

Communication Chalcone-Based Colorimetric Chemosensor for Detecting Ni²⁺

Sungjin Moon 💿 and Cheal Kim *

Department of Fine Chemestry and New and Renewable Energy Convergence, Seoul National University of Science and Technology (SNUT), Seoul 01088, Korea; msjinjjang@naver.com * Correspondence: chealkim@snut.ac.kr; Tel.: +82-2-960-6681; Fax: +82-2-971-9140

Abstract: The first chalcone-based colorimetric chemosensor DPP (sodium (*E*)-2,4-dichloro-6-(3-oxo-3-(pyridine-2-yl)prop-1-en-1-yl)phenolate) was synthesized for detecting Ni²⁺ in near-perfect water. The synthesis of DPP was validated by using ¹H, ¹³C NMR and ESI-MS. DPP selectively sensed Ni²⁺ through the color variation from yellow to purple. Detection limit of DPP for Ni²⁺ was calculated to be 0.36 μ M (3 σ /slope), which is below the standard (1.2 μ M) set by the United States Environmental Protection Agency (EPA). The binding ratio of DPP to Ni²⁺ was determined as a 1:1 by using a Job plot and ESI-mass. The association constant of DPP and Ni²⁺ was calculated as 1.06 \times 10⁴ M⁻¹ by the non-linear fitting analysis. In real samples, the sensing application of DPP for Ni²⁺ was successfully performed. DPP-coated paper-supported strips could also be used for detecting Ni²⁺. The binding mechanism of DPP to Ni²⁺ was proposed by ESI-MS, Job plot, UV-vis, FT-IR spectroscopy, and DFT calculations.

Keywords: Ni²⁺; colorimetric sensor; chalcone; test strip; calculations

Citation: Moon, S.; Kim, C. Chalcone-Based Colorimetric Chemosensor for Detecting Ni²⁺. *Chemosensors* **2022**, *10*, 151. https://doi.org/10.3390/ chemosensors10050151

Academic Editor: Philip Gardiner

Received: 12 March 2022 Accepted: 18 April 2022 Published: 20 April 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Nickel ion is a pivotal metal ion in biological systems, such as respiration, biosynthesis, and metabolism [1]. In addition, it is widely employed in industrial areas, such as Ni-Cd batteries, electroplating, machinery, and catalyst [2–6]. With its industrial usage, a large amount of nickel is released into nature as a pollutant [7], increasing the possibility of nickel exposure. Nickel is toxic, and can cause several illnesses, such as allergies, lung injuries, and respiratory disease [8–11]. Consequently, the acceptable amount of nickel in drinking water recommended by the United States Environmental Protection Agency (EPA) is limited to 1.2μ M [12]. Thus, there is a need to design methods capable of detecting nickel ions easily and quickly in the environment.

Several analytical tools are used to detect Ni²⁺, such as atomic absorption spectrometry, electrochemical methods, inductively coupled plasma mass spectrometry, and fluorescence techniques and distance-based measurement [13,14]. The methods require expensive equipment and a skilled operator [15]. In contrast, the colorimetric chemosensor has no such drawbacks [16–19]. In addition, paper-supported colorimetric sensors adsorbed on paper or thread have an additional benefit, such as semi-quantitative detection with a faster and cheaper analysis [20]. Therefore, it is useful to develop paper-supported colorimetric chemosensors for detecting Ni²⁺. Several colorimetric chemosensors that detect Ni²⁺ were studied in the past few years. Although most of the reported sensors operate in organic solvents, only a few colorimetric chemosensors with functional groups, such as naphthalimide, pyridine, coumarin, Schiff-base, quinone, and polymer with dye detect Ni²⁺ in near-perfect water [21–26]. Thus, the design of colorimetric chemosensors capable of sensing Ni²⁺ in water is of high significance.

Pyridine could provide a binding site for cations [27–29] and have a water-soluble hydrophilic character [30–32]. The chalcone structure has a conjugated π -electronic system, which provides good chelating ability with metal ions [33–35]. In addition, the α , β -unsaturated carbonyl in the chalcone structure makes a push–pull chromophore [36,37].

In particular, the chalcone structure can be easily synthesized by using aldol condensation [38]. Thus, we predicted that a chalcone-based chemosensor with a pyridine group can detect metal ions, such as nickel, through a color change in near-perfect water and be applied for paper-supported semi-quantitative detection.

