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Abstract: A novel, direct and simple colorimetric method employing µicroanalytical paper-based
devices (µ-PADs) for the selective determination of bismuth is described. The suggested method
exploits the colorimetric variation of bismuth after its rapid reaction with methyl thymol blue (MTB)
in an acidic medium (pH ranging between 0.7 and 3.0), modified with nitric acid, on the surface of a
paper device at room temperature. The devices are low cost, composed of chromatographic paper
and wax barriers and the analytical protocol is easily applicable with minimal technical expertise
and without the need for experimental apparatus. The user must add a test sample and read the
color intensity of the colored Bi(III)–MTB complex formed at the sensing area using a simple imaging
device such as a flatbed scanner. Various chemical variables, such as HNO3 and MTB concentration,
reaction time, ionic strength, detection zone size and photo-capture detector are optimized. A study
of interfering ions such as K+, Na+, Ca2+, Mg2+, Cl−, SO4

2− and HCO3− was also conducted. The
stability of the paper devices is also studied in different maintenance conditions with particularly
satisfactory results, rendering the method suitable for field analysis. The detection limits are as low
as 3.0 mg L−1 with very satisfactory precision, ranging from 4.0% (intra-day) to 5.5% (inter-day).
Natural water samples are successfully analyzed, and bismuth percentage recoveries were calculated
in the range of 82.8 to 115.4%.

Keywords: paper-based analytical devices; colorimetric determination; bismuth; methyl thymol blue;
water samples

1. Introduction

Bismuth is a trace element located in the environment in salt or oxide formations
such as bismuth sulfide (bismuthinite-Bi2S3) and bismuth oxide (Bi2O3), and it rarely
occurs naturally as the metal itself. In most cases, bismuth is associated with crystals
in the suplhide ores of lead, copper, nickel, cobalt, and tin [1,2]. Bismuth occurrence in
environmental samples is usually in the mg L−1 or µg L−1 concentration levels, while in
sediments they were varying between 0.07 and 49.6 mg g−1 [3].

Over the past few years, Bi is environmentally significant, because of its rapidly increas-
ing use by various industries due to its specific chemical and physical properties. Among
others, Bi is often used in medicine for the treatment of peptic and dermatological disorders,
as well as tumor treatment; the cosmetics industry as a colorant that creates an iridescent
effect in lipsticks and hair dyes, bismuth-based nanomaterials used as semiconductors,
alloys, metallurgy additives and during the production process of uranium nuclear fuels.
Due to these widespread applications of Bi, its content in environmental matrices, as well
as the possibility of human exposure, has been significantly increased, rendering necessary
the development of fast, accurate and equipment-free methods for bismuth determination,
which can also be used as control devices for bismuth environmental monitoring.
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Many instrumental analytical methods have been developed for the determination of
bismuth, utilizing various detection techniques, such as graphite furnace atomic absorption
spectroscopy (GFAAS) [4,5], flame atomic absorption spectroscopy (FAAS) [6,7], induc-
tively coupled plasma optical emission spectrometry (ICP-OES) [8], hydride generation
inductively coupled plasma atomic emission spectrometry (HG-ICP-AES) [9], inductively
coupled plasma mass spectrometry (ICP-MS) [10,11], fluorescence [1,12], UV-vis spec-
trophotometry [13,14] and flow injection methods [15,16].

For the colorimetric determination of bismuth, many chemical reagents have been
employed, such as xylenol orange [13], lead tetramethylenedithiocarbamate (TMDTC) [17],
N-(2-acetamide)iminodiacetic acid (ADA) [18], dipicolinic acid (DPA) [19], alizarin red S
(ARS) [20], tetramethylammonium iodide (TMAI) [21] and methyl thymol blue (MTB) [15,16].

