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Abstract: A novel enzyme-free photoelectrochemical (PEC) potential measurement system based on
Dy-OSCN was designed for ascorbic acid (AA) detection. The separation and transmission of internal
carriers were accelerated and the chemical properties became more stable under light excitation
due to the regular microstructure of the prepared Dy-OSCN monocrystal. More importantly, the
PEC potential method (OCPT, open circuit potential-time) used in this work was conducive to the
reduction of photoelectric corrosion and less interference introduced during the detection process,
which effectively ensured the repeatability and stability of the electrode. Under optimal conditions,
the monocrystal successfully served as a matrix for the detection of AA, and the prepared PEC
sensor exhibited a wide linear range from 7.94 × 10−6 mol/L to 1.113 × 10−2 mol/L and a sensitive
detection limit of 3.35 µM. Practical human urine sample analysis further revealed the accuracy and
feasibility of the Dy-OSCN-based PEC platform. It is expected that such a PEC sensor would provide
a new way for rapid and non-invasive AA level assessment in human body constitution monitoring
and lays a foundation for the further development of practical products.

Keywords: PEC potential method; sensor; Dy-OSCN monocrystal; ascorbic acid; human urine

1. Introduction

Ascorbic acid (AA), also known as vitamin C [1], has long been considered an impor-
tant antioxidant [2–4], which can effectively protect organisms from oxidative stress-related
damage [5,6] and plays an important role in maintaining normal physiological functions
of the body [7]. As an essential nutrient, AA is widely involved in human metabolisms,
such as effectively promoting the synthesis of collagen and mucopolysaccharides as well as
enhancing the strength of blood vessels [8]. AA is of great biomedical value among many
important molecules in clinical medicine [9]. Diseases such as scurvy, schizophrenia, and
Parkinson’s disease may be associated with abnormal AA levels [10,11]. Thus, simple and
timely detection of AA is of great significance in physiology, drug research, and disease
diagnosis. Taking blood multiple times to test the level of AA in the blood is very unfriendly
to humans, which may also increase the risk of infection during the testing process [12].
Fortunately, AA exists not only in human blood, but also widely in extracellular fluid and
urine [8]. It points out a new direction for the non-invasive determination of AA content in
the human body by detecting the concentration of AA in human urine [13]. Through the
collection of human urine, the determination of AA content in vitro can effectively feedback
the level of AA in human blood, so as to achieve the purpose of monitoring the health
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index of AA content in the human body without repeated blood collection [14]. Based on
the above reasons, achieving the AA content in human urine with fast, low cost, accurate
analysis was of great importance.

Various kinds technology, such as high performance liquid chromatography (HPLC) [15],
capillary electrophoresis [16,17], colorimetric analysis [18], electrochemical [19,20], voltam-
metric [21] and fluorescence [22] have been developed for AA detection. In general, some
of those technologies have at least one disadvantage, such as requiring expensive and
complex equipment, tedious preparation steps or lack of portability. For commonly enzyme
sensors, it can quickly and efficiently detect the concentration of AA [23,24], while the
consumption of biological enzymes often brings higher costs, which are unstable under
room temperature and the harsh storage conditions, so enzyme modification electrochem-
ical methods have not been used widely [25–27]. So far, there have been few reports of
research on enzyme-free electrochemistry. Those methods often need the support of large
equipment, complex testing process, low efficiency, and high testing costs. Due to the
inherent characteristics of the electrochemical sensor [28–30], it provides a promising de-
tection mode for the rapid determination of the concentration of AA, which also provides
the possibility of product conversion [31,32]. However, achieving high sensitivity and
wide detection range is the major challenge for the electrochemical sensor in practical
applications [13]. In general, the electrochemical measurement of AA is mainly based on
the redox reaction of AA on the electrode surface. Direct electrochemical oxidation of AA
on conventional electrodes is an irreversible reaction requiring high over potential, which
will lead to electrode contamination and catalysis of other oxidizing substances [33], thus
interfering with detection. In order to improve the selectivity of AA and reduce the overpo-
tential of catalytic oxidation, the exposed electrode surface is usually modified by electronic
media, conductive or selective polymer membranes, and ascorbate oxidase [33,34]. Such
electrode modification requires long and tedious preparation steps, and the introduction
of a peripheral polymer film leads to an extremely complex electron transfer process [35].
Therefore, the development of a fast, simple, enzyme-free PEC method to determine the
concentration of AA possesses a promising development prospect.

