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Abstract: Acetone detection is of great significance for environmental monitoring or diagnosis of
diabetes. Nevertheless, fast and sensitive detection of acetone at low temperatures remains chal-
lenging. Herein, a series of rGO-functionalized three-dimensional (3D) In2O3 flower-like structures
were designed and synthesized via a facile hydrothermal method, and their acetone-sensing prop-
erties were systematically investigated. Compared to the pure 3D In2O3 flower-like structures, the
rGO-functionalized 3D In2O3 flower-like structures demonstrated greatly improved acetone-sensing
performance at relatively low temperatures. In particular, the 5-rGO/In2O3 sensor with an optimized
decoration exhibited the highest response value (5.6) to 10 ppm acetone at 150 ◦C, which was about
2.3 times higher than that of the In2O3 sensor (2.4 at 200 ◦C). Furthermore, the 5-rGO/In2O3 sensor
also showed good reproducibility, a sub-ppm-level detection limit (1.3 to 0.5 ppm), fast response
and recovery rates (3 s and 18 s, respectively), and good long-term stability. The extraordinary
acetone-sensing performance of rGO/In2O3 composites can be attributed to the synergistic effect
of the formation of p-n heterojunctions between rGO and In2O3, the large specific surface area, the
unique flower-like structures, and the high conductivity of rGO. This work provides a novel sensing
material design strategy for effective detection of acetone.

Keywords: In2O3 flower-like structures; rGO; composites; gas sensor; acetone

1. Introduction

Acetone, as a volatile organic compound (VOC), is widely used in industries and labo-
ratories [1,2]. However, due to its volatility and toxicity, it is becoming a typical pollution
gas and threatening our health. Long-term inhalation of acetone gas at concentrations over
173 ppm may cause serious health problems, such as headache, nausea, vomiting, and
central nervous system anesthesia [3]. Additionally, acetone can be used as a biomarker for
the diagnosis of type 1 diabetes. It has been found that the exhaled acetone concentration in
diabetes patients (1.8 ppm) is significantly higher than that of healthy controls (0.9 ppm) [4].
Therefore, developing an effective sensor operating in a wide acetone concentration range
is crucial for environmental monitoring or diagnosis of diabetes.

Recently, many kinds of sensors based on optical, electric, gravimetric transduction
techniques, etc., have been developed for detecting VOCs [5,6]. Avramov et al. presented
an optimization-mass-sensitive sensor using a surface acoustic wave (SAW)-based two-
port resonator as a highly sensitive quartz crystal microbalance (QCM), which exhibited
excellent VOC-sensing properties [7]. Kanawade et al. reported a new negative-axicon fiber-
optic sensor platform, which exhibits many desirable characteristics for sensing various
VOCs at room temperature [8]. However, how to reduce their production costs and limit of
detection, and to utilize real-time detection, should be deeply studied. Resistive gas sensors
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based on metal oxide semiconductors (MOX) are an important type of gas sensor due to
their low production cost, ease of fabrication, and good long-term stability [9–11]. Until
now, SnO2 [12], In2O3 [13], Fe2O3 [14], ZnO [15], WO3 [16], Co3O4 [17], CuO [18], V2O5 [19],
MoO3 [20], and other metal oxide semiconductors with micro/nanostructures have been
extensively investigated for the detection of various gases. Among them, In2O3, owing to
its wide band gap, high catalytic activity, and low resistivity, has proven to be an excellent
n-type sensing material for detecting VOCs such as methanol, ethanol, formaldehyde,
and acetone [21–26]. For example, Yoon et al. [22] synthesized In2O3 nanoparticles via a
microwave-assisted hydrothermal technology, which showed high responsivity and selec-
tivity to ethanol at 300 ◦C. Liu et al. [24] reported that Yb-doped porous In2O3 nanosheets
exhibited excellent sensing performance for acetone. Zhao et al. [25] synthesized hierar-
chical In2O3 nanostructures via a simple hydrothermal method, which showed ultrafast
response speed, excellent selectivity, and stability for formaldehyde. Nevertheless, the
rapid and accurate detection of trace acetone using In2O3 at a low temperatures remains a
great challenge and, thus, has been the focus of ongoing research.

