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Abstract: In the proposed method, microwave-assist heating and AgNO3/trisodium citrate were
used to create the polyvinylpyrrolidone-capped silver nanoparticles (PVP-AgNPs) sensor. This sensor
had a peroxidase-like activity that could catalytically oxidize O-phenylenediamine (OPD, colourless)
into 2,3-diaminophenazine (ox-OPD, greenish-yellow colour) in the presence of H2O2, otherwise,
in the presence of Hg2+, this pass has been effectively inhibited. The degree of colour fading was
directly correlated with Hg2+ concentration. These results indicated the selectivity of Hg2+ ions
toward PVP-AgNPs after establishing the PVP-AgNPs/OPD/H2O2 system. This selectivity was
proved by the negative results obtained from other mon-, di-, and trivalent ions such as Na+, K+, Ca2+,
Mg2+, Ba2+, Co2+, Ni2+, Cd2+, and Cr3+, instead of Hg2+. Consequently, a reliable, selective, and
eco-effective spectrophotometric approach was designed for the detection of Hg2+ in various types of
water samples. LOD was extended to lower than 0.1 µM, and a fading in the obtained colour was
shown by the naked eye at a concentration higher than 1.5 µM of Hg2+. The elemental details for
preparing the used PVP-AgNPs, such as particle size, morphology, polydispersity index (PdI), and
their UV-visible spectrum, were identified by SEM technique, TEM, UV-visible spectrophotometer,
and zeta-sizer device. Thus, the peroxidase mimicking the activity of OPD/H2O2 was confirmed by
a fluorescence technique. The greenness profile of this work was confirmed after applying a reported
assessment tool.

Keywords: silver nanoparticles; PVP-AgNPs; peroxidase-like activity; mercury (II); O-phenylenediamine;
water samples; eco-effective spectrophotometry

1. Introduction

Recently, remarkable advancements have been achieved in the science of nanotech-
nology, which encourages researchers to develop innovative sensing strategies [1]. The
instrumentational availability of investigation of the developed nanomaterials charac-
teristics offered effective and sustainable solutions to detect and manage the existing
wastewater pollutant problems [2]. However, it is believed that nano-based sensing
approaches can overcome these persistent environmental problems by providing conve-
nient, portable, and cost- and time-effective testing methods [3–8]. Recently, Mohamed
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A. El Hamd et al. [9] characterized the environmentally safe synthetic AgNPs as having
antioxidative and antimicrobial activities against the clinically more prevalent resistant
bacterial isolates; however, their straightforward and quick preparation, characterization,
and stability have promoted their use in medical and other environmental investigations.
Extending to our previous work, the scope of the present study is to more precisely
specify the prepared AgNPs for sensing a certain substrate, such as mercuric ions (Hg2+)
in water and other matrices, using the strategy of incorporating polymer-capped silver
nanoparticles (polyvinylpyrrolidone-capped silver nanoparticles (PVP-AgNPs)) stabi-
lized by 40 k molecular weight PVP, aiming to obtain a suspension device with high
physio-chemical uniformity and durable stability.

Fabrication of PVP-AgNPs spectroscopic sensors for the screening of specific sub-
stances have attracted our attention due to their high selectivity, sensitivity, ease of use,
and applicability for real-time monitoring of some water pollutants. Heavy metal ions
and other chemical-generated compounds such as pharmaceuticals, toxins, pesticides,
nitrates, and phenolic compounds are major sources of water pollution and contaminate
terrestrial and aquatic environments [1]. However, the ubiquitous distribution of such
pollution and contamination cannot be easily degraded or eliminated. Therefore, the detec-
tion of and/or clean-up tasks for such environmental hazards is an added challenge for
researchers [10–13].