As a novel sensing method, photoelectrochemical (PEC) sensing demonstrates good
performance compared to traditional electrochemical and optical sensors due to the entire
isolation of the electrochemical signals and optical sources. Owing to the advantages of
simple devices, low cost, fast analysis time, high sensitivity, and low background signal,
the design and synthesis of semiconductor materials with excellent photoelectric chemical
properties have attracted the attention of many researchers [36]. Although many functional
nanomaterials were applied for photoelectrochemical sensing to improve the sensitivity
and selectivity, the detection is still affected by the redox reaction that happens in the
system. As a new detection method, the PEC potential method had almost no current flow
on the electrode surface and preventing REDOX reactions between AA and other molecules
on the interface. No new species entering the system meant the entire system was not
compromised during testing. As an active substance, AA is prone to REDOX reaction
in the detection system, and the PEC potential method provides an appropriate method
for the detection of AA. Supported by the PEC potential method, an enzyme-free AA
photoelectrochemical (PEC) potential detection system based on a Dy-OSCN monocrystal
semiconductor was developed. The regular structure of Dy-OSCN [37–39] is favorable for
the separation and transmission of carriers in the semiconductor under light excitation.
Meanwhile, when Dy6-SCN was modified on the electrode surface and calcined in the tube
furnace to generate Dy-OSCN, it would possess the advantage of stable chemical properties
and light corrosion-resistant, which greatly improves the stability and repeatability of
detection. Moreover, the prepared sensor achieved a good RSD (relative standard deviation)
in the actual detection of human urine. In summary, this study establishes a novel PEC
potential system and uses it for the detection of AA for the first time. The use of Dy-OSCN
achieves a low-cost, rapid and accurate determination of AA that can provide a new idea
for the molecular detection of human vital substances.
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2. Materials and Methods
2.1. Chemical Reagents and Materials

All reagents were commercially available as analytical reagent grade and used as
received unless otherwise stated. AA, glucose (GC), uric acid (UA), citric acid (CA), L-
Proline (L-Pro), L-Threonine (L-Thr), L-histidine (L-His), L-lysine (L-Lys) and glutathione
(GSH) were offered by Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). Methanol,
acetonitrile, urea, triethylamine, acidity, Na2HPO4, NaH2PO4, KCl, CaCl2·2H2O, NaCl,
MgCl2 and ethanol were bought from InnoChem Science & Technology Co., Ltd. Beijing,
China, 4, 6-dihydrazine pyrimidine, o-vanillin and dysprosium thiocyanate were the self-
manufactured semi-finished product.

2.2. Apparatuses

In this work, the structure information was collected by the Ultima IV X-ray diffrac-
tometer (Cu Kα ray, λ = 0.15405 nm, Bright Industrial (Shanghai, China) Co., LTD.). X-ray
photoelectron spectroscopy (XPS) was used to characterize the surface chemical valence
states of the materials with Thermo ScientificTM K-AlphaTM+ spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA). A scanning electron microscope (SEM, SU8220, Hitachi,
Japan) was used to observe the morphology characteristics of the samples. Characterization
of the high-power transmission electron microscope (TEM and HRTEM, JSM-2100F, JEOL,
Japan) was performed at an accelerating voltage of 200 kV. UV−vis diffuse reflectance
spectra of the samples were measured on a UV-vis spectrophotometer (U-3900, Hitachi,
Japan). The Fourier transform infrared spectra were recorded with a TENSOR II Series FTIR
Spectrometer (Bruker Co., Berlin, Germany). All electrochemical experiments were carried
out on the electrochemical workstation (CHI760E, CH Instruments, Shanghai, China) with
two electrodes: a surface modified F-doped indium tin oxide (FTO) electrode as the working
electrode and saturated calomel (3 mol·L−1 KCl) as reference electrode, respectively. The
electrolyte was 0.1 mol·L−1 PBS buffer solution with pH = 7.4. A PLS-LED100 LED lamp
equipped with a 10 W cut-off filter was used as the irradiation source (Beijing Perfectlight
Technology Co., Ltd.). All PEC experiments were carried out at room temperature.