MTB is a thymol-containing metallochromic indicator, used in chemical analysis as
an equivalence point identifier in complexometric titrations and as a spectrophotometric
reagent for the formation of stable metal complexes during the spectrophotometric determi-
nation of metal ions. The MTB molecule has nine active functional groups, including four
carboxylic acids, two phenolics, two amines and one sulfonyl group, providing the capacity
for complexation with various metal ions [22]. MTB is a sensitive metallochromic indicator,
which interacts with many metal ions depending on the pH value of the solution, such as
Zn2+, Fe2+, Co2+, Cu2+, Ca2+, Mg2+, Fe3+, Al3+, Bi3+, etc. [23–26]. It is well established in
previous reports that MTB has a higher affinity for metal ions with a higher charge, with
the greater affinity displayed for metallic ions with the +3-oxidation state [27]. For example,
MTB forms stable complexes with Al3+ [28], as well as Zr4+, Hf4+ and Bi3+ [29] under acidic
conditions, but it can be used for the selective determination of bismuth due to the different
maximum absorbance wavelengths and the reaction conditions required for the formation
of the metal complex. For instance, Fe3+ reaction with MTB is accomplished in mild acidic
values (pH = 6) [30] and alkaline metal earths such as Ca2+ and Mg2+ react at alkaline pH
values [26,31], while the determination of Bi3+ was conducted in strong acidic conditions
(pH = 0.7) [15,16].

Recently, there has been an increasing demand towards the production and devel-
opment of simple and cheap analytical devices that are easy to implement, can be used
with minimal resources and offer fast and reliable results. Based on this trend, paper-based
devices are considered highly desirable analytical platforms for portable and low-cost
determinations that can be used with minimal resource and instrumentation requirements
and deliver swift results [32]. Since their insertion as analytical devices in 2007 by Professor
G. Whiteside’s research team [33], many researchers have studied a significant number of
devoted paper assays and developed several fully functional paper platforms to detect and
identify a vast variety of environmental, biochemical and food analytes [34–37]. The main
advantages of paper, in comparison with other materials such as silicone, plastics and glass,
are that (a) it is readily available at low cost; (b) the high surface area to volume ratio, (c) the
spontaneous; capillary force-driven flow of liquids without external energy sources; (d) the
fibrous nature that allows reagents to be stored dry and reactivated upon rehydration;
(e) the modification of the paper surface in such a way to favor the chemical detection of the
analyte [38,39]. Additionally, these analytical platforms should also be portable or easily
transported and installed at the point of need without loss of function, and the sensing of
the analyte should be performed with the use of widely available non-specialized detectors,
such as smartphones or flatbed scanners [40,41].

In this study, we report, for the first time, a paper-based assay for the selective deter-
mination of bismuth that depends on the direct complexation reaction between bismuth
and MTB in a strongly acidic medium and the colorimetric variation generated on the
paper surface, recorded by a flatbed scanner. The paper-based devices used are easy to
fabricate, of low cost, are manufactured in a few seconds, and the analytical protocol is
easily executable with negligible technical expertise and without the need for any expensive
specialized instrumentation. According to the experimental protocol followed during this
study, the user only added the appropriate amount of the solutions (a few µL) to adjust the
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experimental conditions, waiting for the device to dry at room temperature and reading
the colorimetric alteration on the sensing area using a simple imaging device, such as a
smartphone or a flatbed scanner. Moreover, we have evaluated the applicability of this
method for the selective determination of bismuth in natural water samples and the results
were satisfactory regarding sensitivity, recovery and reproducibility.