Hg2+ is one of the heavy metals most toxic to humans and is also considered highly dan-
gerous for the environment [14]. Contamination with mercury is widespread throughout
different natural processes, such as volcanic emissions, and also throughout anthropogenic
processes, such as the combustion of fossil fuels, mining, and solid waste incineration [15].
Human contamination by Hg2+ can occur either by contaminated water or contaminated
food or, at times, by inhaling its vapours [16]. After its bioaccumulation, Hg2+ can in-
flict severe damage on many vital body organs such as the kidneys and brain, which
leads to harmful effects on health (e.g., dysphoria, functional disturbance of the nerves,
tremors) [17,18] as reported in Hg2+ toxicity in Iraq [19] and Minamata disease [20]. Accord-
ing to WHO recommendations, the allowable limit value of mercury (II) in the drinking
water for humans is 6.0 µg/L (0.022 M), and it can create serious risks for health when
received beyond the permissible limit [21]. There are many spectroscopical and chro-
matographic methodologies that have been reported in the detection of Hg2+ through
different instrumental patterns. Some of these methodologies are atomic absorption spec-
trometry, atomic fluorescence spectrometry, inductively coupled plasma (ICP) with mass
spectrometry, ICP-atomic emission spectrometry, and LC and GC combined with various
detectors [22–25]. These analytical techniques have some disadvantages, such as high
interferences, operational costs, and the requirement for highly specialized technical as-
sistance [26]. Furthermore, chemo-sensors that are characterized by adequate selectivity
and the ability for the detection of mercury by the naked eye suffer from some limitations
such as complexity, high cost of the utilized equipment, time-consuming procedures, and
elaborate setup [27].

The well-defined physiochemical properties and selective application-oriented surface
morphologies of nanomaterials are currently used extensively. Their innovative possibilities
and prospective applications can be explored by combining them with various analytical
instruments as reported here [28,29]. The utilization of nanomaterials in sensors and
biosensor strategies based on signal transduction processes has been confirmed. Sensors
embedded in nanomaterials could enhance their selectivity, sensitivity, and accuracy toward
pollution and contaminants [30,31]. Due to its simplicity, high accuracy, wide availability
in most laboratories, and minimal cost, the UV-visible spectrophotometric technique is
still the preferred and the most commonly included in detecting mercury ions and other
inorganic compounds in various samples [32,33]. Certain nanozymes of various inorganic
nanoparticles such as Pt, Au, Cu, Ni, and Ag have been reported for the detection of Hg2+

ions based on their efficient catalytic peroxidase mimetic activity for oxidation of OPD or
TMB in the presence of H2O2 [34–39].
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Furthermore, peroxidase enzymes have been broadly utilized in the analytical chem-
istry fields for the enzymatic transformation of certain colourimetric substrates in imaging
and signalling applications [40,41]. Based on the discovery of intrinsic enzyme-mimic
activity of some inorganic nanoparticles in the last decade, a new generation of the inor-
ganic artificial enzyme has been developed, commonly known as “nanozymes” [42,43].
The ability of nanozymes to effective catalysation of some enzymatic reactions over wide
ranges of pH and temperatures in addition to their durability and low fabrication cost is
considered the main advantage of these nanozymes over the natural enzymes, which suffer
from poor ambient stability [44,45]. Peroxidase enzymes are the first class that has been
mimicked with inorganic nanomaterials combined with an efficient catalytic activity [40,46].
They are participatory in the oxidation of various types of hydrogen donor substrates such
as O-phenylenediamine (OPD) and 3,3′,5,5′-tetramethylbenzidine (TMB), in the presence
of peroxides such as hydrogen peroxide [40,47–50].

Therefore, the presented study aims to utilize the peroxide-like activity of PVP-AgNPs
as a nanozyme for the detection of Hg2+ either by the spectrophotometric technique (at
very low concentrations of Hg2+) or by the naked eye (at µM concentrations of Hg2+).
The current study is based on the ability of Hg2+ to inhibit the catalytic effect of prepared
PVP-AgNPs for converting the colourless substrate of OPD to a bright yellow coloured
product known as 2,3-diaminophenazine (ox-OPD) in the presence of H2O2, as illustrated in
Figure 1. The mentioned method is a simple and convenient colourimetric sensor that meets
specified eco-friendly analytical conditions such as the absence of interference, sufficient
sensitivity, rapid action coupled with simplicity, high accuracy, wide availability, and the
minimal cost of the UV-visible spectrophotometric technique.
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Figure 1. Schematic of PVP-AgNPs composite synthesis and their mechanism for Hg2+ detection
either by the spectrophotometric technique (at very low concentrations of Hg2+) or by the naked eye
(at micro-levels concentrations of Hg2+).