2.3. Synthesis of Dy6-SCN

The [Dy6L2(µ3-OH)4(µ2-OH)2(SCN)8(H2O)4]·6CH3CN·2CH3OH·H2O (Dy6-SCN mon
ocrystal, Figure S5, see the Supplementary Materials) was prepared based on previous re-
ports [39]. The 0.1 mmol 4,6-dihydrazine pyrimidine, 0.2 mmol Dy(SCN)3·6H2O, 0.2 mmol
o-vanillin and 0.3 mmol triethylamine were dissolved in a mixture of 5 mL methanol and
10 mL acetonitrile, following by ultrasonic for at least 10 minutes to form a yellow and
homogeneous solution. The yellow solution was then transferred into the 25 mL sample
bottle and heated for 4 h under the temperature of 80 ◦C. After cooling to room temperature,
the suspension was filtered and a clear dispersion of Dy6-SCN was obtained.

2.4. Fabrication of Dy-OSCN/FTO PEC Sensor

As shown in Figure 1A, 11 pieces of cleaned FTO (1.5 × 2.5 cm2, with their conductive
side facing up) were placed in a surface dish with ϕ = 90 mm, and then added with 10 mL
Dy6-SCN monocrystal solution. The lid on the surface dish was covered and followed by
placing on a stable horizontal desktop until all the solvent dried naturally. The obtained
electrodes were then placed in a tubular furnace and heated to 400 ◦C for 2 h under
the N2 atmosphere. Cooling to room temperature, the Dy-OSCN/FTO electrodes were
finally prepared.
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Figure 1. (A) Synthesis process of the Dy-OSCN monocrystal photocatalysts; (B) SEM image, (C) TEM
image and (D–K) HR-TEM image of Dy-OSCN; (E–J) EDS images of Dy-OSCN.

2.5. Detection of AA

Under the optimal conditions, the performance of the same Dy-OSCN/FTO electrode
was measured. The Dy-OSCN/FTO electrode was placed into a self-made PEC detection
cell containing 2.5 mL 0.1 M PBS solution and used as the working electrode, together with
a saturated calomel electrode (SCE) used as a reference electrode to form a two-electrode
detection system. The PEC detections proceeded with the CHI760E electrochemical work-
station and the data were recorded with the technique type of open circuit potential-time
(OCPT). A 10 W cut-off filter was continuously powered on the LED lamp (λ = 465 nm)
from one side at a fixed distance as the irradiation source. After the potential signal was
stabilized, a certain concentration of AA was successively added to the testing cell for
detection (two times of 0.02 mL 1 mM AA, two times of 0.03 mL 1 mM AA, two times of
0.05 mL, 1 mM AA, 0.1 mL 1 mM AA, 0.02 mL 10 mM AA, 0.03 mL 10 mM AA, 0.05 mL
10 mM AA, 0.1 mL 10 mM AA, three times of 0.02 mL 100 mM AA, three times of 0.03 mL
100 mM AA, and six times of 0.05 mL 100 mM AA).