In recent years, two-dimensional (2D) graphene-based nanomaterials, including
graphene oxide (GO) and reduced graphene oxide (rGO), have been extensively studied as
potential gas-sensing materials due to their high specific surface area, outstanding electri-
cal properties, abundant functional groups, and excellent charge-carrier mobility. [27,28].
Unfortunately, the low sensing response, slow response and recovery rates, and poor se-
lectivity of graphene-based sensing materials limit their practical application. Taking into
account the advantages of GO/rGO and MOX, the construction of GO/MOX or rGO/MOX
hybrid micro–nanostructures is considered an effective way to enhance gas-sensing perfor-
mances [29–32]. To date, a number of GO/MOX or rGO/MOX hybrids—such as SnO2/rGO,
rGO/Co3O4, rGO/WO3, rGO/In2O3, ZnO/rGO, etc.—have been prepared, and demon-
strate good sensing performance in detecting both oxidizing and reducing gases [33–38].
For instance, Meng et al. [33] prepared rGO/Co3O4 nanocomposites via a one-step hy-
drothermal method, which could detect ppb level xylene. Cao et al. [37] constructed
ZnO/rGO heterostructures through a chemiresistive approach, exhibiting good linearity
in the ppb range, high selectivity, and good long-term stability for NO2. Inspired by the
above results, it is hoped that researchers will be able to uniformly distribute 3D In2O3
flower-like structures on 2D rGO sheets via a feasible and economic route for developing
an acetone gas sensor with high performance.

In the present study, well-designed rGO-functionalized 3D In2O3 flower-like structures
were constructed via a one-step hydrothermal route, and their acetone-sensing properties
were systemically investigated. It was clear that the optimized rGO/In2O3 composites
demonstrated significantly enhanced acetone-sensing performance in comparison to pure
In2O3 flower-like structures. The remarkably improved sensing performance of rGO/In2O3
composites can be attributed to the synergistic effect of the formation of p-n heterojunctions
between rGO and In2O3, the large specific surface area, the unique flower-like structures,
and the high conductivity of rGO. This work provides a novel sensing material for effective
detection of acetone.

2. Experimental
2.1. Materials and Synthesis

Graphene oxide (GO) was synthesized via Hummers’ method using graphite flakes as
raw materials [39]. Then, the obtained GO was dispersed into ethanol and ultrasonically
treated for 1.5 h to obtain a uniform 0.5 mg/mL GO dispersion. The rGO-functionalized 3D
In2O3 flower-like structures were synthesized by a one-step hydrothermal route, which is
schematically illustrated in Figure 1. Typically, 0.13 g of indium nitrate (In(NO3)3·4.5H2O),
1 g of urea (H2NCONH2), and 0.26 g of sodium dodecyl sulfate (CH3(CH2)11OSO3Na)
were dissolved in 20 mL of distilled water, and then stirred for 0.5 h to obtain a transparent
solution. After that, a certain volume of GO solution was added to the above solution and
stirred at room temperature for 0.5 h to form a well-dispersed suspension with different
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mass ratio of rGO/In2O3. Diverse volumes of ethanol were added to the above mixtures
until the total volume was 40 mL. Subsequently, the mixed solution was transferred into a
50 mL Teflon-lined stainless steel autoclave and then heated in an oven at 160 ◦C for 3 h, in
which structural modification of the In2O3 flower-like structures and the reduction of GO
occurred simultaneously. After the reaction, the precipitate was collected by centrifugation
and washed several times with distilled water and ethanol to remove the impurities, and
then dried at 60 ◦C for 8 h. Finally, the obtained precursor was annealed in a tube furnace
at 400 ◦C for 2 h under a nitrogen atmosphere. In our experiment, the mass ratio of GO in
the composites was 1 wt%, 3 wt%, 5 wt%, 7 wt%, and 10 wt%, respectively; consequently,
the rGO/In2O3 composites were labeled as 1-rGO/In2O3, 3-rGO/In2O3, 5-rGO/In2O3,
7-rGO/In2O3, and 10-rGO/In2O3, respectively. For comparison, the pure In2O3 flower-like
structures were synthesized individually by the same procedure without the addition
of GO.
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2.2. Materials Characterization