2. Materials and Methods
2.1. Instrumental Devices

A double-beam 1601 UV-visible spectrophotometer product from the Shimadzu Com-
pany (Tokyo, Japan) was used to record all absorbance measurements. A scanning electron
microscopical device (SEM), the JEOL SEM model from JSM 5400 LV (Tokyo, Japan) was
utilized to identify the morphological shape of the synthesized AgNPs. Fourier trans-
form infrared spectroscopy (FT-IR) (Nicolet™ iS50 FTIR Spectrometer, Thermo Scientific
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Co., Twin, Waltham, MA, USA) measurements were used to analyse the compatibility
of other molecules associated with AgNPs formation. It was measured with a Bruker
Tensor 27 FTIR spectrophotometer in the wavelength range of 4000–400 cm−1. A size and
polydispersibility index characterization device, the ZEN 1690 device, a product of Malvern
Instrument Company (Malvern, UK) was utilized to identify the size and polydispersibility
(PdI) for the fabricated AgNPs. A Scinco FS2 spectrofluorometer (Scinco, Korea) was
utilized to evaluate the enzymatic-like activity of the synthesized AgNPs by identifying
and finding the characteristic emission and excitation spectra of ox-OPD. A microwave
oven (SM-2000 MW, 2450 MHz), a product of the Smart company, China, was utilized to
prepare the synthesized AgNPs, as a heating device.

2.2. Reagents

O-phenylenediamine (OPD), polyvinylpyrrolidone (PVP, of 40k average MW), and
AgNO3 were purchased from Sigma-Aldrich Co. (Germany). Cr3+, Cd2+, Co2+, Ca2+, Mg2+,
H2O2, Hg2+, Ni2+, K+, Na+, and Ba2+ metals’ salts were purchased as their corresponding
chloride or nitrate salts from El-Nasr chemical Co. (Egypt). Trisodium citrate salt was
purchased from Fisher Sci. Co. (Leicestershire, UK). All the utilized reagents were prepared
by dissolving an appropriate amount from each in de-ionized water.

2.3. Synthesis and Stabilization of Polyvinylpyrrolidone-Capped Silver Nanoparticles (PVP-AgNPs)

Specified volumes of PVP (0.2% w/v), trisodium citrate (10.0 mM), and AgNO3
(10.0 mM) were mixed in a ratio of 0.5: 1: 1 v/v. The mixture was placed in a microwave
device and heated for 15 min at 90 ◦C. The produced PVP-AgNPs were marked through the
formation of bright greenish-yellow-coloured particles, measured spectrophotometrically
at 470 nm, larger than the concentration employed in the current work.

2.4. General Analytical Procedures for Hg2+ Ions Detection

In a series of 10 mL calibrated flasks, 0.60 mL of PVP-AgNP solution was added to
different aqueous solutions of Hg2+ ions with different concentrations and incubated for
five minutes. Then, 1.0 mL of OPD (0.108 g in 100 H2O) and 0.5 mL of H2O2 (3 % w/v) were
added, mixed, and incubated for another 15 min. The contents of the flasks were completed
to the calibrated mark by de-ionized water. Blank solutions were prepared as mentioned
above, excluding Hg2+ from the first steps. The quenching effect on the absorbance (∆AB)
of the prepared blank was calculated at λmax of 420 nm and upon the addition of Hg2+ as
the following:

∆AB = ABblank − ABsample (1)

Then, the UV-visible spectra of the absorbance were recorded against the utilized
concentrations of Hg2+ ions to construct the calibration graph.

2.5. Detection of Hg2+ in Various Water Samples

River water samples (Nile River, Assuit city) and bottled water samples (from local
market), at 1.0 mL, were spiked with Hg2+ ions (known concentrations). Samples were
filtered through a 0.45 µm syringe, and the analytical procedures were followed.

