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Abstract: Development of electronic technologies for precise identification of fruit crop cultivars in
agricultural production provides an effective means for assuring product quality and authentication.
The capabilities of discriminating between grape (Vitis vinifera L.) cultivars is essential for assuring
certification of varieties sold in world markets. Machine olfaction, based on electronic-nose (e-nose)
technologies, is readily available for rapid identification of fruit and vegetative agricultural products.
This technology relies on detection of and discrimination between volatile organic compound (VOC)
emissions from plant parts. It may be used in all stages of agricultural production to facilitate crop
maintenance, cultivation, and harvesting decisions prior to marketing. An experimental e-nose
device was constructed and tested in combination with five chemometric methods, including PCA,
LDA, QDA, SVM, and ANN, as rapid, non-destructive tools for identification and classification
of grape cultivars. An e-nose instrument equipped with nine metal oxide semiconductor (MOS)
sensors was utilized to identify and classify five grape cultivars based on leaf VOC emissions using
supervised and non-supervised methods. Grape leaf samples were first identified as belonging
to specific cultivar types using PCA analyses, which are non-supervised classification methods,
with the first two principal components (PC-1 and PC-2) accounting for 89% of the total variance.
Four supervised statistical methods were further tested, including DA, QDA, SVM, and ANN, and
provided effective discrimination accuracies of 98%, 99%, 92%, and 99%, respectively. These findings
confirmed the suitable applicability of an MOS e-nose sensor array with supervised methods for
accurate identification of grape cultivars, which is useful for authentication of vine cultivar types for
commercial markets.

Keywords: machine olfaction; chemometrics; cultivar identification; electronic aroma detection;
grape classification; product authentication; Vitis vinifera

1. Introduction

Grape (Vitis vinifera L.) vines are bush-type plants of the Vitaceae family which rep-
resent a major world fruit crop, totaling > 80 million metric tons in annual production
worldwide, and are sold as raw fruits, fruit juice, and processed wines [1]. Thousands of
grape cultivars are available throughout the world. The fruits can be found in a variety
of colors ranging from red, yellow, and green to almost black. Grape vines grow best in
regions where maximum daily temperatures do not exceed 40 ◦C and minimum daily
temperatures do not fall below 15 ◦C. In Europe, the main producers of grapes are Italy,
France, and Spain, with EU-member countries accounting for 65% of global production over
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the past 7 years [1]. The economic and social significance of the grape and wine industries
have encouraged the development of innovative technologies for real-time monitoring of
vineyards to improve fruit and vine quality. The quality and prices of wines produced from
grapes largely depend on grape cultivar, soil and climate types, and effective cultivation
methods [2]. Consequently, there is increasing demand to develop precise methods for
identification and authentication of grape cultivars, particularly vine cuttings for sale to
vineyards, detection of prohibited species or cultivars in certain areas, or for estimation of
cultivar market prices in different production regions [2].

Conventional cultivar identification by analysis of leaf samples often involves destruc-
tive sampling, followed by physical, physiological, or biochemical measurements, and
genomic sequencing [3]. One common technique used for differentiating grape cultivars
relies on detecting morphological differences between cultivars. This method requires a
great degree of expertise, as do chemical and molecular methods based on isoenzyme or
DNA analysis. Chemical methods are also time-consuming and ineffective for rapid identi-
fication of grape cultivars [1]. The development of environmentally friendly (solvent-free)
automated methods for rapid identification of grape cultivars is crucial in grape industries
including vineyards, nurseries, and suppliers of grape products.