2.6. Conditions’ Optimization

After preparing AA standard solutions at concentrations of 1 mM, 10 mM, and 100 mM,
the process of optimizing the preparation conditions of electrodes was proceeding. In order
to explore the effect of calcination temperature and select the optimal wavelength of light
on the performance of the electrode, the Dy6-SCN/FTO electrodes were calcinated at the
temperature of 300 ◦C, 400 ◦C, and 500 ◦C, respectively. The calcined electrode was put
into the PEC detection cell and then detected 0.05 mL 1 mM AA, 0.05 mL 1 mM AA, 0.1 mL
1 mM AA, 0.05 mL 10 mM AA, 0.05 mL 10 mM AA, and 0.1 mL 10 mM AA standard
solution in sequence after the potential signal was stabilized. At the same time, in order
to select the optimal wavelength of light, LED lamps of different wavelengths (420 nm,
465 nm, 535 nm, and 630 nm) were used to irradiate the calcined electrodes. The results
were recorded in Tables S2 and S3.
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3. Results
3.1. Surface Morphology Analysis for As-Prepared Photocatalysts

The morphology of the Dy-OSCN monocrystal was characterized by SEM and TEM
images. As shown in Figure 1B,C, Dy-OSCN grew evenly in the shape of petals and formed
a dense block structure. The high-resolution transmission electron microscopy (HRTEM) in
Figure 1D was further used to ensure the structure of Dy-OSCN. The thickness of the active
layer on the surface of the electrode was 2.28 µm (Figure S7). The Dy crystal was embedded
in the substrate material and demonstrated a regular lattice gap structure with obvious
lattice diffraction patterns. The HR-TEM images, as well as the XRD pattern (Figure 2A),
can both demonstrate the well-crystallized materials. Figure 1K demonstrated that the
lattice spacing of Dy-OSCN was 0.214 nm, 0.220 nm, and 0.233nm, which corresponded
to the result of XRD in Figure 3. Observing the SEM and TEM morphology of Dy-OSCN
confirmed that the monocrystal material had been successfully fabricated. Furthermore,
the elemental mapping images (Figure 1E–J) demonstrated that O, C, N, Dy, and S elements
were evenly distributed in the Dy-OSCN monocrystal. The detailed content of elements was
shown in Table S1, which indicated that the stoichiometric formula of Dy-OSCN (400 ◦C)
could be determined by the ratio of element content of DyO3.59S0.48C9.35N7.21.
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Figure 3. (A) X−ray diffraction (XRD) images of Dy6−SCN; (B) fine XRD patterns of Dy−OSCN/FTO
electrode; (C) UV−vis DRS and Tauc plots of as-prepared Dy−OSCN/FTO electrode calcined at
400 ◦C.

3.2. Characterization of the Synthesized Materials

The chemical components and valence of the Dy-OSCN monocrystal were further
analyzed by X-ray photoelectron spectroscopy (XPS), and the results are shown in Figure 2A.
Two binding energies centered at 1334.06 eV and 1295.52 eV (Figure 2B) could be ascribed
to 3d3/2 and 3d5/2 [40], respectively. The two typical symmetrical peaks of 168.05 eV and
162.71 eV corresponded to S 2p (Figure 2C). The characteristic peaks of C 1s are shown in
Figure 2D, the peaks located at 283.88, 285.78, and 287.88 eV belonged to the adventitious
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carbon sp2 bonded (C=C) or (C-C) [41], sp2 C atoms bonded to N in (N-C=N) aromatic
rings [42] and sp3 hybridized C atom C-(N)3 [43], respectively. Two typical peaks of N
1s (Figure 2E) appeared at 399.64 eV and 397.93 eV [44], and the O 1s peak was located
at 530.98 eV (Figure 2F) [45]. These results were consistent with those of the HRTEM-
EDS analysis.

X-ray diffraction (XRD) patterns of crystal grown from a Dy6-SCN solution were
measured to verify that the Dy6-SCN monocrystal had been successfully synthesized
(Figure 3A). After the Dy6-SCN solution was modified on the surface of FTO and calcined
at 400 ◦C for 2 h in the N2 atmosphere to form Dy-OSCN/FTO, the characteristic peak of the
as-prepared electrode was not obvious and may have been submerged in the characteristic
peak of FTO (Figure S1, see the Supplementary Materials). However, in the high resolution
XRD pattern (Figure 3B), it was found that the diffraction peak angle of Dy-OSCN/FTO and
FTO was offset to a certain extent, indicating that Dy-OSCN was successfully fabricated on
the surface of FTO and formed a new crystal plane [37].

