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Abstract: The quartz crystal microbalance with dissipation (QCM-D) represented a substantial
breakthrough in the use of the QCM sensor in diverse applications ranging from environmental
monitoring to biomedical diagnostics. To obtain the required selectivity and sensitivity of a volatile
organic compounds (VOC) sensor, it is necessary to coat the QCM sensor with a sensing film. As the
QCM sensor is coated with the sensing film, an increase in the dissipation factor occurs, resulting
in a shorter and shorter ring-down time. This decrease in ring-down time makes it difficult to
implement the QCM-D method in an economical and portable configuration from the perspective of
large-scale applications. To compensate for this effect, a regenerative method is proposed by which
the damping effect produced by the sensing film is eliminated. In this sense, a regenerative circuit as
an extension to a virtual instrument is proposed to validate the experimental method. The simulation
of the ring-down time for the QCM sensor in the air considering the effect of the added sensing film,
followed by the basic theoretical concepts of the regenerative method and the experimental results
obtained, are analyzed in detail in this paper.

Keywords: QCM sensors; virtual instrumentation; smart materials; regenerative circuits

1. Introduction

Quartz crystal has a valuable tradition in the history of electronic devices [1]. From
the first uses as a high stability signal generator [2] or in the realization of radio frequency
filters [3], the quartz crystal has always been a key device. The quartz crystal, respectively
the QCM sensor, is important from an applications perspective for its unique value of
having a very high-quality factor (Q) or equivalent a very low dissipation factor. Its quality
factor doubled by high stability justifies its use as a sensor or electronic device without
having an equivalent for it. The use of quartz crystal as a QCM sensor has generated an
extremely intense and interesting research effort with many applications.

Nowadays, QCM sensor applications extend into chemical and biological sensing
in the vapor or liquid phase. The realization of these applications involves the coating
of the QCM sensor with sensing films [4,5]. Unfortunately, many coating materials with
selectivity and high sensitivity are viscous, inducing a damping that causes a significant
reduction in the Q factor. For the QCM sensor, this unique quality of having a very high Q
factor is lost by using it in a liquid medium [6]. Even in these conditions, the quartz crystal
remains a very high-performance and versatile sensor [7]. Since the Q factor is diminished
by the interaction with the surface coating materials, in this paper, the possibility of its
recovery is demonstrated. Such a possibility would lead to the successful use of the quartz
crystal as a volatile organic compounds (VOC) sensor in complex mixtures and pave the
way for a wide range of new applications. Moreover, the quality of the measurements on
the electrical parameters of the QCM sensor would be greatly improved.

The regenerative method [8] also has a history as old as that of quartz crystal. This
method has been used with great success in radio communications due to the high sen-
sitivity/complexity ratio. The regenerative receiver was invented in 1912 [9], and it was
widely used between 1915 and World War II. Advantages of regenerative receivers include
increased sensitivity and selectivity since the Q factor of the tuned circuit is increased
through the negative resistance introduced by the amplifier. An amplification circuit in
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which part of the output signal is applied back to the input by summing up with the input
signal is a regenerative circuit, that is, a circuit that uses positive feedback.

The quartz crystal microbalance with dissipation monitoring (QCM-D) [10,11] repre-
sented substantial progress in the use of the QCM sensor in diverse applications ranging
from environmental monitoring to biomedical diagnostics. The key parameters of the
QCM sensor measured using the QCM-D method are series resonant frequency and dis-
sipation factor. In essence, the QCM-D method involves the active (quartz crystal in an
oscillator) [10] or passive (connected to a signal generator) [11] excitation of the QCM
senor, followed by its isolation from the excitation source and the computation of the
natural oscillation frequency and dissipation factor (D) from the ring-down response. Not
much time has passed since the first article about the QCM-D [10] and the appearance of
commercial products [12]. This is partly due to the elegance and versatility of the method.
The QCM-D method, also known as the ring-down method, is extremely useful in making
biosensors [13], and it is difficult for traditional [14] active methods based on oscillators to
equal it.

Finding easy-to-build circuits [15–17] and/or effective methods for calculating the
series resonant frequency of QCM sensors and the dissipation factor is a constant concern
in the literature [18,19]. It is difficult to measure the key parameters mentioned above using
the ring-down method for high-frequency QCM sensors (Q factor decreases with increasing
resonance frequency) or when its surface is coated with sensing material. This is due to
the short ring-down time and, therefore, given the sub-sampling [10], too few samples are
acquired for the rigorous calculation of the QCM sensor parameters.