Herein, we present the first chalcone-based colorimetric chemosensor **DPP** for the detection of Ni²⁺ in near-perfect water. Chemosensor **DPP** can sense Ni²⁺ with a low detection limit by colorimetric variation from yellow to purple. In addition, **DPP** could apply to real water and its paper-supported strip could detect Ni²⁺ easily and quickly. The binding mechanism of **DPP** to Ni²⁺ was described by UV-visible titrations, ESI-mass, Job plot, FT-IR spectroscopy, and DFT calculations.

2. Materials and Methods

2.1. Materials and Equipment

Sodium hydroxide, 2-acetylpyridine, and 3,5-dichlorosalicylaldehyde were acquired commercially from Alfa, TCI, and Samchun in Korea, respectively. Methanol was acquired from Samchun in Korea. Metal cation solutions were prepared using metal nitrate or perchlorate salts. The pH buffer solutions were acquired commercially from Samchun in Korea. A Varian spectrometer was used to obtain ¹³C and ¹H NMR spectra. Absorption spectra were measured with a Perkin Elmer Lambda 365 UV-Vis. A Thermo MAX instrument was employed to collect ESI-MS spectra. FT-IR spectra were obtained by using a Thermo Fisher Scientific Fourier Transform Infrared Spectrophotometer.

2.2. Synthesis of DPP

DPP was synthesized by the aldol condensation of 2-acetylpyridine and 3,5-dichlorosalicylaldehyde. 2-Acetylpyridine (342 µL, 3.0 mmol) and 10% NaOH 5 mL were added in methanol 15 mL. The solution was stirred for 1 h. Then, 3,5-dichlorosalicylaldehyde (390 mg, 2.0 mmol) was added to the solution, which was additionally stirred at 23 °C for 1 day. The red powder precipitated was filtered, washed with ether, and dried. Yield: 392 mg (61%). ¹H NMR: δ = 8.72 (d, 1H), 8.33 (d, 1H), 8.02 (m, 3H), 7.60 (t, 1H), 7.16 (d, 1H), 7.07 (d, 1H); ¹³C NMR (175 MHz, DMSO-*d*₆): δ = 188.87, 167.12, 155.00, 144.42, 137.29, 129.82, 127.32, 126.94, 126.52, 123.18, 121.93, 114.13, 109.01. ESI-mass: *m*/*z* calcd. for C₁₄H₉Cl₂NO₂⁻ + 2H₂O, 328.02; found, 327.63.

2.3. UV-Vis Titrations

DPP (3.2 mg, 1×10^{-5} mol) was dissolved in DMF (1.0 mL) and 6 µL of the **DPP** stock (10 mM) was diluted to 2.994 mL PBS buffer (10 mM PBS, pH 7.4) to give 20 mM. Ni(NO₃)₂ (2.91 mg, 1×10^{-4} mol) was dissolved in 5.0 mL of buffer, and 3-66 µL of the Ni²⁺ stock (2 × 10⁻³ M) was added to **DPP** (2 × 10⁻⁵ M). UV-vis spectra were taken after 5 s.

2.4. Job Plot

Then, 3–27 μ L of a **DPP** stock (10 mM) prepared in 1.0 mL of DMF was transferred to several quartzes. Then, 3–27 μ L of the Ni²⁺ solution (1 × 10⁻² M) acquired with nitrate salt in a 1.0 mL buffer was added to diluted **DPP**. Each quartz cell was filled with PBS buffer to 3.0 mL. UV-vis spectra were taken after 5 s.

2.5. Interference Tolerance Test

Sensor **DPP** (3.2 mg, 1×10^{-5} mol) was dissolved in DMF (1 mL). An amount of 1.0×10^{-4} mol of Al(NO₃)₃, Cu(NO₃)₂, Cr(NO₃)₃, Pb(NO₃)₂, Hg(NO₃)₂, Co(NO₃)₂, Ni(NO₃)₂, Ca(NO₃)₂, Mg(NO₃)₂, Mn(NO₃)₂, In(NO₃)₃, Ga(No₃)₂, NaNO₃, AgNO₃, Fe(NO₃)₃, Fe(ClO₄)₂, Cd(NO₃)₂, and KNO₃ was dissolved in 5.0 mL buffer, respectively. An amount of 48 µL of each metal (2×10^{-2} M) and Ni²⁺ ion (2×10^{-2} M) was added into a 3.0 mL PBS buffer to afford 16 eq., respectively. An amount of 6 µL of the **DPP** stock (1×10^{-2} M) was added to each solution. A UV-vis spectrum of each solution was taken after 5 s.