2. Materials and Methods
2.1. Reagents and Solutions

Methyl thymol Blue (MTB), Bismuth(III) nitrate pentahydrate, potassium chloride,
sodium chloride, calcium chloride dihydrate, sodium sulfate anhydrous and sodium hydro-
gen carbonate were provided by Merck (Darmstadt, Germany), nitric acid was purchased
by Sigma (St. Louis, MO, USA), magnesium chloride hexahydrate and sodium nitrate were
provided by Panreac (Madrid, Spain). All chemical substances were of analytical grade
and all the solutions were prepared with de-ionized water. The standard stock Bi(NO3)3
solution (1000 mg L−1 Bi(III)) also contained 0.5 mol L−1 HNO3 to prevent hydrolysis of
the ions. Working Bi(III) solutions were prepared daily by the appropriate dilutions of
the stock Bi(III) solution at a final HNO3 concentration of 0.1 mol L−1. A standard stock
solution of 2 mol L−1 HNO3 was used for pH adjustment. Methyl thymol blue working
solutions were prepared on a daily basis and were used without further purification while
the MTB stock solution (1 mmol L−1) was prepared on a weekly basis by dissolving the
required amount in de-ionized water. All solutions were de-gassed with purified nitrogen
and all the stock solutions were stored in polyethylene containers. All the polyethylene
containers and glassware used for aqueous solutions containing metal ions were cleaned
in dilute HNO3, while the rest of the glassware was cleaned in 3% Decon 90. All were
rinsed with de-ionized water before use. Cation and anion stock solutions for the selectivity
investigation were 500 mg L−1 for each ion studied. Finally, sodium nitrate (NaNO3) stock
solution (4 mol L−1) used for the salinity study, was prepared by dissolving the appropriate
amount in de-ionized water.

2.2. Apparatus

For the fabrication of µPADs a ColorQube 8580DN Xerox printer was used for the
deposition of solid wax on Whatman No. 1 chromatography paper in predestinated patterns
originating on a white background. A pH meter (Orion) was used for the measurement of
the pH values. The images of the paper devices were captured using a mobile smartphone
(Xiaomi Poco X3) and a flatbed scanner (HP Scanjet 4850).

2.3. Fabrication of Paper Devices

The patterns of the devices were printed on paper using a wax printer. Hydrophilic
sensing areas were designed with PowerPoint program. To create hydrophobic barriers on
both sides of the paper, the paper was heated in an oven for 2.0 min at 120 ± 5 ◦C to melt
the wax and pierce the paper. The devices produced had a diameter of 0.8 cm, an internal
diameter of 0.4 cm (hydrophilic sensing zone) and 0.2 cm barrier thickness. Chromatog-
raphy paper (Whatman No. 1) was used for this procedure because of its relatively high
thickness and mass per area (0.18 mm, 87 g m−2), homogenous configuration (compared to
other types of paper) and the absence of additives affecting the experimental process.

2.4. Experimental Procedure

The experimental process was not laborious even for an inexperienced researcher, with
minimum requirements for laboratory instrumentation. In brief, on the paper surface were
added by the following sequence, 1 µL nitric acid 0.01 mol L−1, 1 µL MTB 0.5 mmol L−1

and finally 1 µL of the water sample or the bismuth standards. After each deposition, the
paper device was left to dry for 10 min at room temperature. Subsequently the sensing areas
of the paper-based devices revealed colorimetric differences depending on the bismuth
concentration and the signal was captured by the smartphone or the flatbed scanner. The
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photographs were saved as files in JPEG format (300 dpi), and then Image J program
was used to measure the mean intensity of the color in the red channel of the RGB mode
(Figure 1).
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2.5. Real Samples

The method was assessed on five different natural, surface water samples. The origin
of the samples is divided into distinct categories, river waters, bottled samples and tap
water. Specifically, the river water samples were collected from the rivers Acheron and
Louros in northwestern Greece, the natural mineral water samples were bottled in plastic
containers of 500 mL each and were purchased from local stores in Thessaloniki and finally
the tap water sample was collected at the water supply system of the center of Thessaloniki.
The samples were filtered with plain filter paper and were stored at 4 ◦C in the refrigerator.

3. Results and Discussion
3.1. Optimization Procedures

The ability of the proposed paper-based procedure for the selective colorimetric
determination of bismuth in natural water samples was investigated in detail, and all
parameters that could influence the efficiency of the proposed method were thoroughly
studied and subsequently presented.