This paper aims to improve the response of the QCM sensor when its surface is
coated with sensing material and to adapt the regenerative method to today’s electronic
technology to achieve an improved version of QCM based on the ring-down method. In
this sense, the experimental setup is developed around a virtual instrument based on a
field-programmable gates array (FPGA). The paper makes the following contributions:
(i) it introduces the regenerative QCM method based on an active circuit, (ii) it implements
the regenerative method in an experimental setup, and (iii) it experimentally validates the
proposed method by analyzing its ability to compensate for the natural dissipation factor.

This paper is organized as follows: Section 2 describes the proposed method for the
regeneration ring-down based on an active circuit, followed by the extensive presentation
of the experimental setup, while Section 3 is devoted to the raw experimental results,
followed by a discussion in Section 4 on the operation and the performance of the QCM
with ring-down regeneration. The conclusions are set out in Section 5.

2. Materials and Methods
2.1. Ring-Down Method

The use of quartz crystal as a QCM sensor has generated an extremely intense and
interesting research effort with many applications. The motional electrical parameters of
the QCM sensor based on the Butterworth van Dyke (BVD) model [20,21] are, Rm, Lm, and
Cm of the series branch. The source of the dissipation factor for the QCM sensor is motional
resistance (Rm) of the BVD model, and several parameters are defined relative to it. Based
on the key parameters, the QCM sensor provides access to the physical characteristic of
the sample. The dissipation factor or other electrical parameter relative to Rm provides a
detailed analysis of the surface and the interactions on the surface without being limited to
the measurement of mass per unit area. Based on the dissipation factor, the viscoelastic
and conformational properties of the sample [22] are monitored.

The QCM-D or equivalent ring-down method is very popular and probably the most
used in the research field related to acoustic sensors. The main advantages of the method
are the relatively short measurement time and the possibility of measuring key parameters
for harmonics of the base frequency as well.

To illustrate the effects produced by coating materials with viscoelastic properties such
as polymers [4] on the ring-down time for a QCM sensor with a series resonant frequency
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of 10 MHz, its ring-down response is simulated in the MATLAB® environment, taking into
account only the motional branch of the BVD model.

The parametric simulated effect induced by motional resistance Rm in the ring-down
response of the QCM sensor is shown in Figure 1. In Figure 1a, the ring-down time
becomes shorter and shorter as the motional resistance increases. The situations simulated
in Figure 1a are realistic and frequently encountered in practice even if a motional resistance
Rm = 5 Ω is at the limit of experimental reality. This decrease in ring-down time, from an
experimental perspective, makes it difficult to determine with sufficient precision the key
parameters in subsampling circumstances. To compensate for this effect, a regenerative
method is proposed. The anticipated effect of the regenerative method is simulated in
Figure 1b, where two theoretical situations (Rm = {2, 1} Ω) are presented. The simulated
values for Rm in Figure 1b, from an experimental perspective, are unrealistic, especially for
a QCM sensor with a resonant frequency in a series of 10 MHz. As is shown in Figure 1b,
the ring-down time increases significantly compared to the situation naturally encountered
in applications based on the QCM sensor.
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Figure 1. Parametric simulation of the ring-down response depending on the motional resistance
(Rm) for a QCM sensor with the series resonant frequency of 10 MHz: (a) Rm = {5, 10, 20} Ω,
(b) Rm = {1, 2} Ω.

2.2. Regenerative Ring-Down Method

In the particular case of the QCM sensor, to obtain a regenerative QCM, the realized
system must always be in a stable state. To meet this condition, the passive excitation
of the QCM sensor is ensured by an external arbitrary wave generator (AWG). QCM
sensor response to excitation with a sinusoidal wave with a frequency in the range of
resonant frequencies [11] is processed to determine the natural resonance frequency and
dissipation factor.

The artificial increase in the Q factor for the QCM sensor or the equivalent artificial
decrease in the dissipation factor, shown in this paper, improves the standard ring-down
method in the case of coatings with a sensing film or for very high-frequency QCM sensors.
In essence, the artificial increase in the Q factor of the QCM sensor is equivalent to the
existence of a smart material not yet discovered.

