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Abstract: TiO2-based ultraviolet photodetectors have drawn great attention and are intensively ex-
plored. However, the construction of TiO2-based nanocomposites with excellent ultraviolet responses
remains challenging. Herein, a TiO2 nanorod array was successfully prepared on fluorine-doped tin
oxide (FTO) conductive glass by a one-step hydrothermal method. Then, polypyrrole (PPy)-TiO2

nanorod array composites were designed via subsequent in situ oxidative polymerization. The
morphologies, structures, and photocurrent responses of the nanocomposites were systematically
investigated. The results demonstrated that polypyrrole-TiO2 exhibited a stronger photocurrent
response than pure TiO2 due to the p-n junction formed between n-type TiO2 nanorod arrays and
p-type polypyrrole. The PPy-TiO2 composite obtained by deposition three times had the best pho-
toelectric properties, exhibiting good performance with a sensitivity of 41.7 and responsivity of
3.5 × 10−3 A/W. Finally, the mechanism of the photoelectrical response of PPy-TiO2 composites was
discussed, guiding the design of high-performance TiO2-based ultraviolet photodetectors.

Keywords: titanium oxide; ultraviolet photodetectors; polypyrrole; nanocomposites; p-n junction

1. Introduction

The basic working principle of ultraviolet (UV) photodetectors is that light is irradiated
on photoresponsive material, which absorbs the energy of the photon and can excite
photogenic electron-hole pairs thus showing the current signal, which can be applied
to the detection of the light signal. UV photodetectors have gained intensive interest in
the fields of industrial manufacture, biological detection, and environment monitoring
due to the coupling merits of high sensitivity, good selectivity, and low cost [1–3]. The
performance of UV photodetectors is closely related to the structure and properties of
photosensitive materials. In recent years, diverse wide bandgap semiconductors such
as SiC, GaN, ZnO, NiO, and TiO2 have been widely applied in the fabrication of UV
photodetectors [4–8]. Among them, TiO2 has received widespread attention because of
its tunable nanostructure, non-toxicity, and chemical stability [9–11]. However, the low
mobility and high recombination rate of photogenerated carriers in TiO2 greatly hinder its
application performance in UV photodetectors.

The photoresponse performance, sensitivity, and stability of UV photodetectors can
be significantly improved by constructing a semiconductor heterojunction. Bulk TiO2 is a
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typical n-type semiconductor material. The p-n heterojunction can be constructed using an
in situ composite with a p-type conductive polymer to improve its photoelectric response.
The Schottky heterojunction can be constructed using a recombination of metal nanoparti-
cles to provide it with excellent photoelectric response performance. So far, tremendous
efforts have been made to design high-performance TiO2-based UV photodetectors by con-
structing p-n junctions, Schottky junctions, and heterojunctions for their fast photo-excited
electron-hole pair separation [12–16]. Yang et al. [15] fabricated all-solid-state NiO/TiO2
heterojunctions with the NiO layer above or below TiO2 nanoarrays, and the fabricated
devices demonstrated high detection sensitivity, fast photoresponse time, and self-powered
performance. Wang et al. [16] assembled a UV sensor based on vertically aligned TiO2
nanowire arrays interconnected with ZnO nanosheets, which achieved UV light sensing
performance. In addition to metal oxides, conducting polymers with good conductiv-
ity and reversible chemical states have also been used to improve the UV response of
TiO2 [17–21]. Che et al. [20] fabricated TiO2 nanoarrays/PEDOT-type conducting polymers
composites via electrochemical polymerization, which achieved good UV photo-detection
performances. Kareem et al. [21] synthesized a nanocomposite composed of polypyrrole
(PPy) nanofibers and TiO2 nanoparticles, which showed improved optical sensitivity. These
results indicate that UV photodetectors with good performance can be obtained by con-
structing semiconductor composite materials, especially by constructing heterojunctions.

The formation of a heterojunction is closely related to the interface contact state of
semiconductor composites. Therefore, high efficiency, large scale, and stable construction
of nano-composites with controllable microstructure and morphology are the premise of
preparing photoelectric devices with excellent performance by developing an appropriate
preparation process. Good interface contact is the prerequisite for the formation of a
stable heterojunction. The spin-coating method is simple and easy to operate, which can
fabricate composite devices on a large scale, but the interface contact is difficult to control.
Electrochemical in situ polymerization has the advantages of high efficiency, simplicity, and
easy operation, but it has a narrow application range and can be applied to fewer systems.
The interface contact formed by in situ chemical polymerization is close and stable, but the
efficiency of this method is low. In our previous research, TiO2/PANI nanocomposites with
controllable microstructure were successfully prepared by in situ chemical polymerization
and low-speed spin coating, which showed excellent photoelectric response performance.
These works provide a solid foundation for further preparation of other TiO2 composites
and the study of their photoelectric response properties.