The crystal structure of the rGO/In2O3 composites was characterized by X-ray diffrac-
tion (XRD, Shimadzu XRD-6100). The surface morphologies of the rGO/In2O3 composites
were analyzed using field-emission scanning electron microscopy (FE-SEM, ZEISS Ultra
Plus). The internal structure of the rGO/In2O3 composites was further observed by high-
resolution transmission electron microscopy (HRTEM) on a TEM system (JEOL, JEM-2100F).
The distribution of elements was obtained by energy-dispersive spectrometry (EDS) map-
ping on a JEOL-JEM-2100F TEM. Then, the specific surface area and pore size distribution
were analyzed by the Brunauer–Emmet–Teller (BET, Quantachrome Autosorb1-C) method
and the Barrett–Joyner–Halenda (BJH) model. In addition, the surface compositions and
states of the rGO/In2O3 composites were investigated by X-ray photoelectron spectroscopy
(XPS, JEOL JPS9010MC).

2.3. Sensor Fabrication and Measurement

The gas sensor was fabricated as follows: First, an appropriate amount of rGO/In2O3
or pure In2O3 powder was ground and mixed with ethanol to form a homogeneous slurry,
which was then coated on the outer surface of the ceramic tube electrode. The ceramic tube
electrode was composed of four Pt wires and two Au electrodes spaced 6 mm apart. After
forming a sensing film by evaporating ethanol, a Ni-Cr heated wire was passed through
the hollow ceramic tube, and the Ni–Cr wire and Pt wires were subsequently welded on a
hexagonal base to fabricate the gas sensor, as shown in Figure 1. Finally, the gas sensor was
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placed on a TS60 desktop (Winsen Electronics Co., Ltd., Zhengzhou, China) and aged at
400 ◦C for 48 h to ensure the stability of the sensing device.

Gas-sensitive measurements of the fabricated sensors were performed on a commercial
WS-30A system (Winsen Electronics Co., Ltd., Zhengzhou, China) under static laboratory
conditions (temperature: 20–25 ◦C; relative humidity (RH): 20–35%). To obtain the target
gas, corresponding volumes of testing liquid were injected into the testing chamber (18 L)
using a microsyringe and then evaporated to record and analyze the change in current. The
following equation can be used to calculate the target gas concentration:

C =
22.4×ϕ× ρ×V

Vchamber ×M
(1)

where V is the volume (µL) of the injected testing liquid, Vchamber is the volume (L) of the
testing chamber, C is the vapor concentration (ppm) of the target gas, M is the molar mass
(g/mol) of the target gas, ρ is the density (g/mL) of the testing liquid, and ϕ is the volume
fraction of the target gas. After the gas-sensing response reached a constant value, the
testing gas was released by opening the chamber. Herein, the sensing response to different
target gases was defined as Ra/Rg, where Ra and Rg are the resistance of the sensors in air
and target gases, respectively. Moreover, the response and recovery time were calculated
as the time required to achieve 90% change in resistance after the sensor was exposed to
the target gas and fresh air, respectively.

3. Results and Discussion
3.1. Structural and Morphological Characteristics

Figure 2 illustrates the XRD patterns of the In2O3 and rGO/In2O3 composites. In2O3
displayed perfect crystallinity, and the diffraction peaks that appeared at 2θ values of 21.5,
30.6, 35.5, 37.7, 39.8, 45.7, 51.0, and 60.7◦ were ascribed to the (211), (222), (400), (411), (420),
(431), (440), and (622) planes of the cubic phase In2O3 (JCPDS No. 06-0416), respectively.
As for the rGO/In2O3 composites, all of the diffraction peaks were consistent with In2O3,
indicating that introducing rGO to In2O3 has no obvious influence on the phase. Here,
there were no obvious diffraction peaks of rGO in the patterns, which might have been due
to the low content of rGO in the composites and the low diffraction intensity of rGO. In
addition, no other impurity peaks were observed, confirming their high purity.