Conceptually the proposed method is not recent [8] and was widely used at a time
when the parameters of electronic devices were modest. The QCM sensor (quartz crystal) is
difficult to replace with another real material, so the only solution is to artificially improve
its natural qualities. The regenerative method (positive feedback) is well known and has
long been used successfully [9] in the past. It was abandoned due to the mode of operation
at the stability limit. This mode of operation is specific to the regenerative method and
cannot be avoided due to the energy restored to the system.
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The operational amplifier (op-amp) is a brilliant contribution from the era of the elec-
tronic tube [23,24]. With the transition to semiconductor devices, the op-amp is extensively
used in analog electronics and is today an electronic circuit frequently used in the front-end
interface for any type of electrical sensor. For example, in an active method for QCM
sensors based on an oscillator, the op-amps are also commonly used [25]. The op-amp
conforms to the input-output relationship:

vo = A(v+ − v−) (1)

where vo is the output voltage, A is the gain of the amplifier, and v+, v− are the voltages at
the non-inverting and inverting inputs, as is shown in Figure 2.
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The negative impedance converter (NIC) is an active circuit that injects energy into a
port, as opposed to a dissipative load that consumes energy from it. To perform the energy
injection into a port, it reverses the polarity of the voltage or reverses the direction of the
current or equivalent, introducing a phase shift of 180◦ (inversion) between voltage and
current. For NIC, we have two versions: (i) a negative impedance converter with voltage
inversion (VNIC) and (ii) a negative impedance converter with current inversion (INIC).
Considering the VNIC circuit shown in Figure 2, the input voltages are:

v− = vo
ZQCM

R f + ZQCM
(2)

v+ = vo
R1

R1 + R2
(3)

where ZQCM is the impedance of the QCM sensor. Only for negative feedback topology of
the op-amp, we can assume the following:

v+ = v− (4)

whence it results

−
ZQCM

R f + ZQCM
=

R1

R1 + R2
(5)

Finally, we get the following relationship:

ZQCM = −
R f

R2
R1 (6)

which is characteristic of VNIC [26].
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The BVD lumped electrical model of the QCM sensor using 4-parameters is shown in
Figure 3. This model involves two branches in parallel with one another. The static branch
consists of a single capacitance Cp, also referred to as the shunt capacitance. The series
branch refers to a combination of the motional elements Rm, Lm and Cm.
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The impedance of the QCM sensor, ZQCM, is described by the BVD model, as shown
in Figure 3. As it results from the figure mentioned above, the BVD model is a parallel
combination between the impedance of a static branch and a motional branch. The reactance
of the motional branch is zero at a certain denoted frequency, ωr, called the series resonance
frequency that is given by the relation:

ωr =
1√

LmCm
. (7)

at which the QCM sensor impedance is purely resistive. The shunt capacitance, Cp, is
responsible for the existence of an anti-resonance frequency. Between the series resonance
frequencies and anti-resonance frequency, the crystal has an inductive reactance. With
the exception of this narrow frequency range mentioned above, the reactance of the QCM
sensor is capacitive. The anti-resonance frequency or the parallel-resonance frequency
of the quartz crystal is the frequency at which its impedance is maximum. This denoted
anti-resonance frequency, ωar, is given by the following equation:

ωar = ωr

√
1 +

Cm

Cp
. (8)

In each oscillation cycle, the quartz crystal loses 2π/Q of the stored energy due to the
dissipation processes. Based on the parameters of the BVD model of the quartz crystal, the
Q factor is given by the equation:

Q =
ωrLm

Rm
=

1
ωrCmRm

(9)

where the serial resonant frequency ωr is specified by Equation (7). In the ring-down
method, it is assumed that the quality factor is the same for both series and parallel
mode [10], and it is given by:

Q =
ωrLm

Rm
∼=

ωarLm

Rm
(10)



Chemosensors 2022, 10, 262 6 of 13

At serial resonance frequency (ωr) of the QCM sensor, the impedance of its motional
branch is pure real ZQCM(ωr) = Rm, and in this situation at the borderline (Barkhausen
criteria), where VNIC becomes the standard bridge oscillator (SBO) [25], we can write:

Rm = −
R f

R2
R1 (11)

The stability criterion for the regenerative QCM method is theoretically given by the
artificial motional resistance (Rma) of the QCM sensor, and it can be deduced from the
Barkhausen criteria:

Rma = Rm −
R f

R2
R1 > 0 (12)

At this point, we can deduce for the QCM sensor the degree of increase in the quality
factor Q = 1/D for the analyzed VNIC circuit so that, based on Equation (9), the factor Q
is of the form:

Q =
ωrLm

Rma
=

1
ωrCmRma

(13)

A typical disappointment of the QCM sensor is caused by a significant decrease in the
Q factor when contact of its surfaces occurs with materials with high viscosity. Theoretically,
the regenerative ring-down method can avoid this limitation, as expressed in Equation (13)
in relation to Equation (9). The following section presents an experimental setup based on
a virtual instrument to validate the QCM regenerative method.

2.3. Regenerative Ring-Down QCM

The analysis of the regenerative ring-down method in an automatized experimental
setup based on a virtual instrument is the main contribution of this subsection. An ex-
perimental software-based setup was designed to control the circuit shown in Figure 2.
The VNIC circuit, together with a virtual instrument, are the hardware elements of the
experimental setup.

The Analog Discovery 2 (AD2) virtual instrument from Digilent Inc., Pullman, WA,
USA [27] has been successfully used in various applications [28–30]. The WaveForms device
manager provides alternate FPGA configuration files with different resource allocations.
The virtual instrument AD2 has 2 14-bit ADC input channels at 100 MSPS, 2 14-bit DAC
output channels at 100 MSPS, and 16 digital bidirectional I/O channels. For each analog
input channel, the default buffer size is 8192 samples. The AWG output channels have
allocated 4096 samples for each by default. The voltage ranges for the input channels
are ±25 V with an absolute resolution of 0.32 mV (scale ≤ 5 V), and the voltage range of
the AWG output channels is ±5 V. An input impedance of 1 MΩ in parallel with 24 pF is
ensured for both analog input channels. These functions are implemented using a Spartan
6 FPGA circuit (XC6SLX16-1L) produced by Xilinx Inc., San Jose, CA, USA.

The main electronic devices used to implement the circuit shown in Figure 2 are the
AD811 video op-amp and the Pickering Electronics 105-1-A-5/1D relays. The use of a no-
bounce relay is mandatory. In general, a large input impedance is the best choice of op-amp
for this application. This condition is not met by the video op-amp; this situation influences
the natural response of the QCM sensor by modifying both its frequency response and the
dissipation factor. This situation is remedied by the regenerative effect and is, moreover,
specific to the simplified methods [16,17] of the ring-down method.

As is shown in Figure 2, the switching time of the relay does not disturb the QCM
sensor since it is permanently connected to the non-inverting input of the op-amp. However,
the relay used has a release time of 0.2 ms. Ratio R f /R2 is a circuit constant that theoretically,
in the ideal approximation, determines the multiplication factor for R1. As shown by
Equation (9), in this case, the multiplication factor is 6.96 (R f = 3.9 KΩ and R2 = 560 Ω).
The R1 is a multi-turn trimmer and has a resistance value equal to 500 Ω.

The circuit shown in Figure 4a was conceived as a shield of the AD2. In this way, the
proposed regenerative circuit is integrated with the data acquisition and is under software
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control. The circuit’s power supply is provided by the hardware user interface of the virtual
instrument. The experimental setup is completed by the AD2 virtual instrument and QCM
sensor, as is shown in Figure 4b.
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The PC host computer provides, through the USB2 interface, the software development
kit (SDK) commands of the AD2, data transfer, and power supply for the VNIC circuit. The
typical sequence for the ring-down method is conducted with the K1 relay controlled by a
digital output of AD2. Through a Python script, the measurement sequence is automated:
(i) the AWG is activated to generate a sinusoidal wave with a frequency in the range of
the resonance frequencies of the QCM sensor [11], (ii) the K1 relay is closed to ensure
the excitation of the QCM sensor until the oscillations are in steady-state, (iii) then the
excitation is deactivated by opening the K1 relay, (iv) from this moment on the VNIC circuit
provides positive feedback and thus the quality factor of the QCM sensor is increased,
(v) the data acquisition is started by subsampling followed by (vi) the calculation of the
key parameters of the QCM sensor. Raw data from the op-amp output are obtained by
subsampling [10] to adapt the ring-down time to the input buffer size of the AD2. In this
case, the aliasing frequency is exploited to calculate the key parameters of the QCM sensor.