The optical absorption could be studied in the UV-Vis diffuse reflectance spectra
spectrum of the Dy-OSCN/FTO electrode in Figure 3C. The result demonstrated that the
Dy-OSCN/FTO electrode calcined at 400 ◦C had a strong absorption peak at a wavelength
of 300 nm. More importantly, the monocrystal also demonstrated ideal absorption in the
whole visible region and part of the near-infrared region, which provided suitable feasibility
for using another wavelength to excite semiconductors and realized the analysis of other
objects. Based on the UV-vis DRS spectrum, the Kubelka Munk function curve [46] of the
Dy-OSCN/FTO electrode was drawn, and the direct bandgap of the Dy-OSCN monocrystal
was calculated as 2.765 eV.

3.3. Conditional Optimization

After screening the calcinated temperature of the electrode and the wavelength of the
light source, the results were shown in Tables S2 and S3 and Figure S2 (see the Supplemen-
tary Materials). The calcinated temperature of 400 ◦C with a 465 nm excitation light source
showed the best linearity (R2 = 0.98) and the strongest potential signals compared to the
other conditions.

The optical absorption could be studied in the UV-Vis DRS spectrum of Figure S3A
showing that all prepared Dy-OSCN/FTO electrodes calcinated at different temperatures
could absorb visible light. The Kubelka–Munk curve (Figure S3B) showed that the widest
semiconductor bandgap was reached when the calcinated temperature of 400 ◦C. At the
same time, it can satisfy the excitation conditions of the 465 nm light source. Generally,
regarding the continuous excitation to generate carriers, the higher the bending degree of
the band in the semiconductor, the more conducive to PEC detection.

3.4. Analytical Performance of the PEC Sensor

Based on the optimum experimental conditions, the property of the Dy-OSCN/FTO
electrode was measured. The potential signals were decreased with the increase in the
target concentration in the range of 7.94 µM to 11.13 mM (Figure 4A). In order to ver-
ify the response of the electrode to AA, the linear regression equation was calculated
(Figure 4B), and there was a good three-step linear relationship between the potential
responses and the target concentrations (R2 = 0.991, R2 = 0.996, R2 = 0.992). The concen-
trations range from 7.94 × 10−6 mol/L to 7.407 × 10−5 mol/L, and the linear regression
equation was shown as ∆E(V) = −0.0076 C(mM)—0.04058, R2 = 0.991.The concentrations
range from 7.407 × 10−5 mol/L to 3.029 × 10−3 mol/L, and the linear regression equation
was shown as ∆E(V) = −0.02606 C(mM)—0.0846, R2 = 0.996.The concentrations range from
3.029 × 10−3 mol/L to 1.113 × 10−2 mol/L, and the linear regression equation was shown
as ∆E(V) = −0.01302 C(mM)—0.10074, R2 = 0.992.
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Figure 4. (A) Potential responses of the Dy−OSCN/FTO electrode at different concentrations of AA
in the range of 7.94 µM to 13.71 mM; (B) the corresponding linear calibration curve for AA detection.

The detection limit (LOD) could be estimated to be 3.35 µM. The results indicated that the
constructed Dy-OSCN/FTO electrode showed good PEC performance and high sensitivity.

To investigate the stability of the Dy-OSCN/FTO electrode, the same Dy-OSCN/FTO
electrode was used to detect AA samples with the same concentration 3 times, with the
interval between each measurement being 5 days. The result displayed in Figure S4 (see
the Supplementary Materials) demonstrated that the signal changed slightly and the RSD
was 1.65%, indicating that the electrode had good stability. The thermal analysis data for
Dy6-SCN and Dy-OSCN complex also proceeded to verify the stability (Figure S6, see the
Supplementary Materials).