The above findings demonstrated that the interface contact between the conducting
polymer and TiO2 would greatly influence the optical properties of their nanocomposites.
Therefore, it is highly desired to develop suitable approaches to tailor interface bonding of
PPy-TiO2-based nanocomposites for high-performance UV photodetectors. In this work,
we first successfully prepared TiO2 nanoarrays with regular microstructure through a
simple hydrothermal method. Additionally, then PPy film-coated-TiO2 nanorod arrays
were successfully synthesized via in situ oxidative polymerization. The thickness of
PPy film can be effectively controlled by the number of deposition times. The structural
characteristics and the optical properties of the as-prepared PPy-TiO2 nanocomposites were
systematically investigated.

2. Materials and Methods
2.1. Chemical Reagents

Acetone (AR, 99.8%), anhydrous ethanol (AR, 99.5%), and hydrochloric acid (37 wt.%)
were purchased from Guangzhou Chemical Reagent Factory (Guangdong, China). Tita-
nium butoxide (AR, 98%) was purchased from Shanghai Macklin Biochemical Co., Ltd.
(Shanghai, China), and pyrrole (Py, AR, 98%) and ammonium persulfate (APS, AR, 99%)
were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai,
China). All reagents were used directly without further treatment. Fluorine-doped tin
oxide (FTO) substrates were purchased from Nippon Sheet Glass Co., Ltd. (Osaka, Japan).
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2.2. Preparation of the TiO2 Nanorod Arrays

TiO2 nanorod arrays were synthesized via a simple hydrothermal method [22]. Fluorine-
doped tin oxide (FTO) substrate (25 mm × 25 mm, Nippon Sheet Glass Co., Ltd.) was
ultrasonically cleaned for 30 min in acetone, ethanol, and deionized water thrice and was
placed into a Teflon-liner stainless steel autoclave. A mixed solution of 30 mL of deionized
water, 30 mL of HCl (~37 wt%), and 1 mL of titanium butoxide was then poured into the
autoclave. The autoclave was sealed and transferred to an oven at 150 ◦C for 20 h. After the
autoclave cooled down to room temperature, the FTO substrate was taken out and rinsed
with deionized water five times to obtain TiO2 nanorod arrays grown on the FTO substrate.

2.3. Preparation of the PPy-TiO2 Nanocomposites

PPy-TiO2 nanocomposites were synthesized via in situ oxidative polymerization as
follows: Firstly, 160 µL pyrrole were added to 20 mL of 1 M HCl and stirred for 1 min.
Secondly, the prepared TiO2 nanorod arrays were placed in the above solution, and 1.5 mL
of 0.1 M APS solution were dropped into the solution. Subsequently, the mixed solution
was placed into a refrigerator at 0 ◦C for 1 h to acquire PPy-TiO2 nanocomposites. By
controlling the reaction times, nPPy-TiO2 nanocomposites obtained by different deposition
times were prepared, where n represented the deposition times (n = 1, 2, 3, and 4).

2.4. Fabrication of the FTO-nPPy-TiO2-FTO Device

The schematic diagram of the fabrication of the FTO-nPPy-TiO2-FTO device is shown
in Figure 1. A cleaned FTO substrate was taken, and its conductive surface was fixed face
to face with the nPPy-TiO2 nanocomposites on FTO to obtain the FTO-nPPy-TiO2-FTO
photodetectors. For comparison, the FTO-TiO2-FTO device was fabricated using a cleaned
FTO substrate and the FTO substrate that coated the TiO2 nanorod arrays.

Chemosensors 2022, 10, x FOR PEER REVIEW 3 of 13 
 

 

Ltd. (Shanghai, China), and pyrrole (Py, AR, 98%) and ammonium persulfate (APS, AR, 

99%) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shang-

hai, China). All reagents were used directly without further treatment. Fluorine-doped tin 

oxide (FTO) substrates were purchased from Nippon Sheet Glass Co., Ltd. (Osaka, Japan). 