At the output of op-amp, we have the ring-down voltage expressed by the fol-
lowed equation:

V(t) = V0e−λt sin(ωt + ϕ) (14)

where λ is the decay constant. The dissipation factor is given by the next equation:

D =
2λ

ωr
(15)

Dr =
2λr

ωr
=

Rma

ωrLm
= RmaωrCm (16)

Rma =
Dr

ωrCm
(17)

The software to produce a functional and accurate experimental setup is written in
Python and exploits the SDK functions [27]. The raw data from the output of the VNIC
circuit, designed to implement the regenerative ring-down method, are processed in real-
time, and the tracking of the resonance frequency is provided by AWG based on the Fourier
transform. The Python module also ensures real-time processing of experimental raw data
and calculates the key parameters of the QCM sensor. The acquired raw experimental data
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are graphically represented together with the key parameters and fitting results based on
Equation (14).

3. Results

In this section, a detailed analysis is performed for experimental validation of the
regenerative QCM method. The experimental setup is shown in Figure 4 and also contains
a QCM sensor made of a quartz crystal with a fundamental resonant frequency of 10 MHz
(151225-10, International Crystal Manufacturing Co., Inc., Oklahoma City, OK, USA).
During the measurements, the temperature in the laboratory was in the range of 21 ± 2 ◦C,
with a relative humidity of 50 ± 10%.

3.1. Natural Ring-Down of the QCM Sensor

The BVD parameters for polyvinyl alcohol (PVA) coated QCM sensor was obtained
using a virtual impedance analyzer (VIA) already presented in the literature [28,30]. In
Figure 5a, the VIA results for the QCM sensor are shown.

Chemosensors 2022, 10, x FOR PEER REVIEW 8 of 13 
 

 

𝐷𝐷𝑟𝑟 =
2𝜆𝜆𝑟𝑟
𝜔𝜔𝑟𝑟

=
𝑅𝑅𝑚𝑚𝑎𝑎
𝜔𝜔𝑟𝑟𝐿𝐿𝑚𝑚

= 𝑅𝑅𝑚𝑚𝑎𝑎𝜔𝜔𝑟𝑟𝐶𝐶𝑚𝑚 (16) 

𝑅𝑅𝑚𝑚𝑎𝑎 =
𝐷𝐷𝑟𝑟

𝜔𝜔𝑟𝑟𝐶𝐶𝑚𝑚
 (17) 

The software to produce a functional and accurate experimental setup is written in 
Python and exploits the SDK functions [27]. The raw data from the output of the VNIC 
circuit, designed to implement the regenerative ring-down method, are processed in real-
time, and the tracking of the resonance frequency is provided by AWG based on the Fou-
rier transform. The Python module also ensures real-time processing of experimental raw 
data and calculates the key parameters of the QCM sensor. The acquired raw experimental 
data are graphically represented together with the key parameters and fitting results 
based on Equation (14). 

3. Results 
In this section, a detailed analysis is performed for experimental validation of the 

regenerative QCM method. The experimental setup is shown in Figure 4 and also contains 
a QCM sensor made of a quartz crystal with a fundamental resonant frequency of 10 MHz 
(151225-10, International Crystal Manufacturing Co., Inc., Oklahoma City, OK, USA). 
During the measurements, the temperature in the laboratory was in the range of 21 ± 2 °C, 
with a relative humidity of 50 ± 10%. 

3.1. Natural Ring-Down of the QCM Sensor 
The BVD parameters for polyvinyl alcohol (PVA) coated QCM sensor was obtained 

using a virtual impedance analyzer (VIA) already presented in the literature [28,30]. In 
Figure 5a, the VIA results for the QCM sensor are shown. 

  
(a) (b) 

Figure 5. The reference parameter of the QCM sensor coated with PVA: (a) The natural BVD param-
eter based on VIA; (b) The key parameter obtained with the regenerative ring-down method. 