To evaluate the selectivity of the PEC aptasensor, an interference study was needed.
The most common co-existing biomolecules (glucose (GC), fructose (FC), urea, uric acid
(UA), citric acid (CA), L-Proline (L-Pro), L-Threonine (L-Thr), L-Histidine (L-His), L-Lysine
(L-Lys), glutathione (GSH)), and inorganic ions (KCl, CaCl2, NaCl, MgCl2, and Na2SO4) in
human urine were used as interference factors. As shown in Figure 5A, after the potential
signal was stable, the species (GC, FC, KCl, Na2SO4, NaCl) concentrations of 40 mM and the
species (urea, UA, CA, L-Pro, L-Thr, L-His, L-Lys, GSH, CaCl2 and MgCl2) concentrations
of 4 mM were added to the PEC detection cell in sequence. The potential changes before
and after the addition of interferers were recorded and the experiment was repeated three
times in each group. According to the recorded data, the chances of detection potential
were all less than 15% of the AA standard solution signal, which meant that they had little
influence on AA recognition and analysis on the Dy-OSCN/FTO electrode, indicating that
the constructed PEC sensor had good specificity.
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mechanism of AA on enzyme-free Dy-OSCN/FTO PEC sensor.
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3.5. Mechanism Analysis of AA Detection by Dy-OSCN/FTO PEC Sensor

The possible mechanisms derivation on the Dy-OSCN/FTO PEC sensor was displayed
as follows. The amount of charge carried by the specific adsorption of the target substance
molecule (AA) on the semiconductor surface (ql) was equal to the charges carried by the
material adsorbed on the electrode surface (polar molecular charge displacement), which
could be written as qs and expressed as Formula (1):

ql = qs (1)

When the electrode was just entering the solution, some of the electrons moved to-
wards the electrode surface because the Fermi level inside the semiconductor was higher
than the Fermi level in the solution. When the charge was balanced, the concentration of
the semiconductor carriers at the surface of the solution (nsc) can be calculated according to
Formula (2), where ND represents the total amount of charge carriers in a semiconductor
conductor. It is a constant for a certain semiconductor under constant external excitation
conditions, F is the Faraday constant, R is the ideal gas constant, and T is the test tem-
perature. Since the experiment was conducted at room temperature, the test temperature
can be estimated to be 298 K. E − Efb is the potential drop caused by band bending in
semiconductors.

nsc = ND·e−F(E−Efb)/RT (2)

Based on this, the charge of the semiconductor surface can be expressed as Formula (3),
and e for the charge of an electron:

qs = e·nsc = e·ND·e−F(E−Efb)/RT (3)

According to Freundlich’s adsorption isotherm Equation (4) and the concentration of
the specific adsorbent in the solution, the charge of the target substance adsorbed on the
electrode surface of the semiconductor material can be calculated by the Formula (5). Γ is
the amount of the target substance adsorbed on the surface of the electrode material. kf is
the Freundlich adsorption constant. When the electrode material and the target substance
are determined, n is the adsorption constant of the specific material. In addition, z is the
amount of charge carried by the molecule of the target substance (or the charge offset due
to the polarity of the molecule).

Γ = kf·c1/n (4)

ql = z·Γ = z·kf·c1/n (5)

According to the charge balance on both sides of the electrode surface in the no-current
state, the equation can be established as follows:

e·ND·e−F(E−Efb)/RT = e·nsc = qs = ql = z·Γ = z·kf·c1/n (6)

It can be obtained by rewriting it to Formula (7)

∆ϕ = E − Efb = −(RT/F) × [ln·(z·kf/e·ND) + ln·c] (7)

Since the potential drop caused by the band bending in the semiconductor is much
larger than that in the double layer formed by the semiconductor electrode and the solution,
the measured value ∆ϕ is the potential drop in the semiconductor E − Efb.