2.2. Preparation of the TiO2 Nanorod Arrays 

TiO2 nanorod arrays were synthesized via a simple hydrothermal method [22]. Flu-

orine-doped tin oxide (FTO) substrate (25 mm × 25 mm, Nippon Sheet Glass Co., Ltd.) 

was ultrasonically cleaned for 30 min in acetone, ethanol, and deionized water thrice and 

was placed into a Teflon-liner stainless steel autoclave. A mixed solution of 30 mL of de-

ionized water, 30 mL of HCl (~37 wt%), and 1 mL of titanium butoxide was then poured 

into the autoclave. The autoclave was sealed and transferred to an oven at 150 °C for 20 h. 

After the autoclave cooled down to room temperature, the FTO substrate was taken out 

and rinsed with deionized water five times to obtain TiO2 nanorod arrays grown on the 

FTO substrate. 

2.3. Preparation of the PPy-TiO2 Nanocomposites 

PPy-TiO2 nanocomposites were synthesized via in situ oxidative polymerization as 

follows: Firstly, 160 μL pyrrole were added to 20 mL of 1 M HCl and stirred for 1 min. 

Secondly, the prepared TiO2 nanorod arrays were placed in the above solution, and 1.5 

mL of 0.1 M APS solution were dropped into the solution. Subsequently, the mixed solu-

tion was placed into a refrigerator at 0 °C for 1 h to acquire PPy-TiO2 nanocomposites. By 

controlling the reaction times, nPPy-TiO2 nanocomposites obtained by different deposi-

tion times were prepared, where n represented the deposition times (n = 1, 2, 3, and 4). 

2.4. Fabrication of the FTO-nPPy-TiO2-FTO Device 

The schematic diagram of the fabrication of the FTO-nPPy-TiO2-FTO device is shown 

in Figure 1. A cleaned FTO substrate was taken, and its conductive surface was fixed face 

to face with the nPPy-TiO2 nanocomposites on FTO to obtain the FTO-nPPy-TiO2-FTO 

photodetectors. For comparison, the FTO-TiO2-FTO device was fabricated using a cleaned 

FTO substrate and the FTO substrate that coated the TiO2 nanorod arrays. 

 

Figure 1. Schematic diagram of the fabrication of the FTO-nPPy-TiO2-FTO device. 

2.5. Characterization 

The morphologies of the samples were observed by scanning electron microscopy 

(SEM, JEOL, JSM-7001F, Rigaku Tokyo, Japan) and transmission electron microscopy with 

energy-dispersive spectroscopy (TEM, FEI Talos F200X, Thermo Fisher Scientific, USA). 

Figure 1. Schematic diagram of the fabrication of the FTO-nPPy-TiO2-FTO device.

2.5. Characterization

The morphologies of the samples were observed by scanning electron microscopy
(SEM, JEOL, JSM-7001F, Rigaku Tokyo, Japan) and transmission electron microscopy with
energy-dispersive spectroscopy (TEM, FEI Talos F200X, Thermo Fisher Scientific, USA). For
the TEM measurement, the PPy-TiO2 composite was first scraped off the FTO substrate,
then dispersed in anhydrous ethanol, and the supernatant was dropped onto a copper mesh
after 1 h of sonication and air-dried for use. The structural characteristics of the samples
were examined by Raman spectroscopy (LabRAM HR800, HORIBA Jobin Yvon, Japan). The
crystalline structures of the samples were characterized by X-ray diffraction (XRD, Bruker
D8 Advance, Germany). The surface properties of the samples were studied by X-ray
photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha, Thermo Fisher Scientific,
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USA), where the charge correction was based on a binding energy of 284.8 eV for C1s.
UV-Vis absorption spectra of the samples were recorded using a UV-Vis spectrophotometer
(UV 2450, Shimadzu, Japan). Photoluminescence (PL) spectra were used to investigate the
optical properties of the samples (FluoroMax-4, HORIBA Jobin Yvon, Japan). The photoelec-
tric performances of the fabricated devices were measured by a CHI660D electrochemical
workstation (Chenhua, Shanghai), where electrochemical impedance spectroscopy (EIS)
was performed at the open-circuit voltage of the device; the test frequency ranged from
0.01 to 100,000 Hz, and the amplitude was set to 5 mV. The UV light source was provided
by a portable UV lamp (~8W, ENF-280C, Spectronics, USA). The overall sensing area of the
fabricated UV photodetector was about 1.5 cm2. The UV light irradiated the device at an
incident angle of 30◦.