The reference element to make a connection with the impedance analyzer method is 
the resistance from the serial branch of the BVD model denoted in this paper as motional 
resistance, 𝑅𝑅𝑚𝑚. To have a connection between the parameters of the BVD model and the 
key parameters specific to the rind-down method, Equation (17) is used. By using the 
value of the motional capacitance 𝐶𝐶𝑚𝑚 measured by VIA, the motional resistance can be 
calculated from the dissipation factor.  

Figure 5. The reference parameter of the QCM sensor coated with PVA: (a) The natural BVD parameter
based on VIA; (b) The key parameter obtained with the regenerative ring-down method.

The reference element to make a connection with the impedance analyzer method is
the resistance from the serial branch of the BVD model denoted in this paper as motional
resistance, Rm. To have a connection between the parameters of the BVD model and the
key parameters specific to the rind-down method, Equation (17) is used. By using the value
of the motional capacitance Cm measured by VIA, the motional resistance can be calculated
from the dissipation factor.

The value of the motional resistance measured using the impedance analyzer is
19.3663 Ω, and the first validation of the proposed regenerative QCM method was to
find a value for R1 trimmer (Figure 2) to measure a value close to 19.3663 Ω, also known as
a natural value. The results shown in Figure 5b confirm the ability of the proposed circuit in
Figure 2 to compensate for the very low input impedance (≈0.5 MΩ) of the video op-amp.
The Q factor also confirms the ability of the VNIC circuit to compensate for the associated
losses of the experimental setup. The chosen subsampling frequency is 500 kHz and is
marked on the graph in Figure 5b to allow easy comparison with the ring-down responses
simulated in Figure 1. The experimental results are in good agreement with the results
obtained by simulation for the series branch (motional) of the BVD model.

Figure 6a shows the fit of the raw data with Equation (14), represented by the expo-
nentially damped sinusoid and the decay constant, λ. The first periods of the ring-down
response are not taken into account by the fitting algorithm. The optimal number of periods
to be eliminated from the fitting procedure is established using the “find_peaks” function
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from Python scipy.signal library. The fitting algorithm used is based on the “curve_fit”
function from Python scipy.optimize library that implements the standard method of the
non-linear least squares. In this case, the subsampling frequency has been increased to
1 MHz to have a resolution on the time axis that allows a visual evaluation of the fitting
results. For the initial estimation of the fit parameters, the Fourier transform of the aliasing
frequency shown in Figure 6b is used. The Fourier transform is implemented based on
the “fft” function from Python scipy.fft library. The actual frequency of the QCM sensor is
determined by the unfolding procedure, taking into account the subsampling frequency.
Up to this point, results that are commonly found in the literature [10,11] have been repro-
duced using a VNIC circuit (Figure 2) that can compensate for the low input impedance of
a video op-amp.
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3.2. Regenerative Ring-Down of the QCM Sensor

In this subsection are presented experimental results that validate the parametric
simulation shown in Figure 1. For a comfortable adjustment of the resistance value R1
(Figure 2), a multi-turn trimmer resistor is used (Figure 4a). However, for very fine control, it
is recommended to use another multi-turn trimmer resistor with a value of about 50–100 Ω
in series. Such an arrangement will allow the approach with sufficient precision to the
condition expressed by Equation (12). In a first step, the capability of the ring-down
regenerative method to compensate for the Q factor (motional resistance, dissipation factor)
of the QCM sensor coated with a PVA layer is validated.

For a clean QCM sensor, the motional resistance is usually in the range of 5–10 Ω.
In Figure 7, the extreme value of the typical range is shown, and the resource of the
regenerative ring-down method is validated. Moreover, the experimental results are in
good agreement with the simulated ring-down response shown in Figure 1a.