3. Results and Discussion
3.1. Characterization, Peroxidase Activity, and UV-Visible Spectrum of PVP-AgNPs

Excellent qualities of AgNPs include their distinct chemical, physical, and biological
features, as well as their prospective medical uses. However, it is massively influenced by
several factors such as morphology and nanoparticle size or by surface coating, which is
commonly determined at nanoparticle synthesis [51–53]. Consequently, the proper selection of
the method of synthesis is crucial for obtaining the desirable AgNP properties for the intended
application(s) [54,55]. Regarding the effective application of AgNPs for any function, the
nanoparticles should have reliable long-term stability, as well as controlled and well-defined
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properties [56,57]. However, the expected colloidal aggregation propensity should be more
profoundly regarded for such synthesized nanoparticles to avoid a substantial decrease in their
effective surface area and loss of their beneficial nano-properties, partially or completely [56].
The synthesis approach, reaction environment, and the presence of reducing and stabilizing
agents are factors that govern the desirable stability of AgNP suspensions [58,59]. In this
regard, Ajitha B. et al. have demonstrated the role of capping agents in controlling AgNP
size in their utility in medical therapy and/or their potential application as optical H2O2
sensors [59]. A variety of capping and stabilizing chemicals have been tested to see which
ones are most practical. AgNPs’ surfaces can be modified to stop them from aggravating by
utilizing polymers (such as polyvinyl pyrrolidone (PVP)), surfactants, and green, extracted
plant components [9,60–62]. Different stabilization mechanisms, namely steric and electrostatic
stabilization, arise during synthesis, giving the prepared nanoparticles their chemical, physical,
and biological properties and colloidal stability [56,63].

Regarding the uniformity and durable stability of the prepared AgNPs, Andrea
Rónavári et al. demonstrated that the best results were produced after capping the obtained
nanoparticles with a PVP of 40k average molecular weight of concentration 2 mg/mL
working solution, as the authors achieved in the proposed method [57]. According to
the preliminary trials, the sample suspension of the prepared PVP-AgNPs showed better
chemical uniformity as well as stable efficiency over two weeks of stability and morphology.
On the other hand, one of the most distinguishing characteristics in the optical absorbance
of PVP-AgNPs is a surface plasmon resonance absorbance band, which is attributed to the
collective resonance effect of electrons in silver metal [64]. Generally, the maximum ab-
sorbance peak of PVP-AgNPs is located in the visible wavelength range of 390–470 nm [64],
depending on their shape, size, and distribution [65]. The elemental details for the pre-
pared PVP-AgNPs, such as particle size, size uniformity morphology, and polydispersity
index (PdI) in addition to their UV-visible spectrum, were identified by SEM technique,
UV-visible spectrophotometer, TEM, and zeta-sizer instrument. As shown in Figure 2A,B,
the fabricated nanoparticles have a small particle size, lower than 10 nm, and a low PdI
value (0.394).

Moreover, the fabricated nanoparticles have a sphere shape, as shown in the SEM
micrograph of Figure 3A. FTIR spectroscopy was used to characterize the capping of
PVP. The FTIR spectrum of the prepared PVP-AgNPs showed the band at 3424.47 cm−1

indicating the presence of an -OH bond (Figure 3B). The peak at 1665.95 cm−1 is due to
-C=O stretching, indicating the presence of tertiary amide. The presence of these peaks
confirms the capping of the prepared AgNPs by PVP and citrate ions (Figure 3B).

Furthermore, the prepared PVP-AgNPs here exhibit a maximum wavelength of 470 nm.
Most of the published articles concerned with this area of the study indicate that the catalytic
action of nanomaterials increases with their smaller size and larger surface area, which can
facilitate the interaction with large quantities of the utilized substrate [47,66–69].

In the present study, the small particle size for the fabricated PVP-AgNPs refers to
the high probability of their possessing a catalytic activity performance as an efficient
nanozyme. OPD and TMB are the common substrates that are used to evaluate the effi-
cacy of nanoparticles as peroxidase nanozyme [34,70]. Thus, OPD substrate was used in
this study to examine the peroxidase-like action of the fabricated PVP-AgNPs. The spec-
trofluorometric technique was utilized for examination of the peroxidase-like action of the
fabricated PVP-AgNPs through studying the fluorescence behaviour of OPD, as the parent
form (non-oxidized form) of OPD is a non-fluorescence compound whereas the oxidized
form (2,3-phenazinediamine, ox-OPD) possesses specific fluorescence peaks around 420 nm
and 560 for the excitation wavelength and the emission wavelength, respectively [34,71].
Furthermore, the spectrophotometric technique was also utilized for this purpose, as the
parent form (non-oxidized form) of OPD is a colourless compound whereas the oxidized
form (ox-OPD) possesses a bright yellow colour with a λmax value around 420 nm [34,72].
It was found that with the addition of PVP-AgNPs to OPD in the presence of H2O2, the
colour of the solution was successfully changed from colourless to yellow colour with a
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λmax value of 420 nm, and the fluorescence behaviour of the solution was changed from
a non-fluorescent into a fluorescent solution with a λexcitation of 420 nm and λemission of
563 nm, which confirm the efficient peroxidase-like activity of the fabricated PVP-AgNPs
(Figures 4 and 5).
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presence of Hg2+ (0.6 µM), (c,d) the blank contents (OPD/H2O2 and/or PVP-AgNPs).