Recognition of grape cultivars before fruit growth would be an effective improvement.
One potential means of identifying grape cultivars noninvasively is to use electronic devices.
An electronic nose (e-nose) is a digital electronic device currently capable of identifying,
characterizing, and grading post-harvest fruits and vegetables by their volatile aromas. This
can be performed quickly and continuously by analysis of complex mixtures of volatiles,
or volatile organic compounds (VOCs) in fruit emissions without the need to identify
individual compounds present in the fruit aroma [4,5]. Early electronic nose devices were
designed to mimic a mammalian olfactory system using metal oxide gas sensors. The
sensor arrays had relatively poor specificity but resulted in an experimental instrument
that could discriminate between some odors or aromas from organic sources with good
reproducibility [6]. The electronic nose contains a multisensor array that measures all
VOCs in the aroma mixture simultaneously (as a collective sample) and generates electronic
output signals proportional to the types of volatile gases present. In this way, the device
output is an aroma signature that can be employed to identify and classify specific fruit
cultivars [7]. Electronic noses are highly suitable for detecting and analyzing a wide range
of VOCs from different chemical classes and are used extensively to identify and classify
foods and many types of agricultural products [8–10]. E-nose devices have also been used
in many other industries for a wide range of applications, including food quality and
safety [11,12], disease detection and diagnosis [13], biomedical applications [14,15], human
health [13], and environmental protection [16].

Several techniques are applied to classify e-nose output data derived from aroma
emission analyses. Principal component analysis (PCA) is the most common statistical
technique utilized for analyzing electronic-nose data. PCA can reduce high-dimensional
data to greatly simplify the analysis. Each principal component is orthogonal to other
components and contains portions of the variance in the dataset. While PCA is useful
for reducing data size, it does not cover the requirements for classifying data. Therefore,
methods such as support vector machines (SVMs) and artificial neural networks (ANNs),
operating similarly to biological neurons in the mammalian brain, are employed to fa-
cilitate aroma classifications [17]. An SVM finds the best classification model for data
separation [18,19]. Artificial neural networks similarly look for differences between aroma
signatures of different sample types (aroma classes) to classify e-nose aroma data [20,21].

Machine learning (ML) has recently been used in some industries, including food
and agricultural production [22,23]. It can effectively help with the rapid prediction and
evaluation of food product quality. However, a common problem associated with the use of
ML is overfitting of models because data generalization is not easily achieved. This usually
occurs in noisy datasets with many selected neurons, which offer high accuracy but poor
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performance. Among the supervised ML algorithms, ANNs are the strongest type due to
their nonlinearity and proper capacity to find patterns among inputs and targets.

Increasing interest in uses of portable e-nose devices for agricultural product identifi-
cation, classification, and authentication has supported incentives to further develop these
instruments for important practical applications. Our aim was to develop an e-nose sys-
tem with associated statistical methods capable of discriminating between different grape
cultivars as a means for certifying and authenticating individual cultivars as rootstocks
for commercial sale. This application is primarily focused on markets within the grape
nursery industry. The specific purposes of this study were to (1) evaluate the capability
of an experimental MOS e-nose to identify differences between five grape cultivars based
on whole-leaf VOC emissions, and (2) to further evaluate the accuracy of grape cultivar
classifications and identifications using five chemometric methods including PCA, LDA,
QDA, SVM, and ANN.

2. Materials and Methods
2.1. Sample Preparation

The leaves of five grape cultivars were provided from grape vineyards in the summer
near Bonab City in West Azerbaijan Province of northwestern Iran. These five cultivars
included: ‘Join’, ‘Rasmi’, ‘Askari’ (Vitis), ‘Tokilgan’, and ‘Keshmeshi’ (Sultana). After
preparing fresh leaves (by removing any free moisture) of different grape cultivars, approx-
imately 2.0 g of each whole-leaf sample was randomly picked from each grape cultivar
within a vineyard (containing more than 50 grape vines), placed in separate 240 cc capped
rectangular sampling containers for 120 min at 30 ◦C to build sufficient, previously de-
termined headspace volatiles with unknown VOCs derived from grape leaves. Twenty
2.0 g leaf samples (40.0 g total) were analyzed for each of the five grape cultivars (treat-
ments) within a short time after field collection. Room humidity was maintained at a
constant level for all experiments and sensor baseline was adjusted periodically as needed
to correct for sensor drift. Volatile emissions within sample containers were then analyzed
with the e-nose sensor array via data collection using machine olfaction, but individual
VOCs were not identified by chemical-analysis methods such as gas chromatograph-mass
spectrometry (GS-MS).