Figure 1b shows the simulation of two atypical situations for a QCM sensor; these
two situations do not exist naturally. By adjusting the R1 resistor value of the circuit
in Figure 2, these situations can be validated experimentally, as illustrated in Figure 8.
For stability reasons, a value for motional artificial resistance Rma = 1 Ω of the QCM
sensor is more than satisfactory, being practically impossible to find a natural equivalent.
To accommodate the increased ring-down time with the input buffer size of the virtual
instrument, a subsampling frequency of 50 KHz was chosen. Dissipation factor (D), Q
factor, and artificial motional resistance, Rma, are substantially improved, paving the way
for effective portable applications. Even if the experimental results are significant, in the
next section, a realistic approach to the pluses and minuses of the regenerative QCM
method is analyzed.
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4. Discussion

Detection and discrimination of VOCs are of crucial importance due to the detrimental
effects that they produce on human health and the general environment. The QCM-D,
based on the principle of acoustic sensors, is an excellent device with real resources for
designing portable and low-cost eNose systems [31]. A wide variety of materials have been
investigated as coating materials applied to the surface of the QCM sensor to target a par-
ticular type of VOCs. Most commonly, polymeric materials were used as coating materials
for the QCM sensor due to simplified synthesis methods and viscoelastic properties [32].

Another area of interest for the QCM sensor in recent years has been the development
of new electronic measurement methods. The ring-down method is not very sophisti-
cated from an experimental perspective, and simplified versions are presented in the
literature [15–17]. These simplified versions cannot compete with professional equipment
but can provide support for mass production in the case of a specific QCM sensor ap-
plication. The ring-down regenerative QCM method is equally suitable for laboratory
measurements or large-scale applications. Considering the hardware resources of Internet
of Things (IoT) systems, the regenerative ring-down method is addressed mainly to them.
Thus, the very long ring-down time benefits the systems with low sampling frequency,
solving the aspect related to the price and portability of the applications.

The negative aspects of this first experimental version are specific to the methods of
active measurement of the QCM sensor electrical parameters [7,33]. In Table 1, significant
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parameters a summarized for a discussion in this regard. In the first line of Table 1, the
parameters of the QCM sensor measured with a passive method using a VIA are presented.
The negative aspect is the resonant frequency (Fr) measured by the regenerative ring-down
method that changes when the R1 resistor value in the circuit in Figure 2 is modified. The
topology of the VNIC circuit is identical to a standard bridge oscillator (SBO). The SBO
based on op-amp is a VNIC that satisfies the Barkhausen criteria [7]. The SBO or one of
its variants, lever oscillators [34–36] and active oscillators [37,38], also known as Meacham
oscillators [25,39], are frequently presented in the literature. This situation illustrated
in Table 1 is well known in the literature and practically does not induce experimental
problems as long as the resistance value R1 does not change during a set of experiments.

Table 1. The natural and artificial key parameter of the QCM sensor.

Fr (Hz) Rma (Ω) Q Factor

9,998,665.00 19.3863 28,486.22
9,989,875.02 19.0517 28,861.07
9,990,033.38 10.0526 54,696.82
9,990,343.96 4.8643 113,033.46
9,990,428.74 2.0516 267,995.78
9,990,250.09 0.9887 556,123.22

Another solution is the use of a digital potentiometer controlled via a serial peripheral
interface (SPI) bus. The value of the resistance R1 is known because it will be set by the
software. Resonance frequency compensation is automatic each time the Q factor (Rma
or damping factor) is changed during the experiment. In this way, without significantly
complicating the circuit, this shortcoming can be transparently eliminated. The solution
presented proves, once again, the significant progress generated by virtual instruments
that can solve difficult situations encountered in analog circuits in a few lines of code.

5. Conclusions

This paper presented a regenerative QCM method based on the VNIC circuit, along
with the most important results, in a comprehensive way. The parametric simulation of
the ring-down regenerative method, together with its theoretical modeling, provides the
necessary support for the design of the experimental setup. The experimental setup specific
to this work was designed based on the VNIC circuit as a shield and AD2 virtual instrument.
Extensive experimental measurements using complementary methods demonstrate the
capabilities of the down-down regenerative ring-down method. VIA measurements were
performed on a QCM sensor covered with a thin PVA layer to have as a reference in the
process of validating the regenerative effect. The electrical performance of the regenerative
ring-down method is notably in very good agreement with parametric simulation and
paves the way for future portable applications on a large scale at a low cost. Finally, the
experimentally validated results of the regenerative ring-down method for the QCM sensor
are analyzed from the perspective of a deficiency of the method together with a possible
modern solution specific to virtual instrumentation. The compensation of the QCM sensor
by the proposed regenerative method eliminates the damping effect produced by the
sensing film. In this regard, the proposed regenerative circuit designed based on a VNIC
confirmed the most optimistic expectations.
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