It is widely known that the capacity of a material to detect gases depends on its
porosity, surface microstructure, surface-to-volume ratio, and grain size [26]. As is well
known, all these properties are directly linked to the method of preparation of the material.
Following one of our objectives, the prepared material using glycine colloidal chemistry
was evaluated for its gas-sensing behavior. LPG, acetone, ethanol, and ammonia (the
four most prevalent reducing gases encountered in daily life) were all evaluated for this
purpose at various operating temperatures and concentrations. The material showed the
gas-sensing behavior for all the reducing test gases, which is depicted in Figure 5a.

In general, the highest response to each reducing gas coincided with a particular tem-
perature). According to the response characteristics, the sensor exhibits a strong response to
LPG at an operating temperature of 648 K. However, it decreased in the higher temperature
region. For acetone and ethanol, a large operating temperature range (550–675 K) with
a nearly consistent response was observed. The maximum response for the fabricated
sensor to LPG, ethanol, and ammonia was 82, 61, and 35%, respectively, at the operating
temperature of 648 K. In addition, the maximum response to acetone was 69% at 673 K.
Further, it can be seen that MgFe2O4 displayed typical n-type semiconducting behavior
because the resistance of the sensor decreased after being exposed to the reducing gas.

It is well known that the electrical properties of ferrites are strongly dependent on
the stoichiometry of the material [27]. The compounds generally have oxygen vacancies
or excess oxygen in their lattice. The electrical properties are influenced by the amount
of oxygen, and the oxygen vacancies provide useful surface states for the adsorption
of oxygen [28]. As the adsorption of oxygen is one of the main phenomena of the gas-
sensing mechanism and it can influence the response of particular material to any reducing
gas, the non-stoichiometric ferrites were tested for gas response characteristics. In the
nonstoichiometric case MgFe2-xO4-δ (with x = 0.05, 0.1), as the Fe deficiency in the ferrite
increased, the response to all the gases was found to increase with a marginal decrease in
the operating temperature. For ferrite MgFe2-xO4-δ (with x = 0.05), the maximum response
of 74% was observed to acetone at an operating temperature of 648 K, whereas it was 75,
68, and 33% for LPG, ethanol, and ammonia at 623, 648, and 623 K, respectively (Figure 5b).
The ferrite with x = 0.1 showed the maximum response toward LPG (82% at 623 K) as
compared to acetone (81% at 598 K), ethanol (75% at 598 K), and ammonia (31% at 623 K),
respectively (Figure 5c). By showing the maximum response to LPG, acetone, and ethanol
at different operating temperatures, the sensors showed selective behavior at a particular
temperature. Thus, one may use the same sensor to detect several gases by adjusting the
working temperature.

Figure 6a–c shows the gas response of the material as a function of test gas concen-
tration at the achieved optimum operating temperature. As observed, all the sensors
displayed maximum response toward LPG in contrast to ammonia. As the concentration
of LPG was increased from 100 to 500 ppm, the response increased rapidly up to 80% (see
inset). Additionally, the sharp rise in response for all gases at the lower concentrations
initially can be explained by the transfer of electrons from the conduction band of the grain
surface to O2 according to the following reactions (2) and (3).

O2 (gas) + e− ↔ O2
− (ads) (2)

O2
− (ads) + 2e− ↔ 2O− (ads) (3)
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Figure 6. Gas response as a function of concentration of test gases at optimum operating temperature
of as-prepared ferrites MgFe2-xO4-δ, (a) x = 0, (b) x = 0.05, and (c) x = 0.1, respectively.
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This results in high electrical resistance due to the electron-depleted surface, giving
rise to a higher response. Since the depth of the depletion layer depends on the surface
coverage of oxygen and the intrinsic electron concentration of the sensor, the depletion layer
becomes saturated at larger concentrations [29]. Therefore, as-prepared sensors showed a
gradual gas response and attained a steady state, after 500 ppm gas concentrations.