3.1.1. Effect of Reaction Time

The effect of reaction time was studied in the range of 10 to 45 min. The color
development in aqueous solutions based on the formation of the complex between MTB
and bismuth is a rapid phenomenon at room temperature [15,16]. However, due to the
different substrates used for the present study (paper devices), it was considered necessary
to study the reaction time for the quantitative formation of the complex between bismuth
ions and MTB molecules. Thus, the net color signal was studied for various time intervals
from 10 min (the shortest time demanded for the analytical paper-based devices to dry) to
45 min, as depicted in Figure 2a. The slight decrease in the colorimetric signal is attributed
to the effect of sunlight on the surface of the paper devices. It has been observed by other
research groups that sunlight affects the color of paper devices by reducing the difference
between the sample and the blank [42]. It is apparent from Figure 2a that the reception of
the photograph should be conducted for a reaction time of 10 min.

3.1.2. Effect of Nitric Acid Concentration

The formation of the bismuth-MTB complex has been studied in detail, and all the
experimental literature reports agree that the formation of the complex takes place under
highly acidic conditions [14–16]. Thus, the influence of the HNO3 concentration in the
evolution of the complexation reaction was studied in the range from 0 to 0.2 mol L−1

by adding 1 µL of the appropriate diluted solution to the paper surface. The nitric acid
solutions studied were 0.001, 0.005, 0.01, 0.025, 0.05, 0.1 and 0.2 M and the pH values for each
of these were 3.0, 2.3, 2.0, 1.6, 1.3, 1.0 and 0.7, respectively. The experiments showed that
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maximum complex formation was achieved for an HNO3 concentration of 0.01 mol L−1,
and thus this concentration was chosen for subsequent experiments (Figure 2b).
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3.1.3. Effect of MTB Concentration

The next parameter studied was the concentration of methyl thymol blue (MTB) as the
complexation reagent. The effect of the MTB concentration was studied in the range from
0.1 to 1.5 mmol L−1. Maximum signals were obtained at 0.5 mmol L−1 MTB, as depicted
in Figure 2c. At low MTB concentration values, the formation of the colored complex was
not sufficient, and the color disappeared after a few minutes, while at MTB concentration
values higher than 0.7 mmol L−1, the excess of MTB, the orange color is preserved even
after the addition of the analyte, resulting in a lower intensity difference between the blank
and sample signals.

3.1.4. Effect of Ionic Strength

The effect of ionic strength during the complex formation was studied by adding
different amounts of solid NaNO3 to the paper surface just before the addition of the
analyte. The reaction was not affected significantly by changes in ionic strength up to
1.5 mol L−1 and in all cases, there was no more than approximately an 8% decrease in the
net color signal, as shown in Figure 2d, rendering the method suitable for measurements in
samples with high ionic strength, such as seawater samples. Thus, no addition of salt was
chosen throughout the experiments. Ionic strength was studied to find out if real samples
with high values of ionic strength, such as seawater, can be determined by our method.
Ionic strength does not influence our method, so seawater or marine water samples will be
determined in the future by our group.

3.1.5. Effect of the Detection Zone Size

The specific analytical devices were manufactured and presented in a simple form.
A circular hydrophobic barrier is their main feature before the addition of reagents. This
“circle” can be displayed in different radius values as it is a print result and can be fabricated
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at any size. The question, therefore, arose as to its effect on the value of the signal. Two
devices of varied sizes were studied. Specifically, the largest selection concerns devices
with a total diameter of a circular hydrophobic barrier of 0.7 cm and an inner diameter of
0.5 cm and 0.4 cm (before and after the baking stage of the devices, respectively). For the
smaller device, the values amounted to a total diameter of a circular hydrophobic diameter
of 0.6 cm and an inner diameter of 0.4 cm and 0.3 cm (before and after the baking stage
of the devices respectively). A standard solution of bismuth concentration of 30 mg L−1,
nitric acid solution of 0.01 mol L−1 and MTB solution of 0.5 mmol L−1 were prepared
for the procedure. The samples were allowed to dry for 10 min, and then the signal was
received. To measure and quantify the signal, a photograph was taken, which was then
processed via the ImageJ program on the RED color channel (RGB). It turned out that
there was no significant difference in the color values. Specifically, the small device (inner
diameter 0.3 cm) showed a color intensity value of 15.0 ± 0.8, while the large device
(internal diameter 0.4 cm) showed a color intensity value of 14.9 ± 0.5 (see Supplementary
Figure S1). Therefore, there is no significantly optimal size for the detection area, provided
that the amounts of reagents are evenly distributed throughout.