2.6. pH Effect

Then, 6 μ L of the **DPP** stock (1 × 10⁻³ M) dissolved in DMF (1.0 mL) was diluted to 2.994 mL of each pH buffer to make 3 × 10⁻⁵ M. Ni(NO₃)₂ (2.91 mg, 1 × 10⁻⁴ mol) was dissolved in 5.0 mL buffer solution. Then, 48 μ L of the Ni²⁺ stock was added to each **DPP**. UV-vis spectra were taken after 5 s.

2.7. Water Sample Test by the Spiking Method

The real water sample analysis was performed to determine the spiked Ni²⁺ in samples collected from drinking and tap water in our laboratory. Sensor **DPP** (3.2 mg, 1×10^{-5} mol) was dissolved in DMF (1.0 mL). Then, 6 µL of the **DPP** stock (1×10^{-3} M) was diluted in 2.994 mL of a sample solution containing the spiked Ni²⁺ (6 µM). UV-vis spectra were taken after 5 s.

2.8. Test Strip

The test strip assay was achieved with **DPP**. Filter paper cut into pieces was dipped in a **DPP** media at a concentration of 1 mM (1.0 mL, MeOH) and dried for 1 h. After the filter paper completely dried off, various concentrations (10, 50, and 100 μ M) of Ni²⁺ solutions dissolved in buffer were employed to determine the lowest visible amount. A concentration of 50 μ M of varied cation solutions (Zn²⁺, Al³⁺, Mn²⁺, K⁺, Cd²⁺, Fe²⁺, Ca²⁺, Fe³⁺, Cr³⁺, Hg⁺, Mg²⁺, Cu²⁺, Co²⁺, Pb²⁺, In³⁺, Na⁺, Ga³⁺, and Ni²⁺) was employed to analyze the selectivity of the test strip.

2.9. Calculations

The detecting mechanism of **DPP** to Ni²⁺ was investigated by using the Gaussian16 program [39] for theoretical calculations. They were based on B3LYP density functional methods [40,41]. The 6-31G(d,p) [42,43] and Lanl2DZ [44] basis sets were used for calculations of elements and Ni²⁺, respectively. The solvent effect of water was checked by employing IEFPCM [45]. With the optimized patterns of **DPP** and **DPP**-Ni²⁺, 20 of the lowest triplet-triplet transitions were calculated by using the TD-DFT method to investigate the transition states of the two compounds.

3. Results and Discussion

DPP was gained by the aldol condensation of 2-acetylpyridine and 3,5-dichlorosalicylaldehyde and affirmed by ¹H NMR, ¹³C NMR, and ESI-mass (Figure 1).

Figure 1. Cont.

Figure 1. Cont.

Figure 1. (**a**) Synthesis scheme of **DPP**. (**b**) ¹H NMR spectrum of **DPP**. (**c**) ¹³C NMR spectrum of **DPP**. (**d**) Negative-ion mass spectrum of **DPP** (100 μM).

3.1. Spectroscopic Studies of **DPP** with Ni²⁺

Colorimetric sensing capability of **DPP** was examined with cations $(Zn^{2+}, Al^{3+}, Mn^{2+}, K^+, Cd^{2+}, Fe^{2+}, Ca^{2+}, Fe^{3+}, Cr^{3+}, Hg^+, Mg^{2+}, Cu^{2+}, Co^{2+}, Pb^{2+}, In^{3+}, Na^+, Ga^{3+}, and Ni^{2+})$ in buffer (pH = 7.4, Figure 2).

Figure 2. Cont.

Figure 2. (a) Absorption variations of **DPP** (20 μ M) with cations (20 eq.). (b) Color variations of **DPP** (20 μ M) with different cations (20 eq.). (c) Absorption variations of **DPP** (20 μ M) with varied amounts of Ni²⁺ (0–16 eq.).

In adding diverse cations to **DPP**, only Ni²⁺ showed significant spectral change with a prominent increase of 550 nm (Figure 2a) and distinguishable color change from yellow to purple (Figure 2b). Meanwhile, other cations did not exhibit any significant spectral or visual changes, suggesting that **DPP** can sense exclusively Ni²⁺ with a color change. We executed the UV-vis titration to analyze the binding feature of **DPP** with Ni²⁺. As the Ni²⁺ was added into **DPP**, the absorbance of 373 nm and 550 nm was prominently increased, and that of 325 nm and 453 nm was visibly decreased. A complete isosbestic point was detected at 391 nm, suggesting that sensor **DPP** and Ni²⁺ would create a species (Figure 2c). In particular, **DPP** is the first chalcone-based sensor among chemosensors previously addressed for the sensing of Ni²⁺ in near-perfect water (Table 1).