3.2. Sensing Mechanism and Factors Affecting the Colorimetric Detection of Hg2+

The enzymatic-like activity of the fabricated PVP-AgNPs could transform the colour-
less system into a bright yellow colour solution with a λmax value of 420 nm. The suggested
mechanism for the colour formation by the catalytic effect of the fabricated PVP-AgNPs on
OPD is offered in Scheme 1.

The formation of this colour can be initially inhibited upon adding Hg2+ ions to
the prepared PVP-AgNPs (Figure 5). The bright yellow colour gradually disappeared
and changed to a colourless state with increasing Hg2+ concentration. This inhibition
of the catalytic action of the fabricated PVP-AgNPs may be related to the formation of
mercury–silver alloy [73], which in turn leads to decreasing the transformation of OPD to
the coloured compound ox-OPD and quenching in the absorbance intensity. By analogy
with the reported data that is concerned with the interaction between PVP-AgNPs and
Hg2+ [73–75], we can presume that such changes result from the reduction of Hg2+ ions
by silver atoms and the formation of the soluble Ag2+-Hg amalgam at the surface of the
residual nanoparticles, which leads to efficient suppression of their catalytic activity [35].
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catalytic activity of PVP-AgNPs.

To determine the ideal circumstances for analysis, the reaction conditions, including
quantities of H2O2, OPD, and PVP-AgNPs, were researched and optimized. Different
volumes from these reagents were tested, and the optimum volumes for sensing Hg2+ were
0.6 mL, 1.0 mL, and 0.5 mL for PVP-AgNPs, OPD, and H2O2, respectively (Figure 6A).
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Figure 6. (A,B). Optimum volumes from reagent components for sensing Hg2+ ions; (B) examining
the colourimetric responses of PVP-AgNPs/OPD/H2O2 system to various types of cations. The data
are presented as mean ± SD (n = 3).

3.3. Selectivity of PVP-AgNPs/OPD/H2O2 System for Hg2+ Detection

The selectivity of the analytical procedures toward Hg2+ ions over other metal ions
was investigated through the addition of various common metal ions such as alkali metals
(K+, Na+), alkaline earth metals (Ca2+, Mg2+, Ba2+), and transition metals (Co2+, Ni2+, Cd2+,
Cr3+) instead of the Hg2+ ions in the mentioned analytical procedures. These metals were
tested by the suggested methodology at the concentration level of 10 µM (i.e., 10 times
more than Hg2+ concentration) instead of Hg2+ ions. As depicted in Figure 6B, only the
Hg2+ ion could selectively inhibit the development of bright yellow colour, which suggests
that the prepared AgNPs provide a highly selective interaction with Hg2+ among the tested
elements; hence the system of PVP-AgNPs/OPD/H2O2 can be utilized as a good selective
sensor for Hg2+ ion detection.

3.4. Analytical Parameters for the Detection of Hg2+ in Different Matrixes

The linearity between quenching in the absorbance intensity at 420 nm and concen-
trations of mercury (II) in the de-ionized water was achieved in the linear range of 0.05
to 0.10 µM with an R2 value of 0.9989. Furthermore, at 1.5 µM or higher than this con-
centration, Hg2+ ions can be easily detected by the naked eye (as the fade of the colour
is intense). To assess the actual practicality of the designed approach, the system of PVP-
AgNPs/OPD/H2O2 was used to analyse Hg2+ in the bottled water and river water samples.
It was found that the linear response was achieved upon increasing the spiked concentra-
tion of Hg2+ over ranges of 0.10–0.80 and 0.15–0.80 µM with R2 values of 0.9983 and 0.9980
for bottled water and river water samples, respectively.
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The limit of detection and LOD values for analysing various types of water were
calculated by using the equation [76]:

LOD =
3.3× Sa

b
(2)

Additionally, the limit of quantitation and LOQ values for analysing various types of
water were calculated by using the equation [77]:

LOQ =
10× Sa

b
(3)

where b = Slope, and Sa = SD of intercept. LOD values were 31.9, 33.4 nM, and 40.9
for de-ionized water, bottled water, and river water, respectively. LOQ values were 96.8,
101.2, and 124 nM for de-ionized water, bottled water, and river water, respectively. Other
analytical parameters such as SE, intercept, and slope values for the calibration of Hg2+ in
bottled water, river water, and de-ionized water are presented in Table 1.

Table 1. Analytical parameters and LOD values for the determination of Hg2+ by the colourimetric sensor.

Parameter Ultra-Pure Water Bottled Water River Water

The Linear range (nM) 0.090–0.10 0.10–0.80 0.150–8.0
The standard error (SE) 0.0095 0.0105 0.008

The Intercept 0.0516 0.0085 0.059
The SE of intercept 0.0073 0.0089 0.0073

The slope 7.6 × 10−4 8.8 × 10−4 5.9 × 10−4

The SE of the slope 1.2 × 10−5 1.8 × 10−5 1.3 × 10−5

R2 0.9989 0.998 0.9983
The LOQ (nM) 31.90 33.40 40.90
The LOD (nM) 96.80 101.20 124.0

Furthermore, the proposed method was verified with the reported resonance Rayleigh
scattering method [35] for the detection of Hg2+ ions in water, and the obtained recovery
± SD were 102.52 ± 2.56 and 101.95 ± 1.54 for the reported method and the proposed
method, respectively, which refers to the validity of the proposed method for detection of
Hg2+ in water samples.

4. Evaluation of the Greenness Property

In quantitative analysis, the “greenness” of a proposed analytical method is seen as
a difficulty because, in emergency situations, organic dangers are occasionally utilized
in large quantities and/or with tired instruments. Optimizing the experimental needs
of these organic hazards and the utilized instruments indicated the greenness of such
methods [78,79]. Our objective in the developed study was to guard environmental and
human health, in line with the general meaning of the twelve principles of green analytical
chemistry [80]. In this evaluation, the present study adopted the updated metric and
software analytical greenness (AGREE) [81]. The applied twelve assessment principles
that guarantee the greenness of the proposed method are the steps of sample treatment,
sample size, device positioning, the procedure of analysis (the processes of the general
method of analysis), level of automation/miniaturization, level of derivatization, amount of
waste, degree of analysis throughput, level of energy consumption, degree of used chemical
reagents sources’ renewability, degree of hazardous reagents’ removability, and level of
operator’s safety (in the presence of a threat). The output of this metric analysis is shown
in the form of a pictogram bearing a score from 0–1, where the ideally green analytical
method has a score nearer to the value 1. Regarding the mentioned criteria, the present
method was to check for each item individually, supposing that they have equal weights for
the twelve assessment principles. The result of this analysis is shown in Figure 7, Table S2
(Supplementary File).
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From the greenness point of view, during the optimization steps of the developed
method, the authors checked carefully and selected the most acceptable parameters such as
safety, size, and wasting process of the used inorganic reagents. The obtained result showed
optimized procedures of analysis accompanied by an acceptable level on the eco-scale score
(0.65), as shown in the resulting pictogram, Figure 7.

5. Comparison between the Performance of the Proposed Protocol and Reported
Literature for Removal of Hg2+ from Waste Samples

As mentioned in the introduction, Hg2+ has both natural and industrial sources, and
it is known for its dangerous adverse effects on humans and the environment, which
begin even at very low concentrations, encouraging the development of a rapid and
economical method for its detection in different matrices. Attractive sensing materials,
such as nanomaterials with distinct size- and shape-dependent optical characteristics, can
be employed to create optical sensors for Hg2+, resulting in highly effective instruments
for detecting and managing trace amounts. These optically sensing nanomaterials have
been classified into colourimetric, fluorescence, and surface-enhanced Raman scattering
(SERS) sensors, depending on the origin of the optical signals. Therefore, trace amounts of
Hg2+ can be quantitatively detected by recording changes in their spectrum absorbance,
fluorescence intensity, and SERS signals [82–87]. Junling D. and Jinhua Z. reported an
informative review which summarized the recent advances in the development of optical
assays for Hg2+ in water samples, especially by using fabricated nanomaterials (such as
metal nanoparticles, fluorescent metal nanoclusters, semiconductor quantum dots, and
carbon nanodots) [82]. From the practical point of view, the strategies they reported
depended on similar features to the proposed work, which are metal nanoparticles coupled
with the changes in spectral absorbance.