3. Results and Discussion
3.1. Structural and Optical Properties of the PPy-TiO2 Nanocomposites

The cross-sectional morphologies of all the nPPy-TiO2 nanocomposites prepared
by different deposition times were first observed by SEM, as shown in Figure 2. Both
samples showed similar morphologies, where PPy film was deposited on the surface
of TiO2 nanorods, and the thickness of the PPy layer can be effectively controlled from
20 nm~200 nm. With the increasing deposition times, the thickness of PPy film that coated
the surface of TiO2 nanorod arrays gradually increased, and the TiO2 nanorod arrays
remained neatly arranged. It can be seen that uniform PPy film was deposited on the TiO2
nanorods in 3PPy-TiO2 owing to the strong hydrogen bonding interaction between the
hydroxyl groups on the TiO2 surface and PPy, but with further deposition, aggregated
PPy particles appeared in 4PPy-TiO2 due to the completely covered binding sites on
the TiO2 surface, which indicated that the optimized deposition times were three times.
The above results suggested that the morphologies of the PPy-TiO2 composites can be
precisely regulated by the number of PPy depositions. TEM measurement was further
conducted to study the interfacial recombination between the PPy and TiO2. The TEM
images in Figure 3a,b further revealed the microstructure of 3PPy-TiO2, where a well-
defined composite interface labelled by yellow and white lines between the PPy and TiO2
array could be observed, indicating the good compatibility of the composite. The TiO2 array
was composed of a large number of small nanorods with sizes of about 5 nm and lengths of
about 1.1 µm (Figure S1), which is conducive to receiving more light stimulation and thus
enhancing the photo response performance. The clear lattice fringes of the HRTEM image in
Figure 3c demonstrated that the deposition of PPy would not destroy the lattice structure of
titanium dioxide. The interlayer spacing of 0.223 nm in Figure 3c was assigned to the (200)
crystal plane of rutile TiO2, and the corresponding selected area electron diffraction pattern
in Figure 3d show its typical single-crystal characteristics. Furthermore, the STEM image in
Figure 3e and the elemental mapping images in Figure 3f–i show the uniform distribution
of C, N, O, and Ti elements, suggesting uniform PPy deposition on TiO2 nanorods. This
might favor the good optical property of 3PPy-TiO2.

Raman spectroscopy was conducted to examine the structural properties of pure TiO2
and nPPy-TiO2 nanocomposites. As illustrated in Figure 4a, pure TiO2 showed three peaks
at 228, 435, and 598 cm−1 assigned to the characteristic signals of rutile TiO2 [23,24]. After
PPy deposition, these three peaks were slightly blue-shifted, indicating the existence of
chemical bonding between PPy and TiO2 nanorods. The chemical bonding may result
from the hydrogen bonding between the amino group of PPy and the surface hydroxyl
group of TiO2, and the light scattering ability of TiO2 was changed. Several new peaks
attributed to PPy also appeared in the range of 800~1800 cm−1. Namely, characteristic
peaks at 930, 1050, 1080, and 1252 cm−1 were the result of C-H deformation vibration in
PPy [25,26], the double peak at 1374 and 1332 cm−1 was the ring stretching vibration peak
of pyrrole [27,28], and the single peak at 1595 cm−1 was indexed to the C=C stretching
vibration of pyrrole ring [29,30]. Furthermore, the characteristic peak intensity of TiO2 in the
nPPy-TiO2 composites gradually weakened with the increased deposition times, indicating
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that rutile TiO2 had been completely covered by the newly generated PPy film. All XRD
patterns in Figure 4b show diffraction peaks at 2θ = 37.7◦, 39.4◦, 56.1◦, 64.4◦, 70.6◦, and
71.4◦ that can be indexed to (101), (200), (220), (310), (301), and (112) crystal planes of rutile
TiO2 (JCPDS No. 21-1276) [8], indicating the deposition of PPy did not change the crystal
structure of TiO2. These results are consistent with the analysis of TEM. Noteworthily,
the relative intensity of the diffraction peak of the (002) crystal plane in the PPy/TiO2
composite was weakened compared to pure TiO2, indicating that PPy was preferentially
deposited on the (002) crystal plane of TiO2. XPS measurements were further conducted
to detect the interface interaction between PPy and TiO2. Figure 4c show the XPS surveys
of TiO2 and 3PPy-TiO2, where a typical N1s signal assigned to PPy and a weakened Ti2p
signal appeared, and the Sn3d signal inherited from the FTO substrate disappeared after
PPy deposition, suggesting the successful combination of TiO2 and PPy. It was noteworthy
that the Ti2p1/2 and Ti2p3/2 of 3PPy-TiO2 up-shifted by 0.2 eV concerning their positions
in pure TiO2 in Figure 4d, indicating the electron transfer from PPy to TiO2 owing to the
strengthen interface interaction [31,32], which was beneficial for the improvement of the
photoelectric response of 3PPy-TiO2.
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The optical properties of pure TiO2 and nPPy-TiO2 nanocomposites were then char-
acterized by UV-Vis absorption spectra and a photoluminescence spectrum. As shown
in Figure 5a, pure TiO2 displayed an absorption edge around 420 nm, implying a band
gap of 3.0 eV of rutile TiO2 [33]. The absorption edges of nPPy-TiO2 nanocomposites
were around 410 nm, which suggested that PPy changed the band gap of the prepared
TiO2. Both nPPy-TiO2 nanocomposites exhibited stronger absorption than pure TiO2 under
UV light in the wavelength ranging from 220 to 400 nm, indicating PPy deposition could
extend the optical response range of TiO2 nanorod arrays. However, excessive deposition
in 4PPy-TiO2 caused a thick PPy film that blocked UV absorption, leading to decreased
absorption compared to 3PPy-TiO2. Figure 5b plot the PL features of the pure TiO2 and
nPPy-TiO2 nanocomposites, where the peak at 412 nm should stem from the band edge
recombination process of TiO2 [34], the peak at 450 nm might be attributed to inter-band
recombination [35], and the signal at 467 nm should correspond to oxygen vacancies [36].
Meanwhile, both nPPy-TiO2 nanocomposites showed lower PL intensity than pure TiO2,