Sensor	Detection Limit (µM)	Test Strip	Reference
H ₂ N NH	0.057	Yes	[21]
HO H	0.074	No	[22]
$rac{0}{0}$ $rac{$	0.037	No	[23]

Table 1. Examples of chemosensors for detection of Ni²⁺.

Table 1. Cont.

A Job plot experiment was achieved to determine the binding feature of **DPP** and Ni²⁺ (Figure 3). The result illustrated that **DPP** and Ni²⁺ made a 1:1 binding stoichiometry.

Figure 3. Job plot for **DPP** with Ni²⁺at 550 nm.

The 1:1 stoichiometry was assured by the ESI-MS test (Figure 4).

The peak of 385.73 (m/z) was assignable to be $[(DPP + Ni^{2+} - Na^{+} + 2H_2O)]^{+}$ [calcd. 385.95].

According to the calibration curve with nickel ion, the association constant of **DPP** and Ni²⁺ was calculated as 1.06×10^4 M⁻¹ by the non-linear fitting analysis (Figure 5a) [46]. Detection limit of **DPP** to Ni²⁺ was determined as 0.36 μ M (3 σ /slope, Figure 5b).

Figure 4. Positive-ion mass spectrum of **DPP** (1×10^{-5} M) with Ni(NO₃)₂ (1.0 eq.).

Figure 5. (a) Association constant based on variation in the ratio (absorbance at 550 nm) of **DPP** (20 μ M) with Ni²⁺. The Redline is the nonlinear fitting obtained, assuming a 1:1 binding of **DPP** and Ni²⁺. (b) Analysis of the detection limit for Ni²⁺ by **DPP** (20 μ M). The standard deviations are represented by the error bar (n = 3).

Furthermore, FT-IR analysis was performed to investigate the interaction of **DPP** and Ni²⁺ (Figure 6). The band at 1644 cm⁻¹ associated with the carbonyl group (C=O) of **DPP** moved to 1619 cm⁻¹ [47,48], signifying that the carbonyl oxygen might bind to Ni²⁺.

Figure 6. FT–IR spectra of (a) DPP and (b) DPP-Ni²⁺.

With the outcomes of Job plot, ESI-mass, and IR analysis, the possible feature of **DPP** with Ni^{2+} was proposed (Scheme 1).

 $X = Solvent or NO_3^{-1}$

Scheme 1. Proposed feature of DPP-Ni²⁺.

The inhibition experiment was conducted to identify the exclusive selectivity of **DPP** for Ni^{2+} in a competitive environment (Figure 7).

Figure 7. (a) Absorption variations of **DPP** (20 μ M) with Ni²⁺ (20 eq.) and metal ions (20 eq.). (b) Color variations of **DPP** (20 μ M) with Ni²⁺ (20 eq.) and metal ions (20 eq.).

When nickel and other metals of the same concentration existed together, **DPP** was hardly disturbed by other metals except for Cr^{3+} . The detecting ability of **DPP** to Ni²⁺ was inspected in a pH range of 6–9 (Figure 8).

Figure 8. Cont.

р Н 6	pH 7	pH 7.4	pH 8	pH 9
DPP	DPP	DPP	DPP	DPP
	-			
D.D.D.	DDD	-		
+	DPP +	DPP +	DPP +	DPP +
Ni ²⁺				
	_		_	
		(b)		

Figure 8. (a) UV-vis changes of DPP (20 μ M) and DPP-Ni²⁺ (20 μ M) from pH 6 to pH 9. (b) Color changes of DPP (20 μ M) with Ni²⁺ (16 eq.) in pH 6 to 9.

DPP showed the ability to sense Ni²⁺ at pH 7–9. Test-strip experiments were performed with filter papers coated with **DPP** for practical application. **DPP** showed a colorimetric change from yellow to purple at 50 μ M Ni²⁺ (Figure 9a) and selectively detected Ni²⁺ among varied metal ions (Figure 9b). This result indicated that **DPP** could be applied to detecting Ni²⁺ by using a test strip.

Figure 9. Photographs of **DPP**-coated test strips (1 mM). (a) **DPP**-test strips immersed in Ni²⁺ (10, 50, and 100 μ M). (b) **DPP**-test strips immersed in varied metal ions (50 μ M).

The real water sample analysis was performed to determine the spiked Ni²⁺ in samples collected from drinking and tap water (Table 2).