3.1.6. Effect of Photo-Capture Detector

In paper-based analytical methods, in addition to exploiting the nature of the reactions
to achieve the desired signal, the way in which the specific signal is received also plays
a vital role. The technology provides various systems that serve this purpose and for
the proposed method, common mobile phone cameras and digital flatbed scanners were
studied. Standard bismuth solutions of concentrations of 5, 10, 20, 30, 40, 50 mg L−1 were
prepared for this study and calibration curves with both detectors were achieved. The
comparison of the results of the two devices showed that there was no significant difference
between them (Figure 3). For the overall process of development and study of the method,
the use of the scanner was preferred, as it offered greater stability in the image capture
conditions because it was not affected by external lighting conditions.
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3.2. Analytical Parameters

The proposed method has been validated in aspects of linearity, limits of detection
(LOD) and quantification (LOQ), precision, selectivity, and stability of the PADs.

3.2.1. Linearity, Precision and Limits of Detection (LOD) and Quantification (LOQ)

The proposed method offered satisfactory linearity in the range of 5–50 mg L−1 of
Bi3+, visible even to the naked eye (Figure 4). The regression equation was obtained in a
“cumulative” way by incorporating the results from 30 standard solutions analyzed on
different working days (n = 5). Because of this procedure, the calibration curve is more
representative, including potential day-to-day variations and the following regression
Equation (1) was obtained:

CI = 0.433 (±0.013) [Bi3+] + 1.34 (±0.40), r2 = 0.974 (1)

where CI is the color intensity measured by the proposed method.
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The within-day precision was validated at the 30.0 mg L−1 level by repetitive measure-
ments of different paper sensing areas (n = 5). The intra-day relative standard deviation
(RSD) was 4.0% and the inter-day was 5.5%. The day-to-day precision was also evaluated
by independent calibration curves obtained on different working days (n = 5), and the RSD
of the regression slopes was 5.9%, verifying the repeatability of the proposed procedure.

Additionally, the LOD and LOQ were estimated based on the following Equation (2):

LOD = 3.3 × SDb/s and LOQ = 10 × SDb/s (2)

where SDb is the standard deviation of the intercept and s is the slope of the respective
regression lines. The calculated LOD/LOQ for the analysis of Bi3+ was 3.0 and 9.2 mg L−1,
respectively.
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3.2.2. Selectivity

The selectivity of the developed PAD was validated against representative common
cations and anions that are expected to be present in the natural water samples; all potential
interferents were analyzed at 500 mg L−1, whereas Bi3+ at 30 mg L−1. A parameter that
is expected in natural water samples and was not measured during the selectivity study
was the concentration of nitrate ions. The U.S. Environmental Protection Agency (EPA)
has set the standard for nitrate in drinking water at ten milligrams of nitrate per liter of
drinking water (10 mg L−1), while the European Union settled on 50 mg L−1. Nevertheless,
the concentration of nitrate is impossible to affect the method because of the nitric acid
concentration added on the paper’s surface to adjust the pH value of the experimental
procedure. The experimental results are depicted in Figure 5 and verify the adequate
selectivity of the procedure, considering the expected levels and ratios of Bi3+ in the
water samples.
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time 10 min, Bi3+ concentration 30 mg L−1, HNO3 concentration 0.01 mol L−1, MTB concentration
0.5 mmol L−1, no addition of NaNO3, interferant concentration 500 mg L−1). Error bars are the
standard deviation for n = 3.