The morphology of the In2O3 and rGO/In2O3 composites was investigated by FE-
SEM, as shown in Figure 3. The low-magnification FE-SEM image (Figure 3a) clearly
demonstrates numerous 3D In2O3 flower-like structures with diameters ranging from 1 to
2 µm. These flower-like structures were composed of nanorods with diameters of 100 to
300 nm (Figure 3b), and a specific spacing between each nanorod was clearly observed,
illustrating their porous structures. From the FE-SEM images of the 1-rGO/In2O3 compos-
ites (Figure 3c,d), it is clear that the 3D In2O3 flower-like structures remained, and some
of them uniformly attached to the surface of the rGO sheets, forming a 3D interconnected
structure, and thereby contributing to enhancement of the sensing properties. Moreover, the
crumpled rGO sheets with many folds and wrinkles exhibited a clean and transparent film.
The morphologies of the 3-rGO/In2O3, 5-rGO/In2O3, 7-rGO/In2O3, and 10-rGO/In2O3
composites were similar to that of the 1-rGO/In2O3 composites, as shown in Figure 3e–l. It
is worth noting that there were no significant changes in the size and the uniformity of the
In2O3 flower-like structures. Additionally, with increasing the mass ratio of rGO, many
ultrathin layered structures were observed, and some of them tend to aggregate with one
another, which is unfavorable for the gas-sensing property.
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The In2O3 flower-like structures attached on the rGO sheets were also clearly observed
in the TEM image (Figure 4a), consistent with the FE-SEM image. The HRTEM image
(Figure 4b) shows that 0.292 and 0.179 nm lattice spacings fit well with the (222) and (440)
crystal planes of In2O3 [40]. Meanwhile, the EDS elemental mappings (Figure 4c–e) clearly
indicate that the In, O, and C are uniformly distributed throughout the whole region,
further implying the formation of the rGO/In2O3 composites. Taking the results of the
FE-SEM and TEM observations into account, it is possible to conclude that the rGO/In2O3
composites were successfully prepared.
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XPS analysis was performed to investigate the surface composition and chemical state
of the 5-rGO/In2O3 composites. The survey spectra shown in Figure 5a show that the
rGO/In2O3 composites were mainly composed of In, O, and C, confirming the successful
preparation of the rGO/In2O3 composites. The In 3D symmetric peaks with binding energy
of 444.83 eV and 452.37 eV (Figure 5b) were attributed to In3d3/2 and In3d5/2, respectively,
indicating the existence of In3+ in the composites [41,42]. Figure 5c depicts three differ-
ent chemical states of O 1s peaks at 530.30 eV, 531.84 eV, and 533.36 eV, corresponding
to lattice oxygen (OL), oxygen vacancies (OV), and the surface hydroxyl groups (OOH),
respectively [43]. As for the C1s XPS spectrum of the composites (Figure 5d), it can be
decomposed into three peaks at 284.60 eV, 285.55 eV, and 289.64 eV, which correspond to
C=C–C, C–O/C–In, and C=O bonds in the rGO/In2O3 composites, respectively [44]. The
above results further demonstrate the successful preparation of rGO/In2O3 composites.

The nitrogen adsorption–desorption measurements were performed to further confirm
the specific surface area and porous structures of the samples. From Figure 6a,b, it can be
seen that both of the curves are recognized as type IV isotherms with obvious hysteresis
loops, indicating the formation of mesopores in the samples [45]. The specific surface
area of the In2O3 and 5-rGO/In2O3 composites was calculated to be 35.4 and 64.6 m2/g,
respectively. Obviously, the surface area of the 5-rGO/In2O3 composites was significantly
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higher than that of pure In2O3, due to the introduction of rGO. The pore size distribution
diagram (inset) shows that the pore size of the In2O3 and rGO/In2O3 composites was
predominantly concentrated at 8.129 and 6.124 nm, respectively, indicating the existence
of many mesopores in the products. As a result, the rGO/In2O3 composites possess a
higher specific surface area and a porous structure, which is advantageous for effective gas
absorption and diffusion, contributing to the improved sensing performance.
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3.2. Gas Sensing Performance