Sample	Ni ²⁺ Added (µM)	Ni ²⁺ Found (µM)	Recovery (%)	R.S.D (n = 3) (%)
Drinking water	0.0	0.0	-	-
	6	6.09	101.48	0.37
Tap water	0.0	0.0	-	-
	6	5.98	99.68	0.24

^a Conditions: [**DPP**] = 20 μ M in PBS buffer.

The acceptable recovery percentage and relative standard deviation (R.S.D.) were obtained, meaning that **DPP** could measure Ni²⁺ substantially in a real environment.

3.2. Theoretical Study

To understand the sensing process of **DPP** to Ni²⁺, theoretical calculations of **DPP** and **DPP**-Ni²⁺ were carried out. The calculations of **DPP**-Ni²⁺ were based on the 1:1 association of **DPP** and Ni²⁺, which was suggested by ESI-MS and Job plot. The energy-optimized structures of **DPP** and **DPP**-Ni²⁺ are shown in Figure 10.

Dihedral angle (6N, 1C, 11C, 12O) : -3.84 °

Figure 10. Energy-optimized forms of (a) DPP and (b) DPP-Ni²⁺.

The dihedral angle (6N, 1C, 11C, and 12O) of **DPP** is calculated as 27.06°, showing a twisted structure. **DPP**-Ni²⁺ complex with the dihedral angle of -3.84° forms a tetrahedral structure with 2H₂O. With the energy-optimized structures, TD-DFT calculations were performed to study the electron transitions of **DPP** and **DPP**-Ni²⁺. For **DPP**, excited state 1 (472.73 nm) was regarded to be the HOMO \rightarrow LUMO transition, which showed an ICT character (Figures 11 and 12).

Its molecular orbitals indicated the shift of electron cloud from the 2,4-dichlorophenol moiety to the pyridine one. The ICT character contributes to the yellow color of **DPP**. For **DPP**-Ni²⁺, excited state 8 (553.47nm) consists of the HOMO \rightarrow LUMO (alpha), HOMO \rightarrow LUMO+1 (beta), and HOMO \rightarrow LUMO+2 (beta). The HOMO \rightarrow LUMO (alpha) showed the ICT character from the 2,4-dichlorophenol group to the pyridine one. The HOMO \rightarrow LUMO+1 (beta) and HOMO \rightarrow LUMO+2 (beta) displayed both the ICT characters from the 2,4-dichlorophenol group to the pyridine one and LMCT characters from **DPP** to nickel (Figures 12 and 13).

In addition, the calculated excitation energy of **DPP**-Ni²⁺ decreased compared to free **DPP** when the complex was formed (Figure 12). Calculated theoretical values demonstrated the redshift of the UV-vis transitions, which is consistent with experimental results. With Job plot, ESI-MS, DFT calculations, and FT-IR, we proposed the colorimetric sensing of Ni²⁺ by **DPP** (Scheme 1).

(a)

Figure 11. (**a**) The experimental UV-vis and theoretical excitation energies of **DPP**. (**b**) The significant electronic transition energies and MO contributions for **DPP** (H = HOMO and L = LUMO).

Figure 12. MO diagrams and excitation energies of DPP and DPP-Ni²⁺.

(a)

Figure 13. (a) The experimental UV-vis and theoretical excitation energies of **DPP**-Ni²⁺. (b) The significant electronic transition energies and MO contributions for **DPP**-Ni²⁺ (H = HOMO and L = LUMO).

4. Conclusions

We developed a chalcone-based colorimetric chemosensor **DPP** that can efficiently detect Ni²⁺ by a colorimetric variation from yellow to purple. With Job plot and ESI-MS, the association mode of **DPP** to Ni²⁺ was analyzed to be a 1:1 ratio. The detection limit and binding constant of **DPP** to Ni²⁺ were 0.36 μ M and 1.06 \times 10⁴ M⁻¹, respectively. The detection limit of **DPP** is below the United States Environmental Protection Agency (EPA) guideline (1.2 μ M) for Ni²⁺. It is noteworthy that **DPP** is the first chalcone-based colorimetric chemosensor to detect Ni²⁺ in near-perfect aqueous media. Practically, **DPP** could recognize Ni²⁺ in real water. In addition, the **DPP**-coated paper-supported strip showed a clear color variation from yellow to purple only in Ni²⁺. The binding mechanism of **DPP** to Ni²⁺ was explained by Job plot, ESI-mass, UV-vis, FT-IR, and calculations.