5.1. Metals Nanoparticles Sensing Tools
5.1.1. AuNP-Based Colorimetric Assays

Gold nanoparticles (AuNPs) can be used as metal nanomaterial sensors in two different
ways. The first is based on the Hg2+-induced aggregation of AuNPs. The second is based
on the Hg2+-inhibited aggregation of AuNPs. Both designs have a direct quantitative
proportionality with the Hg2+ concentration; moreover, the strategy of the Hg2+-inhibited
aggregation-based method is more effective, sensitive, and selective [88–90].

Strategies for the aggregation of AuNPs caused by Hg2+ have been used to detect
Hg2+ in a variety of materials undergoing a variety of processes. A complexation reaction
between the Hg2+ with a ligand (capping ligands) such as DNA and/or a thiolate, which
induces the aggregation of AuNPs and a red-to-blue colour change (a red-shifted absorption
band) could be obtained as an indicator, has been reported [91–101]. AuNPs capped with
a surfactant, Tween 20, were utilized as a sensor for Hg2+ after reduction of the Hg2+

with citrate and the formation of HgAu alloys, which extract the surfactant surface of the
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AgNPs and induce the AuNPs’ aggregation as well [102]. AuNP-associated 3-nitro-1H-
1,2,4-triazole (NTA) has been utilized as a sensor in the detection of Hg2+. In this case, the
NTA protected the AuNPs from aggregation after reaction with 2-amino-2-hydroxymethyl-
propane-1,3-diol (Tris). In the presence of Hg2+ in a sample, the NTA was dislodged
from the AuNP surface after the formation of the NTA-Hg2+ coordination complex, and
consequently, the aggregation between AuNPs and Tris occurred [103]. However, Xu et al.
modified the above sensing design [103] by using deoxythymidine triphosphates (dTTPs)
instead of NTA in stabilizing the formed AuNPs [104].

In the second strategy, Hg2+-inhibited aggregation of AuNPs, the detection system is
dependent on the presence of traces of Hg2+ in the sample which inhibits the preprepared
aggregation of AuNPs. A blue-to-red colour change occurs, through the competition be-
tween the aggregating agents, Hg2+, and AuNPs. Examples of the aggregating agents which
can be utilized in the mentioned reaction are oligopeptides [88], 4-mercaptobutanol [105],
pyridine [106], 4,4′-dipyridyl [89], thymine [107], and cysteine [108,109].

5.1.2. AgNP-Based Colorimetric Assays

In the reported methods, the main idea of using the AgNP-based sensing colourimetric
method specific for Hg2+ depended on a redox reaction between the AgNPs and Hg2+, as
the standard electrodes and EO, respectively, as Ag+/Ag and Hg2+/Hg are equal to 0.80
and 0.85 Volts. Therefore, the reaction between Hg2+ with AgNPs in a sample involves
the formation of metallic mercury (HgO) [110]. Fan YJ et al. reported a colourimetric
method for the detection of Hg2+ based on starch-stabilized AgNPs [111]. This redox-
based reaction utilized a colourimetric sensing indicator in case of the presence of Hg2+