Figure 7 shows the selectivity studies of the developed MgFe2O4 ferrite. The graph
clearly exemplifies the LPG selectivity, along with the potential applicability in acetone,
methanol, and ammonia sensing. Its response value (S%) reaches 78% for LPG, 76% for
acetone, 60% for ethanol, and 28% for ammonia at a 1000 ppm gas concentration with an
operating temperature of 648 K.
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Figure 7. Selectivity test of the developed MgFe2O4.

In the studies on response and recovery times for test gases, the non-stoichiometric
sensor (x = 0.1) showed a short response and recovery times of 9 and 19 s, respectively,
for acetone which is noticeably less than the other two compositional sensors. This is
attributed to increased operating temperature, which allows for quicker desorption of reac-
tion products and oxygen adsorption, hence decreasing the recovery time for that specific
composition. Table 3 lists the response and recovery times for all the fabricated sensors.

Table 3. Response and recovery times of stoichiometric and non-stoichiometric sensor materials
toward mentioned reducing gases.

Test Gas
MgFe2-xO4-δ (x = 0) MgFe2-xO4-δ (x = 0.05) MgFe2-xO4-δ (x = 0.1)

Response Time (s) Recovery Time (s) Response Time (s) Recovery Time (s) Response Time (s) Recovery Time (s)

LPG 32 45 15 23 23 41
Acetone 15 33 9 19 15 32
Ethanol 18 30 13 21 18 35

Ammonia 6 14 7 9 8 17

It was discovered that the sensors’ stability (shelf life) toward LPG at the conditional
parameters was unaffected, displaying 90% of its prior performance even after 60 days.
The following Figure 8 displays the stability of the developed MgFe2O4 over the span of
60 days.
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Table 4 provides a performance summary of the fabricated MgFe2O4 spinel-ferrite-
based gas sensor and its comparison with the gas sensors fabricated based on the same
MgFe2O4 spinel ferrite nanomaterials already reported in the literature. Interestingly, the
fabricated acetone sensor exhibited better response and recovery times.

Table 4. Comparative chart of gas-sensing performance of developed MgFe2O4 ferrite with state of
art in the same field.

Materials Test Gas Sensitivity (%) Concentration
(ppm)

Response
Time (s)

Recovery
Time (s)

Operating
Temp (◦C) Method Ref.

MgFe2O4 CO2 36 5000 120 240 450 Co-precipitation [12]

MgCexFe2-xO4 Acetone 500 100 1.8 249 225 Glyco-thermal
technique [11]

MgFe2O4/BiVO4 LPG 58 500 37 42 50 Combustion and
hydrothermal methods [30]

MgFe2O4 Humidity 10–95% RH - 18 26 27 Green synthesis [31]

MgFe2O4/g-C3N4 Acetone 25 500 49 29 25 Solvothermal method [32]

MgFe2O4 Humidity 10–90% RH - 4 6 25 RF sputtering [33]

MgFe2O4 Acetone 80 500 9 19 375 Glycine combustion
method Present work

3.4.1. Gas-Sensing Mechanism in Spinel Ferrites

The well-established semiconductor gas sensor mechanism governs the operation
of spinel ferrite gas sensors (Figure 9) [34]. Electrons are trapped when oxygen species
chemisorb onto the ferrite particles. This creates a resistance layer on the ferrite particle
surface. When chemisorbed oxygen reacts with target gas molecules (for example, ace-
tone), the following reaction occurs when oxygen’s electrons are liberated and returned to
the ferrite.

CH3COCH3 + 8O−ads → 3CO2 + 3H2O + 8e− (4)
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The conductivity of the space charge layer is affected by the release of electrons. The
conductivity of n-type ferrites increases due to a higher concentration of charge carriers
(electrons), but the conductivity of p-type ferrites decreases because electrons recombine
with holes. In the following sub-section (Gas-Sensing Mechanism in n-Type Spinel Ferrites,
MgFe2O4), the detailed gas-sensing mechanism in the case of n-type spinel ferrite with an
example of MgFe2O4 is discussed.