Chemosensors 2022, 10, 277 6 of 12

resulting from the strong visible light absorption and the fast electron-hole separations in
nPPy-TiO2 nanocomposites.
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Figure 5. UV-Vis absorption spectra (a) and photoluminescence spectrum (b) of pure TiO2 and
nPPy-TiO2 nanocomposites prepared by different deposition times.

3.2. UV Photo-Detection Properties of the FTO-nPPy-TiO2-FTO Devices

FTO-TiO2-FTO and FTO-nPPy-TiO2-FTO devices were fabricated to investigate the
UV photo-detection properties. Figure 6 show the I-t curves detected with different UV
light illuminations, where FTO-nPPy-TiO2-FTO devices presented enhanced photocurrent
responses while the FTO-TiO2-FTO device showed almost no photocurrent, suggesting
that the deposition of PPy film promoted the UV photo-detection property of TiO2. The
photocurrent would immediately increase when FTO-nPPy-TiO2-FTO devices were irradi-
ated with UV light. In particular, the FTO-3PPy-TiO2-FTO device exhibited the strongest
photocurrent due to the proper thickness of PPy film. The FTO-3PPy-TiO2-FTO device
had a maximum photocurrent of 6.0 × 10−7 A at 254 nm irradiation and 2.5 × 10−6 A at
365 nm irradiation, which was superior to the maximum photocurrent of 2.7 × 10−7 A
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at 254 nm irradiation and 1.4 × 10−6 A at 365 nm irradiation of the FTO-4PPy-TiO2-FTO
device, the maximum photocurrent of 1.0 × 10−7 A at 254 nm irradiation and 0.8 × 10−6 A
at 365 nm irradiation of the FTO-1PPy-TiO2-FTO device, and the maximum photocurrent of
2.0 × 10−7 A at 254 nm irradiation and 0.2 × 10−6 A at 365 nm irradiation of the FTO-2PPy-
TiO2-FTO device. The I-V curves measured at dark and different UV light illuminations
of the FTO-3PPy-TiO2-FTO device in Figure S2 showed a rectifier phenomenon induced
by a p–n heterojunction. Furthermore, the FTO-3PPy-TiO2-FTO device had the highest
current under 365 nm wavelength UV light. In fact, under UV light, photoelectrons might
be efficiently inserted in the TiO2 conduction band and subsequently into PPy, which accel-
erated the separation of photogenerated charges and led to the high photocurrent of the
FTO-3PPy-TiO2-FTO device. By comparing Figure 6a,b, it was found that the photocurrent
when UV light was irradiated at 365 nm was higher than that at 254 nm, indicating that
the assembled device should hold great promise as a UV-detector at 365 nm. Accordingly,
the FTO-3PPy-TiO2-FTO device exhibited good performance with sensitivity of 41.7, re-
sponsivity of 3.5 × 10−3 A/W, and detectivity of 2.1 × 1012 Jones, which outperforms the
TiO2-based devices in previous literature as shown in Table S1.
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Electrochemical impedance spectroscopy (EIS) was further carried out to study the
interfacial charge transfer dynamics of the fabricated FTO-nPPy-TiO2-FTO devices. As
can be seen from the Nyquist plots in Figure 7, well-defined semi-circles that reflected
the charge transfer resistance were observed. The diameters of the semi-circles were
sorted as follows: 1PPy-TiO2 > 2PPy-TiO2 > 4PPy-TiO2 > 3PPy-TiO2, which was consistent
with the order of photocurrent magnitude. Notably, the FTO-3PPy-TiO2-FTO device had
the smallest semi-circle among the four devices, denoting the lowest interfacial charge
transfer resistance between PPy and TiO2 [37]. This might stem from the strong interaction
between PPy film and TiO2 nanorod arrays, which greatly enhanced the optoelectronic
properties of 3PPy-TiO2. In addition, the results of this study show that there was a certain
correlation between the interface conductivity and the thickness of the PPy layer in the
PPy-TiO2 semiconductor composite; too small or too large thickness was not conducive to
the improvement of its conductivity. Furthermore, the sample of 3PPy-TiO2 had the best
electrical conductivity, which was also one of the important reasons for its best photoelectric
response performance.