In order to investigate the effects of rGO mass ratios on the sensing performance of
In2O3 sensors, we fabricated gas sensors made of In2O3 flower-like structures and rGO-
functionalized In2O3 flower-like structures, and tested their sensing performance. It is well
known that the operating temperature has a significant impact on the sensing properties of
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gas sensors. In order to evaluate the effect of operating temperature on the sensing ability
and obtain the optimal operating parameters, the sensing response to 10 ppm acetone was
first examined in the temperature range of 50 to 250 ◦C, as shown in Figure 7a. It was
clearly found that all response curves showed an “increase-maximum-decrease” trend.
This response pattern can be mostly attributed to the kinetic and thermodynamic factors
of gas adsorption and desorption on the surface of the sensing materials [46,47]. The
optimal operating temperature of the In2O3 sensor was 200 ◦C, while it was 150 ◦C for
all rGO/In2O3 sensors, indicating that introducing rGO to In2O3 flower-like structures
can effectively reduce the optimal operating temperature. The corresponding response
values of sensors based on composites with different rGO mass ratios at their optimal
operating temperatures are summarized in Figure 7b. Obviously, all rGO/In2O3 sensors
except the 10-rGO/In2O3 sensor exhibited higher responses than that of the In2O3 sensor
at their optimal operating temperature. In particular, the 5-rGO/In2O3 sensor exhibited
the highest response value of 5.6, which was about 2.3 times higher than that of the In2O3
sensor (2.4 at 200 ◦C). This suggests that introducing an appropriate amount of rGO not
only effectively reduces the optimal operating temperature, but also significantly improves
the acetone-sensing response. Herein, considering the high acetone-sensing performance
of the 5-rGO/In2O3 sensor, this sensor was chosen for further study of other characteristics
at its optimal operating temperature of 150 ◦C.
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The transient response and recovery curves of the 5-rGO/In2O3 sensor to different
concentrations of acetone (0.5 to 100 ppm) at 150 ◦C are displayed in Figure 8a. As can
be seen, the resistance dropped rapidly upon exposure to acetone, and quickly returned
to its initial resistance value after removing the acetone, demonstrating typical n-type
semiconductor sensing features. Moreover, the response and recovery behavior repeated
very well, revealing good reversibility and stability. It should be noted that the resistance
change is still considerable when exposed to 0.5 ppm acetone, indicating that the detec-
tion limit could extend down to sub-ppm levels. To exhibit its response performance,
the corresponding response values of the 5-rGO/In2O3 sensor as a function of acetone
concentration are illustrated in Figure 8b. Apparently, the responses value rapidly increases
with increasing acetone concentration in the range of 0.5 ppm to 10 ppm. However, when
the concentration is above 10 ppm, the rate of increase in the response value tends to slow
down due to the high coverage of acetone molecules on the surface of the sensing material.
Moreover, the sensor has an obvious response to sub-ppm levels of acetone (0.5 ppm, 1.3).
Figure 8c presents the transient response and recovery curve of the 5-rGO/In2O3 sensor
when exposed to 10 ppm acetone at 150 ◦C. The response and recovery times were calcu-
lated to be 3 s and 18 s, respectively, revealing quick response and recovery characteristics
as the acetone gas is injected and exhausted. As for practical gas-sensing applications,
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selectivity and stability are of great importance. Figure 8d displays the sensing response
of the 5-rGO/In2O3 sensor to 10 ppm potential interfering gases (i.e., ethanol, methanol,
formaldehyde, trimethylamine, and ammonia) at 150 ◦C. The sensor exhibited a higher
response to acetone compared to other interfering gases, indicating its good selectivity.
Additionally, the response values of the 5-rGO/In2O3 sensor to different concentrations
(0.1 ppm, 0.5 ppm, and 10 ppm) did not decrease significantly after the 30-day testing period
(Figure 8e), implying its good long-term stability. As shown in (Figure 8f), the responses of
the 5-rGO/In2O3 sensor to 10 ppm acetone at 150 ◦C showed slight decreases under relative
humidity (RH) ranging from 25% to 45%, and an obvious decrease at RH levels above
75%. This decrease in sensing responses can be ascribed to the adsorption competition
between oxygen species and water molecules on the sensor surface [48]. Furthermore, the
acetone-sensing performance in this work was compared with the previous literature, as
summarized in in Table 1. Compared with the previous reports, our 5-rGO/In2O3 sensor
had the noticeable advantages of high response values at a relatively low operating temper-
ature, a sub-ppm-level detection limit, and short response and recovery times, suggesting
its potential application as an acetone sensor. However, there are also some drawbacks in
this work. For example, how to overcome the influence of water vapor on the gas-sensing
characteristics at high RH levels (>75%) should be further investigated for the diagnosis
of diabetes in real applications. Moreover, the unsatisfactory selectivity should be also
improved by coating functional materials as a “selective gas filter” on the sensing layer
surface in future works.
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Figure 8. (a) The transient response and recovery curves for acetone in the range of 0.5–100 ppm.
(b) The corresponding sensing response as a function of acetone concentration. (c) The dynamic
sensing transients to 10 ppm acetone. (d) The selectivity and (e) long-term stability for 0.5/1/10 ppm
acetone. Here, the sensor is made of 5-rGO/In2O3 composites, and the operating temperature is
150 ◦C. (f) The sensing responses to 10 ppm acetone under different relative humidity levels at 150 ◦C.
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Table 1. Comparison of sensing properties for acetone detection.