Let the constant a be equal to −(RT/F), and the constant b be equal to −(RT/F) × ln·(z·kf);
the Formula (7) can be changed to Formula (8):

∆ϕ = a·lnc + b (8)

It can be observed from the derived formula that the logarithm of the test potential
and the concentration of the target substance in the solution is linear when the electrode
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uses the OCPT method to measure the concentration of the target substance in the solution.
The results of practical tests are in good agreement with the derived expressions.

Thus, the possible detection mechanism scheme of AA on the Dy-OSCN/FTO PEC
sensor can be indicated as shown in Figure 5B, a typical specific adsorption happened
after the AA molecules diffused into the double layer at the electrode interface. The
AA molecules would bond with the central atom of the crystal on the electrode surface
(Scheme 1), which would affect the charge distribution on the electrode surface and change
the bending state of the energy band inside the Dy-OSCN monocrystal, resulting in the
changes of the potential responses. According to the classical formula of capacitance formed
by band bending in the semiconductor and the capacitance of the interface double layer
in semiconductor physics, the potential drop in the double layer is much smaller than the
potential drop caused by band bending in the semiconductor, which has also been verified
by the experiments of countless scientists. Based on this, the potential changes measure at
the macro level are almost due to the band bending changes in the semiconductor. When
the semiconductor is excited by light, the total number of carriers will increase, leading to
the amount of charge reaching the electrode surface increasing due to the mutual repulsion
of the same charge, which can absorb more charged molecules. Moreover, under the
constant excitation wavelength and power, the separation and the recombination of carriers
in the semiconductor will reach an equilibrium, and the concentration of carriers in the
semiconductor would remain constant if the external environment of the semiconductor
does not change. Once the external charge change causes the changes in semiconductor
surface potential, the band bending degree in the semiconductor will change. According
to the above theory, the changes in charge density between the semiconductor and the
detecting system will cause a change in the internal band bending, leading to the potential
difference between the working electrode and the reference electrode. Meanwhile, based
on the classical electrochemical theory, the system of open-circuit potential detection was
equivalent to a short circuit, in which almost no current flowed through the electrode, and
the Fermi energy levels on both sides of the electrode surface were the same. By deriving the
formula above, it can be found that the potential signal is only related to the concentration
of the target in the solution, and the potential signal changes when the excited state is
changed. The enhancement of the charge ability in the detection system would lead to an
increase in the changing intensity of the potential responses, so the detection sensitivity
would also increase. Therefore, the sensitivity of the Dy-OSCN/FTO electrode under light
excitation is higher than that measured under a dark field, and the formula derivation and
mechanism analysis lay a theoretical foundation for the method of AA detection.
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As can be observed in the spectrum of FT-IR spectra in Figure 6A, the Fourier trans-
form infrared (FTIR) spectrum of Dy6-SCN and Dy-OSCN demonstrates that the phenol
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structure in Dy6-SCN was easily oxidized to quinone, leading to changes in the coordination
between the ligand and Dy in the Dy-OSCN complex. Moreover, the wavelength located
at 1250–2250 cm−1 had multiple absorption peaks displacement, indicating that under the
high temperature, the coordination of N on the pyrimidine and metal Dy dissociates, result-
ing in the partial collapse of the structure and asymmetry of the structure, which makes it
easier for AA to coordinate with Dy-OSCN. To further study the specific response principle
of the Dy-OSCN/FTO electrode, FT-IR spectra of the Dy-OSCN monocrystal before and
after the (unwashed) binding with AA were characterized in Figure 6B,C. The spectrum
of FT-IR spectra range from 500–2500 cm−1 was shown in Figure 6C, which had multiple
absorption peaks displacement, indicating that the asymmetric C≡N bond stretching en-
ergy of Dy-OSCN had changed [47]. In addition the band at about 1256 cm−1 could be
attributed to the ν(C-O) mode of phenol [48]. The result verified that the AA molecule was
specifically bonded to the surface of the Dy-OSCN/FTO electrode and formed coordination
bonds, leading to the changes in the potential signal [37].
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According to Fermi energy level theory, charge balance theory, previous calculation,
and experimental verification, the mechanism formula was deduced to lay a theoretical
foundation for the rationality of the strategy. Based on the structure of the electrode material
and target molecule, the possible detection mechanism speculated that the AA molecule
was specially adsorbed and bonded with Dy-OSCN. During this process, the change of the
charge on the interface caused the change of the band bending in the semiconductor and
the change of photoelectric potential measurement. It was found that the peak positions of
Dy-OSCN shifted significantly after AA detection. Thus, the rationality of the guessing
mechanism was proved theoretically and practically.