Author Contributions: S.M. and C.K. designed the initial idea; S.M. collected and analyzed field test data; S.M. and C.K. wrote this manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: National Research Foundation of Korea (2018R1A2B6001686) is kindly acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Khan, R.I.; Ramu, A.; Pitchumani, K. Design and one-pot synthesis of a novel pyrene based fluorescent sensor for selective "turn on", naked eye detection of Ni²⁺ ions, and live cell imaging. *Sens. Actuators B Chem.* **2018**, 266, 429–437. [CrossRef]
- Manna, A.K.; Mondal, J.; Rout, K.; Patra, G.K. A benzohydrazide based two-in-one Ni²⁺/Cu²⁺ fluorescent colorimetric chemosensor and its applications in real sample analysis and molecular logic gate. *Sens. Actuators B Chem.* 2018, 275, 350–358. [CrossRef]
- Velmurugan, K.; Prabhu, J.; Raman, A.; Duraipandy, N.; Kiran, M.S.; Easwaramoorthi, S.; Tang, L.; Nandhakumar, R. Dual Functional Fluorescent Chemosensor for Discriminative Detection of Ni²⁺ and Al³⁺ Ions and Its Imaging in Living Cells. ACS Sustain. Chem. Eng. 2018, 6, 16532–16543. [CrossRef]
- Sharma, N.; Gulati, A. Selective binding of Ni²⁺ and Cu²⁺ metal ions with naphthazarin esters isolated from Arnebia euchroma. *Biotechnol. Prog.* 2020, 36, e2985. [CrossRef]
- Goswami, S.; Chakraborty, S.; Adak, M.K.; Halder, S.; Quah, C.K.; Fun, H.K.; Pakhira, B.; Sarkar, S. A highly selective ratiometric chemosensor for Ni²⁺ in a quinoxaline matrix. *New J. Chem.* 2014, *38*, 6230–6235. [CrossRef]
- 6. Chakraborty, S.; Rayalu, S. Detection of nickel by chemo and fluoro sensing technologies. *Spectrochim. Acta-Part A Mol. Biomol. Spectrosc.* **2021**, 245, 118915. [CrossRef]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human health and environmental toxicology. *Int. J. Environ. Res. Public Health* 2020, 17, 679. [CrossRef]
- 8. Huang, P.J.; Kumarasamy, K.; Devendhiran, T.; Chen, Y.C.; Dong, T.Y.; Lin, M.C. BODIPY-based hydroxypyridyl derivative as a highly Ni²⁺-selective fluorescent chemosensor. *J. Mol. Struct.* **2021**, *1246*, 131281. [CrossRef]
- Bai, C.B.; Liu, X.Y.; Zhang, J.; Qiao, R.; Dang, K.; Wang, C.; Wei, B.; Zhang, L.; Chen, S.S. Using Smartphone APP to Determine the CN- Concentration Quantitatively in Tap Water: Synthesis of the Naked-Eye Colorimetric Chemosensor for CN- and Ni²⁺ Based on Benzothiazole. *ACS Omega* 2020, *5*, 2488–2494. [CrossRef]
- Hwang, S.M.; Kim, M.S.; Lee, M.; Lim, M.H.; Kim, C. Single fluorescent chemosensor for multiple targets: Sequential detection of Al³⁺ and pyrophosphate and selective detection of F- in near-perfect aqueous solution. *New J. Chem.* 2017, 41, 15590–15600. [CrossRef]
- Subhasri, A.; Balachandran, S.; Mohanraj, K.; Kumar, P.S.; Jothi, K.J.; Anbuselvan, C. Synthesis, Computational and cytotoxicity studies of aryl hydrazones of β-diketones: Selective Ni²⁺ metal Responsive fluorescent chemosensors. *Chemosphere* 2022, 297, 134150. [CrossRef] [PubMed]
- Lu, W.; Chen, J.; Shi, J.; Li, Z.; Xu, L.; Jiang, W.; Yang, S.; Gao, B. An acylhydrazone coumarin as chemosensor for the detection of Ni²⁺ with excellent sensitivity and low LOD: Synthesis, DFT calculations and application in real water and living cells. *Inorg. Chim. Acta* 2021, 516, 2–9. [CrossRef]