Based on the above results and discussion, the formation mechanism of photoelectric
response and the built-in electric field of the p-n junction of PPy-TiO2 are shown in Figure 8.
The dominated holes were easily lost in the p-type semiconductor of PPy, so the Fermi
level (EF) was close to the valence band (EV). Similarly, in the n-type semiconductor of
TiO2, electrons were dominant, and they were easily lost, so the Fermi level was close to the
conduction band (EC). PPy was in close contact with the TiO2 interface, and a p-n junction
was formed at the interface to form a built-in electric field, as shown in Figure 8c. The built-
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in electric field at equilibrium caused the energy band to bend so that the Fermi levels of the
two types of semiconductors were at the same level, and there was no net current flow in
the semiconductors. Figure 8a,b show the schematic diagram of the photoelectric response.
When UV light was irradiated on PPy-TiO2, photogenerated electron-hole pairs were
excited in TiO2, electrons were excited from the valence band of TiO2 to the conduction
band, and the presence of a built-in electric field effectively separated photogenerated
electron-hole pairs to form a net current so that inspection signals could be collected. It
can be seen from the mechanism diagram that the photocurrent was closely related to the
light response nature of the photosensitive material itself and the strength of the built-in
electric field. Improving the photoresponse performance of the UV detector can be achieved
by improving the photoresponse properties of the photosensitive material itself, such as
surface doping modification. In addition, the performance of the UV photodetector can
be improved by enhancing the strength of the built-in electric field at the interface of the
composite. The results show that there was a certain relationship between the intensity
of the electric field and the thickness of the semiconductor layer. That is, the thickness of
the semiconductor layer had an optimal value. When the thickness of PPy is too small,
the built-in electric field formed is weak, and when the thickness of PPy is too large, the
conductivity may be weakened.
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4. Conclusions

In summary, the TiO2 nanorod arrays were successfully prepared by a simple hy-
drothermal method. Additionally, a PPy film deposited-TiO2 nanorod arrays was con-
structed by simple in situ oxidative polymerization, and the nanocomposites served as
materials for UV photodetectors. The thickness of the PPy layer in PPy-TiO2 composite
material can be effectively regulated by the deposition times. Additionally, the thickness of
the PPy layer can be effectively controlled around 20 nm~200 nm. Furthermore, there was
a strong interaction between the TiO2 nanorod arrays film and the PPy layer. Additionally,
a p-n junction formed between PPy and TiO2, which inhibited the recombination of photo-
generated carriers in TiO2, leading to better UV photo-detection performance of PPy-TiO2
than pure TiO2 nanorod arrays. The photodetectors fabricated with 3PPy-TiO2 showed the
best performance with a sensitivity of 41.7 and responsivity of 3.5 × 10−3 A/W, which was
mainly due to their excellent electrical conductivity. This work provides a facile method to
prepare TiO2-based nanocomposites for UV photodetectors and is expected to be extended
to other fields, including electrochemical storage and microwave-absorbing.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors10070277/s1, Figure S1: TEM image (a) of TiO2
and SEM image (b) of TiO2-FTO film. Figure S2: The I-V curves of the FTO-3PPy-TiO2-FTO device.
Table S1: The comparison of results between previous reported PDs and our devices [20,38–41].
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