as there was a fading of the yellow colour of the prepared AgNPs after their reaction.
Another sensing indicator based on a redox reaction was developed using polyhedral green-
colour AgNPs, utilizing the change in their green colour to a bright yellow colour after
increasing the concentration of Hg2+ in a sample [112]. The fabricated AgNPs, embedded
in poly(vinyl alcohol) (Ag-PVA), was used as a redox reaction sensor for detecting Hg
ions in different oxidation states [113]. However, aside from these redox-reaction-based
AgNP sensing colourimetric methods, few colourimetric sensing systems that caused the
Hg2+-induced AgNPs aggregation have been published [114]. In this case, the coloured
indication of detection of Hg2+ using AgNPs and mercury-specific oligonucleotides were
confirmed. Wang et al. developed a dual functional colourimetric sensor for Hg2+ and
H2O2 that utilized a redox reaction in the form of reduction of Hg2+ to HgO enhanced by
the preprepared AgNP suspension, which aggregated after this action, giving a rose pink
colour, meaning there was a red shift in the surface plasmon resonance of the AgNPs [115].
This aggregation was due to the adsorption of HgO (which is considered more toxic
than the detected soluble Hg2+) on the surface of AgNPs, releasing citrate ions, which
stabilized the surface of its own AgNPs. However, certain drawbacks can result from
the aggregation phenomena, in the form of low selectivity and sensitivity. Duan JL et al.
attempted to counteract these drowbacks via designing anti-aggregation 6-thioguanine-
capped AgNPs [116].

Generally, these methods and our proposed methods are colourimetric sensors which
are extremely attractive because their selective or specific analytes can be easily read by
the naked eye in high concentrations or concisely performed using UV-vis spectrometry,
with a convenient, inexpensive instrument. Moreover, the fabrication of metal NPs, either
Au or Ag ions, is a promising colourimetric method, as they have high visible-region
extinction coefficients, three to five folds of magnitude higher than those obtained by
organic dyes [14].

AgNPs are more cost-effective and have higher visible-region extinction coefficients
relative to AuNPs of the same particle size [117]. However, in comparing our method
with the mentioned AuNP methods, the proposed method is specific regarding the visual
free-standing nanozyme probe and free from expensive materials such as gold and other
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reagents and requires simple equipment and a non-complicated sample preparation process,
which saves analysis time and is suitable for in situ analysis.

Moreover, our proposed method utilized a well-known reaction mechanism which
initially constructs an enzymatic-like activity in fabricated PVP-AgNPs, which transforms
the colourless system into a bright yellow colour solution with a λmax value of 420 nm.
Then, this colour is inhibited or diminished by the presence of Hg2+ in a sample at a high or
low concentration, respectively. This inhibition of the catalytic action of the fabricated PVP-
AgNPs may be related to the formation of mercury–silver alloy [73], which is neither an
oxidation-reduction reaction nor results in the more toxic substance of HgO, as reported in
many developed methods, that gave our proposed method its greenness advantage over the
previously reported methods. Furthermore, in our proposed method, we used, for the first
time, PVP as a safe, available, and cheap material to effectively stabilize the preprepared
AgNPs, prevent the escape of their surface citrate ions, potentiate the formation of the
soluble Ag2+-HO amalgam, and avoid the formation of AgNP aggregates, which further
added to the greenness profile of our developed method.

6. Conclusions

In the proposed study, the production of PVP-AgNPs was easily achieved through the
heating of AgNO3 with trisodium citrate and PVP through a microwave device. Fortunately,
the tiny size of the fabricated PVP-AgNPs provided an efficient peroxidase-mimicking
activity, which was successfully utilized as a powerful nanozyme for the transformation
of OPD to ox-OPD in the presence of H2O2. This enzymatic activity can selectively be
suppressed by Hg2+ ions, so the PVP-AgNPs/OPD/H2O2 system has been utilized as a
facile colourimetric sensing probe for the selective detection of Hg2+ in aqueous systems. In
addition, the small size of the prepared PVP-AgNPs could be considered the main probable
reason for the high sensitivity of the utilized PVP-AgNPs/OPD/H2O2 sensor. Furthermore,
the utilized PVP-AgNPs/OPD/H2O2 sensor can be easily applied for monitoring the
presence of Hg2+ either spectrophotometrically or through visual observation. The sensor
(PVP-AgNPs/OPD/H2O2) is easily used in various aqueous materials, such as bottled
water and river water, with good linearity ranges. Although the US EPA states that the
suggested technology cannot detect Hg2+ at the permitted quantities (10 nM) in drinking
water, nevertheless, the selectivity, analytical procedure, and ease of preparation of PVP-
AgNPs/OPD/H2O2 should make this method applicable as an efficient technique for
Hg2+ detection in different environmentally relevant water samples. The simplicity and
eco-friendliness of the method are apparent in its ability to perform an efficient examination
of many water samples that are contaminated with Hg2+.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors10090358/s1, Table S1: Report of the greenness
profile of the work.
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