- 13. Bahadir, Z.; Ozdes, D.; Bulut, V.N.; Duran, C.; Elvan, H.; Bektas, H.; Soylak, M. Cadmium and nickel determinations in some food and water samples by the combination of carrier element-free coprecipitation and flame atomic absorption spectrometry. *Toxicol. Environ. Chem.* **2013**, *95*, 737–746. [CrossRef]
- 14. Cate, D.M.; Dungchai, W.; Cunningham, J.C.; Volckens, J.; Henry, C.S. Simple, distance-based measurement for paper analytical devices. *Lab Chip* **2013**, *13*, 2397–2404. [CrossRef]
- 15. Xu, Z.; Yoon, J.; Spring, D.R. Fluorescent chemosensors for Zn²⁺. Chem. Soc. Rev. 2010, 39, 1996–2006. [CrossRef]
- Salimi, F.; Zarei, K.; Karami, C. Naked Eye Detection of Cr³⁺ and Ni²⁺ Ions by Gold Nanoparticles Modified with Ribavirin. *Silicon* 2018, 10, 1755–1761. [CrossRef]
- 17. Cheah, P.W.; Heng, M.P.; Saad, H.M.; Sim, K.S.; Tan, K.W. Specific detection of Cu²⁺ by a pH-independent colorimetric rhodamine based chemosensor. *Opt. Mater.* **2021**, *114*, 110990. [CrossRef]
- 18. Lee, J.J.; Choi, Y.W.; You, G.R.; Lee, S.Y.; Kim, C. A phthalazine-based two-in-one chromogenic receptor for detecting Co²⁺ and Cu²⁺ in an aqueous environment. *Dalton Trans.* **2015**, *44*, 13305–13314. [CrossRef]
- Pothulapadu, C.A.S.; Jayaraj, A.; Swathi, N.; Priyanka, R.N.; Sivaraman, G. Novel Benzothiazole-Based Highly Selective Ratiometric Fluorescent Turn-On Sensors for Zn²⁺ and Colorimetric Chemosensors for Zn²⁺, Cu²⁺, and Ni²⁺Ions. ACS Omega 2021, 6, 24473–24483. [CrossRef]
- 20. Nilghaz, A.; Ballerini, D.R.; Fang, X.Y.; Shen, W. Semiquantitative analysis on microfluidic thread-based analytical devices by ruler. *Sens. Actuators B Chem.* **2014**, *191*, 586–594. [CrossRef]
- Kang, J.H.; Lee, S.Y.; Ahn, H.M.; Kim, C. A novel colorimetric chemosensor for the sequential detection of Ni²⁺ and CN- in aqueous solution. *Sens. Actuators B Chem.* 2017, 242, 25–34. [CrossRef]
- 22. Fukushima, Y.; Aikawa, S. Colorimetric detection of Ni²⁺ based on an anionic triphenylmethane dye and a cationic polyelectrolyte in aqueous solution. *Tetrahedron Lett.* **2019**, *60*, 675–680. [CrossRef]
- 23. Inoue, K.; Aikawa, S.; Fukushima, Y. Colorimetric chemosensor for Ni²⁺ based on alizarin complexone and a cationic polyelectrolyte in aqueous solution. *J. Appl. Polym. Sci.* **2019**, *136*, 6–11. [CrossRef]
- Yin, G.; Yao, J.; Hong, S.; Zhang, Y.; Xiao, Z.; Yu, T.; Li, H.; Yin, P. A dual-responsive colorimetric probe for the detection of Cu²⁺ and Ni²⁺ species in real water samples and human serum. *Analyst* 2019, 144, 6962–6967. [CrossRef]
- Erten, G.; Karcı, F.; Demirçalı, A.; Söyleyici, S. 1H-pyrazole- azomethine based novel diazo derivative chemosensor for the detection of Ni²⁺. J. Mol. Struct. 2020, 1206, 122713. [CrossRef]
- Kong, L.; Jiao, C.; Luan, L.; Li, S.; Ma, X.; Wang, Y. Reversible Ni²⁺ fluorescent probe based on ICT mechanism and its application in bio-imaging of Zebrafish. *J. Photochem. Photobiol. A Chem.* 2022, 422, 113555. [CrossRef]