Divalent transition metal cations at the octahedral site become oxidized via oxygen
chemisorption by spinel ferrites, thus causing a change in the electrical resistance. This is
the case for Fe2+ in the present ferrite sample, i.e., MgFe2O4. According to Verwey’s theory
of charge conduction, transition metal cations from the same element that are positioned in
octahedral locations exhibit hopping-type conductivity. The possible hopping is as follows:

M3+ + e− ↔ M2+(for n− type spinel ferrites) (5)

M2+ + h+ ↔ M3+(for p− type spinel ferrites) (6)

The cationic conductivity can be increased by increasing the number of M2+ and M3+

pairs of the same element. Trivalent cations are formed when divalent cations are oxidized
during oxygen chemisorption. Depending on the type of cation, test gas lowers trivalent
cations back to their divalent form, increasing or decreasing conductivity in spinel ferrites.
This variation in the concentration of transition metal cations at octahedral sites affects both
the thickness of the space charge layer and the quantity of chemisorbed oxygen. Because
M2+ is more readily oxidized at the surface as its concentration rises, the space charge
layer’s thickness is reduced [35].

3.4.2. Gas-Sensing Mechanism in n-Type Spinel Ferrites, MgFe2O4

The number of Fe2+ and Fe3+ couples is somewhat smaller than their stoichiometric
composition prior to oxygen chemisorption in the octahedral locations of n-type spinel
ferrite gas sensors. The conductivity of e− that hops between iron cations occupying
octahedral positions provides charge carrier transfer in n-type spinel ferrites. The electrical
conductivity rises as Fe2+ concentration increases.

Fe3+ + e− ↔ Fe2+ (7)

After the chemisorption of oxygen on the n-type spinel ferrite, Fe2+ is oxidized to Fe3+.
Because of the reduction of Fe3+ to Fe2+ that occurs when oxygen interacts with the target
gas, the material’s electrical conductivity and the quantity of Fe3+ and Fe2+ pairs increase.
On the surface of n-type spinel ferrite, these oxidation–reduction reactions are shown to
be reversible [36]. ZnFe2O4, CdFe2O4, and MgFe2O4 are the most often used n-type spinel
ferrite gas sensors. In the present case of MgFe2O4 ferrite, in the synthesis or annealing
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stages, the Fe2+ concentration can be set. The production of iron-excess compounds or
annealing in a reducing environment [37] can both preserve ferrous iron. Mg cations
are replaced by Fe3+, which moves to tetrahedral positions when iron-excess Mg ferrites
are formed. (

Mg2+
1−x Fe3+

x

)[
Fe3+

2−x Fe2+
x

]
O4

The quantity of Fe2+ can be increased by increasing the iron concentration in a sample [38].
However, if the Fe2+ concentration is too high, the Debye length is shortened, and the
sensor’s responsiveness to gas is reduced [35]. It is possible for oxygen vacancies to form
during annealing in a reducing environment; these vacancies are made up by reducing Fe3+

to Fe2+.

4. Conclusions

In conclusion, a facile synthesis route of fabricating spinel-type nanocrystalline MgFe2O4
ferrite was developed using a single-step auto-combusted sol–gel process. The process
utilizes metal salts (precursor) and glycine as fuel. For compacting the size of the sensor,
the ferrite films are developed using the screen printing technique, and their gas-sensing
characteristic is readily controlled by the stoichiometry of the compound. The sensors with
non-stoichiometric composition (x = 0.05, and 0.1) display excellent gas-sensing properties
toward reduced gases, in comparison with x = 0. The gas response depends on the porosity,
stoichiometry, gas type, and operating temperature of the prepared ferrite materials. With
regard to ammonia, the sensor with x = 0.05 displayed a quick response (7 s) and a strong
recovery (9 s). On the structural, morphological, and gas-sensing properties, the impact of
stoichiometry was examined. The larger ionic radius of Mg2+ ions was observed to cause
an increase in the average crystallite size with non-stoichiometry. From SEM examination,
it was obvious that a significant difference in grain formation was seen. The as-developed
ferrite showed good response (6–32 s) and recovery times (8–45 s) toward various test gases
at diverse temperatures. Thus, it can be used to detect various reduced gases. Last but
not least, the method for making gas sensors described here is simple to duplicate and
relatively inexpensive, which holds great potential for future industrial applications in
gas-sensing technology.
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