Sensing Materials Temp. (◦C) Con. (ppm) Response (Ra/Rg) Res./Rec. Time (s) Detection Limit Ref.

ZnO/NPC 350 100 25.47 3/150 1 ppm [49]
α-Fe2O3-24 220 100 46.6 1/15 1 ppm [50]

Ag-TiO2 nanobelts 260 500 28.25 6/8 10 ppm [51]
Ag@CuO-TiO2 200 100 6.2 9/56 1 ppm [52]

WO3 200 100 28.7 3/113 2 ppm [53]
SnO2 nanotubes 325 100 20.3 66/15 5 ppm [54]

In2O3 200 10 2.37 8/44 1 ppm This work
5-rGO/In2O3 150 10 5.57 3/18 0.5 ppm This work

3.3. Acetone-Sensing Mechanism

Generally, for chemiresistive gas sensors, the sensing characteristics can be attributed
to the resistance variation induced by the adsorption and desorption of gas molecules
on the surface of the sensing materials, along with the surface redox reaction [55]. For
the In2O3 sensor, numerous oxygen molecules in the air atmosphere are adsorbed on the
surface of the sensing film, and capture free electrons from the In2O3 conduction band,
forming chemisorbed oxygen species (O2

− O− and O2−) via the following reactions [56]:

O2(ads) + e− → O2
−

(ads) (2)

O2
−

(ads) + e− → 2O−(ads) (3)

O−(ads) + e− → O2−
(ads) (4)

Consequently, an electron deletion layer is created at the surface of In2O3, leading to a
relatively high resistance state. As the reducing gas (acetone) is introduced, redox reactions
between acetone molecules and the chemisorbed oxygen species take place, and then the
electrons captured by oxygen molecules are released back into the In2O3 conduction band.
In this process, the electron depletion layer becomes narrow and, thus, the resistance of the
sensing materials decreases, ultimately generating a sensing signal. The related reactions
are listed as follows [57]:

CH3COCH3 (gas)→ CH3COCH3 (ads) (5)

CH3COCH3 (ads) + 4O2
− (ads)→ 3CO2 + 3H2O + 4e− (6)

CH3COCH3 (ads) + 8O− (ads)→ 3CO2 + 3H2O + 8e− (7)