3.2.3. Stability of the µPADS

To evaluate the portability and the consistency of the devices at the point of need, we
studied the stability of the µPADs by adding MTB and HNO3 solutions to the devices and
storing them in airtight bags protected from light at room temperature (25 ◦C), 4 ◦C and
−18 ◦C. The stability was examined at 30 mg L−1 Bi3+ after 2 days, 4 days and 6 days of
storage, respectively. The paper devices were taken out of the refrigerator and the freezer,
left at room temperature for more than one hour, protected from light, and then used to
add the analyte. The experimental results as % recoveries of Bi3+ are included in Table 1.
As can be seen, by the estimated percent recoveries, the µPADs are stable and usable even
after 6 days if kept at −18 ◦C and protected from light.
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Table 1. Stability of the µ-PADS (HNO3 + MTB) under different storage conditions.

Time (Days)

2 4 6

Temperature (◦C) % Recovery

25 98.5 92.8 86.2
4 101.9 98.5 94.4

−18 101.3 97.6 95.5

3.3. Application in Real Water Samples

Five samples, two bottled water samples from the northern and northwestern Greece;
two river samples from the region of Epirus, in northwestern Greece; tap water from the
city of Thessaloniki, were measured with the developed PAD method. The water samples
were stored at 4 ◦C in the refrigerator. The experimental solutions were added to the
paper-based devices, and then we stored them at different temperature conditions. Then,
the devices were defreezed at room temperature and the analyte or real sample was added
to their surface. This was studied to find out the stability and portability of the devices. The
samples were treated as described in the Experimental Section and the results can be seen
in Table 2. The percent recoveries of the determined spiked levels of Bi3+ were satisfactory
and ranged between 82.8 and 115.4%, with a good standard deviation.

Table 2. Accuracy of the proposed paper-based method for the analysis of Bi3+ in water samples.

Samples Spiked (mg L−1) % Recovery (± RSD, n = 3)

River water 1
10 105.9 ± 3.2
30 89.5 ± 3.7

River water 2
10 83.7 ± 5.1
30 90.5 ± 3.6

Bottled water 1
10 89.9 ± 5.6
30 87.2 ± 5.9

Bottled water 2
10 111.4 ± 9.8
30 82.8 ± 2.7

Tap water 10 115.4 ± 6.9
30 83.7 ± 2.1

4. Conclusions

A simple and reliable µPAD method for the selective determination of bismuth ions in
surface water samples has been developed and validated. The µPADs were easily fabricated
with minimum cost. The method was based on the color complex Bi-MTB formatted at
strongly acidic conditions, and the color change was recorded by a flatbed scanner. The
developed paper-based sensor uses cost-effective and readily available reagents and is
attractive for real-time, at the point of need, applications. The sensor is sensitive enough
for the quantification of the analyte in real samples with minimal treatment and without
any significant loss of the net signal from coexisting ions. The levels of Bi3+ in the analyzed
spiked samples were within acceptable recovery limits from 82.8 to 115.4% and were also
confirmed by a corroborative UV-Vis method. Finally, the developed analytical methodol-
ogy is robust, can analyze many samples in a brief period and permits the analysis of Bi3+

at low microgram levels (LOD 3.0 mg L−1), while it is a promising methodology for the
determination of many cations that form complexes with MTB at various pH values.



Chemosensors 2022, 10, 265 10 of 11

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemosensors10070265/s1, Figure S1: Paper-based devices with
different size: (a) largest paper-based device with a total diameter of a circular hydrophobic barrier of
0.7 cm and an inner diameter of 0.5 cm and 0.4 cm (before and after the baking stage of the devices
respectively). (b) smaller paper-based device, the values amounted to a total diameter of a circular
hydrophobic diameter of 0.6 cm and an inner diameter of 0.4 cm and 0.3 cm (before and after the
baking stage of the devices respectively).
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