3.6. Practical Application of the PEC Sensor in Real Human Urine Samples

Compared with other reported enzyme-free PEC methods in AA detection (Table 1),
the detection range of the method adopted in this work has been broadened to some extent.
At the same time, the LOD of the detection method used in this work is lower than that
of the method with a similar detection range. Therefore, using OCPT technology and
Dy-OSCN/FTO electrode to detect AA has obvious advantages.

To further investigate the actual performance of the Dy-SCN/FTO PEC sensor for the
AA detection in humane urine, the real urine samples containing the AA concentration
of 0.82569 mM, 1.107143 mM, and 1.37391 mM were detected, and the result was shown
in Table 2. The recoveries of this detection method were all close to 100%. The stability
and reproducibility could be observed from the RSD data (absolute values are all less than
1%), indicating the practicability of the Dy-OSCN/FTO PEC sensor for the detection of AA
and further verifying the potential application value of the as-prepared electrode in actual
sample analysis.
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Table 1. Comparison of linear range and detection limit of enzyme-free electrochemical methods for
determination of AA.

Modified Materials Linear Range (µM) LOD (µM) References

Iridium Oxide 1–1000 <0.4 [49]
CuO 20–100 0.05 [50]

Pt(Au-Sn) alloy 200–2000 13.4 [51]
N2/Ar/RFGraphene 100–1400 5.3 × 10−3 [52]

Au-MoS2/NiO 2–50 0.13 [53]
MIPs/MXene/GCE 0.5–10 0.27 [54]

Bi2S3/rGO 5–1200 2.9 [55]
ZIF-8/Pt NPs/GCE 10–2500 5.2 [56]

Dy-SCN/FTO 7.94–11,130 3.35 This work

Table 2. Recovery of AA in human urine by Dy-OSCN/FTO photoelectric detection electrode.

Sample Spiked (mM) Found (mM) Recovery (%) RSD (%)

Urine
0.82569 0.828 ± 0.00879 100.28 0.506141
1.07143 1.0927 ± 0.06531 101.99 0.670382
1.37931 1.4076 ± 0.09329 102.05 0.996175

RSD (%) = (Standard deviation/the average of the data obtained by repeating 3 times) × 100%.

4. Conclusions

In summary, a novel enzyme-free photoelectrochemical (PEC) potential measurement
system based on Dy-OSCN was developed for the determination of ascorbic acid (AA) in
human urine. The as-prepared Dy-OSCN/FTO PEC sensor demonstrated a good linear
range from 7.94 µM to 11.13 mM and a low detection limit of 3.35 µM. The electrode had
good stability and repeatability after several detecting operations. Thus, a PEC sensor
with ideal sensitivity and selectivity for AA determination was successfully constructed.
Moreover, the rationality of the guessing mechanism and the FT-IR result verified that the
AA molecule was specifically bonded to the surface of the Dy-OSCN/FTO electrode and
formed coordination bonds. Such a PEC sensor was also successfully used to analyze AA
in human urine samples, indicating a wide potential application for further use in the rapid
and non-invasive assessment of AA levels in human physique monitoring.
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of the calcination temperature of Dy-OSCN /FTO electrode. Table S3: Optimized conditions of
the excitation wavelength of Dy-OSCN /FTO electrode. Figure S1: X-ray diffraction (XRD) images
of Dy-OSCN/FTO and FTO electrode. Figure S2: (A) Linear (R2) comparison and (B) low concen-
tration signal intensity of AA tests with Dy-OSCN/FTO electrodes at calcination temperatures of
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