Compared to the In2O3 sensor, the rGO/In2O3 sensor shows a significant improve-
ment in sensing performance, which can be attributed to the following factors (Figure 9):
First of all, the formation of a p-n heterojunction at the interface between n-type In2O3 and
p-type rGO is one of the main factors improving the sensors’ performances [58]. When
In2O3 and rGO contact one another, the electrons flow from the n-type In2O3 with low work
function to the p-type rGO with high work function until the Fermi energy level reaches
equilibrium [59]; thus, a potential barrier is created at the heterojunctions. Consequently,
two different depletion layers coexist in the rGO/In2O3 composites: one is the depletion
layer formed by the adsorption of oxygen molecules at the surface of In2O3, and the other
is created at the interface between rGO and In2O3 (p-n heterojunctions). As a consequence,
the expanded depletion layer and potential barrier simultaneously lead to a high resistance
state. The increase in the rGO/In2O3 composite’s resistance is also confirmed by our exper-
imental results. As shown in Figure 9d, the resistance value of the 5-rGO/In2O3 sensor is
much higher than that of the In2O3 sensor throughout the whole temperature range, indi-
cating that the formation of p-n heterojunctions contributes to raising the resistance value.
Upon exposure to acetone, the local heterojunctions between rGO sheets and In2O3 flower-
like structures offer additional resistance modulation by altering potential barriers and two
electron depletion layers. According to the definition of the sensor response (S = Ra/Rg),
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the total resistance of the rGO/In2O3 composites could be distinctly changed, inducing
significant enhancement of the sensing response. Moreover, the formation of rGO/In2O3
heterojunctions can also generate more active sites, such as including point defects and
vacancies, which further adds to the increase in the sensing response [60]. The second
aspect originates from the coupling interaction between rGO sheets and In2O3 flower-like
structures, which creates a 3D interconnected structure and plays an important role in
gas-sensing applications. The intercalation of rGO sheets can prevent the agglomeration of
In2O3 flower-like structures, which not only significantly increase the specific surface area
for more efficient gas adsorption reactions, but also offer more pathways for facilitating gas
diffusion and transport, thus improving the sensing performance [61]. It has already been
confirmed from BET analysis that the specific surface area of the rGO/In2O3 composites is
higher than that of the In2O3 flower-like structures. In addition, rGO, owing to its quantity
of dangling bonds and surface defects, is favorable for the adsorption of target gases [62].
Meanwhile, the unique In2O3 flower-like structures also facilitate the operative access
of gases to the surface. These characteristics greatly contribute to enhancing the sensing
response and recovery properties of rGO/In2O3 composites. Thirdly, the excellent electron
conductivity of rGO is a positive factor for the enhanced sensing performances. From the
FE-SEM images, it can be seen that the rGO sheets disperse adequately on the composites,
and could act as an electron transfer layer accelerating the electronic transmission rate
at the interfaces between In2O3 and rGO. This is helpful for reducing the optimal tem-
perature and improving repeatability and stability. Based on the above discussion, the
combination of In2O3 and rGO contributes to the superior sensing properties, including
high response at relatively low temperatures, good stability, and fast response and recovery
rates, demonstrating potential application for detecting acetone.
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4. Conclusions

In summary, a series of well-designed 3D interconnected rGO/In2O3 heterojunction
structures were successfully constructed using a simple hydrothermal method. The FE-SEM
and TEM analyses showed that In2O3 flower-like structures with sizes of 1–2 µm uniformly
attached on the surface of the rGO sheets. Both the TEM-EDS and XPS results demonstrated
the existence of In, O, and C, revealing the successful preparation of the rGO/In2O3
composites. In addition, the BET surface area of the 5-rGO/In2O3 composites (64.6 m2/g)
was significantly higher than that of pure In2O3 (35.4 m2/g), implying their better sensing
properties. As a result, the rGO/In2O3 composites achieved much better acetone-sensing
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properties compared to pure In2O3 flower-like structures at the relatively low temperature
of 150 ◦C. Specifically, the 5-rGO/In2O3 composites exhibited the highest response value of
5.6 to 10 ppm acetone, which was around 2.3 times higher than that of the In2O3 flower-
like structures (2.4 at 200 ◦C). Furthermore, they also displayed good reproducibility, a
sub-ppm-level detection limit (1.3 to 0.5 ppm), a fast response/recovery rate (3/18 s), and
good long-term stability. The large advancement for rGO/In2O3 composites in acetone-
sensing performance can be attributed to the synergistic effect of the formation of p-n
heterojunctions between rGO and In2O3, the large specific surface area and unique flower-
like structure, and the high conductivity of rGO. This work not only developed a high-
performance gas sensor to detect acetone, but also provides a novel strategy to enhance the
sensing performance for MOX gas-sensing materials by reasonably utilizing the synergistic
effect of structure and components.
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