- Choi, Y.W.; Lee, J.J.; You, G.R.; Kim, C. Fluorescence "on-off-on" chemosensor for the sequential recognition of Hg²⁺ and cysteine in water. *RSC Adv.* 2015, *5*, 38308–38315. [CrossRef]
- 28. Molina, P.; Tárraga, A.; Otón, F. Imidazole derivatives: A comprehensive survey of their recognition properties. *Org. Biomol. Chem.* **2012**, *10*, 1711–1724. [CrossRef]
- 29. Helal, A.; Kim, H.S. Thiazole-based chemosensor: Synthesis and ratiometric fluorescence sensing of zinc. *Tetrahedron Lett.* 2009, 50, 5510–5515. [CrossRef]
- 30. Cao, X.F.; Chu, W.J.; Cao, Y.B.; Yang, Y.S. Design and synthesis of novel antifungal triazole derivatives with good activity and water solubility. *Chin. Chem. Lett.* **2013**, *24*, 303–306. [CrossRef]
- Liu, Y.; Liu, Z.; Cao, X.; Liu, X.; He, H.; Yang, Y. Design and synthesis of pyridine-substituted itraconazole analogues with improved antifungal activities, water solubility and bioavailability. *Bioorg. Med. Chem. Lett.* 2011, 21, 4779–4783. [CrossRef] [PubMed]
- 32. Zhang, H.; Li, K.; Li, L.L.; Yu, K.K.; Liu, X.Y.; Li, M.Y.; Wang, N.; Liu, Y.H.; Yu, X.Q. Pyridine-Si-xanthene: A novel near-infrared fluorescent platform for biological imaging. *Chin. Chem. Lett.* **2019**, *30*, 1063–1066. [CrossRef]
- Sulpizio, C.; Breibeck, J.; Rompel, A. Recent progress in synthesis and characterization of metal chalcone complexes and their potential as bioactive agents. *Coord. Chem. Rev.* 2018, 374, 497–524. [CrossRef]
- 34. Singh, G.; Singh, J.; Mangat, S.S.; Singh, J.; Rani, S. Chalcomer assembly of optical chemosensors for selective Cu²⁺ and Ni²⁺ ion recognition. *RSC Adv.* **2015**, *5*, 12644–12654. [CrossRef]
- Singh, G.; Arora, A.; Rani, S.; Kalra, P.; Kumar, M. A Click-Generated Triethoxysilane Tethered Ferrocene-Chalcone-Triazole Triad for Selective and Colorimetric Detection of Cu²⁺ Ions. *ChemistrySelect* 2017, *2*, 3637–3647. [CrossRef]
- El-Nahass, M.N. D–π–A chalcone analogue metal ions selective turn-on-off-on fluorescent chemosensor with cellular imaging and corrosion protection. J. Mol. Struct. 2021, 1239, 130527. [CrossRef]
- Park, S.; Suh, B.; Kim, C. A chalcone-based fluorescent chemosensor for detecting Mg²⁺ and Cd²⁺. Luminescence 2022, 37, 332–339.
 [CrossRef]
- 38. Singh, N.; Chandra, R. A naked-eye colorimetric sensor based on chalcone for the sequential recognition of copper(ii) and sulfide ions in semi-aqueous solution: Spectroscopic and theoretical approaches. *New J. Chem.* **2021**, *45*, 10340–10348. [CrossRef]
- 39. Frisch, M.J.; Trucks, G.W.; Chlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. *Gaussian 16 Revision C.01*; Gaussian, Inc.: Wallingford, UK, 2016.
- 40. Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [CrossRef]
- 41. Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* **1988**, *37*, 785–789. [CrossRef]
- 42. Hariharan, P.C.; Pople, J.A. The influence of polarization functions on molecular orbital hydrogenation energies. *Theor. Chim. Acta* **1973**, *28*, 213–222. [CrossRef]
- 43. Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. *J. Chem. Phys.* **1982**, *77*, 3654–3665. [CrossRef]
- Wadt, W.R.; Hay, P.J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298. [CrossRef]
- 45. Klamt, A.; Moya, C.; Palomar, J. A Comprehensive Comparison of the IEFPCM and SS(V)PE Continuum Solvation Methods with the COSMO Approach. *J. Chem. Theory Comput.* **2015**, *11*, 4220–4225. [CrossRef] [PubMed]
- Lee, J.J.; Park, G.J.; Kim, Y.S.; Lee, S.Y.; Lee, H.J.; Noh, I.; Kim, C. A water-soluble carboxylic-functionalized chemosensor for detecting Al³⁺ in aqueous media and living cells: Experimental and theoretical studies. *Biosens. Bioelectron.* 2015, 69, 226–229. [CrossRef]
- 47. Prasad, Y.R.; Kumar, P.P.; Kumar, P.R.; Rao, A.S. Synthesis and Antimicrobial Activity of Some New Chalcones of 2-Acetyl Pyridine. *J. Chem.* **2008**, *5*, 144–148. [CrossRef]
- Rout, K.C.; Mondal, B. Copper(II) complex as selective turn-on fluorescent probe for nitrite ion. *Inorg. Chim. Acta* 2015, 437, 54–58. [CrossRef]