2.2. Data Collection with Machine Olfaction

An experimental olfactory machine (MAU-9 electronic-nose system) equipped with
nine metal oxide sensors (MOS) was used for all experiments. The names of the sensors (in
order, with primary VOCs detected) are as follows: TGS2620 (alcohols, organic solvents),
TGS813 (aliphatic alkanes), TGS822 (organic solvents), MQ3 (alcohols), MQ4 (urban gases
and methane), MQ9 (carbon monoxide and combustible gases), MQ135 (ammonia, benzene,
sulfides), MQ8 (hydrogen), and MQ136 (sulfur dioxide). This device was developed
and assembled by the Department of Biosystems Engineering of Mohaghegh Ardabili
University, Ardabil, Iran, as described in detail previously [20,24]. Outputs from the
sensor array were assembled to create an aroma smellprint profile of grape leaf volatiles
from samples of individual grape cultivars. The performance of the MAU-9 e-nose was
evaluated previously for discrimination of volatiles from other plant sample types [20].
More information about the device can be found in Rasekh et al. [24]. The detection
parameters set by the initial experiments were as follows. Sensor array flush and purge
time between samples was 100 s to prevent volatile carryover. At this initial stage, air flow
was initiated by a diaphragm pump which passed through a filter equipped with activated
carbon to remove VOCs from the purged air. Then clean, purged air was injected into the
sensor chamber to remove any volatiles attached to the sensor surfaces. The data sampling
total measurement time was 100 s with a total cycle run time of 300 s. During instrument
sampling, the pump moved sample air (containing grape leaf volatiles) from the 240 cm3

sample chamber into the 1414 cm3 sensor chamber. The flow rate of the sample gas to
the sensor array chamber was set at 200 mL/min. Data responses from the sensor array
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were instantly collected at a rate of once/s during the analysis phase. At the end of sample
data collection from the sensor array, clean air was pumped back into the sample gas path
for 100 s to clean and purge the gas sensors before subsequent sample analysis. Fifteen
replicate leaf samples of each grape cultivar were analyzed for the experiments. The output
voltage of the sensors changed due to exposure to the gases emitted from the sample (grape
leaf aroma volatiles) and sensor responses were collected and recorded on data collection
cards. The sensor signals from all sensors were recorded and stored at 1-s intervals. To
maintain e-nose stability, e-nose detection was maintained for all samples at 25 ± 1 ◦C.

Sensor response signals for the e-nose were expressed as a conductivity ratio, sym-
bolized as (G-G0) on the y-axis of the sensor array output. G refers to the conductivity of
the sensor upon exposure to the target gas sensor whereas G0 signifies the conductivity
of the gas sensor when exposed to the cleaning air. In this study, the mean value of the
relatively stable phase of the response curve was extracted from each e-nose sensor within
the sensor array.

2.3. Analysis by Chemometric Methods

The dataset from each sample analysis included preprocessed signals collected from
9 MOS gas sensors of the electronic nose. Principal component analysis (PCA) was used as
an unsupervised pattern recognition method to reduce the dimensions of the experimental
data. PCA allows an initial assessment of e-nose capability to be used as an unsupervised
classification model for grape leaf samples. E-nose performance was further evaluated for
grape cultivar detection and classification using the four supervised statistical methods of
LDA, QDA, SVM, and ANN.

LDA is a supervised learning method used for finding a linear combination of specified
properties for the proper separation of two or more object classes [24]. This is an effective
method for qualitative analysis and is widely employed for distinguishing samples from
different geographical areas [25].

SVM is a supervised learning and classification algorithm based on statistical the-
ory [26]. An SVM can nonlinearly plot input data, not linearly separable in low-dimensional
space, into high-dimensional space using a kernel function. A hyperplane is built in
high-dimensional space to maximize the margin between two classes and classify data in
high-dimensional space. The most common kernel function is the radial basis function
(RBF), which has high classification performance [27]. As SVM minimizes structural risk, it
is considered a proper classifier for nonlinear data and smaller sample sizes.

The normalized response of each MOS e-nose output data was employed to classify
grape cultivars using machine learning models based on ANN to establish a pattern
recognition model which classified grape cultivars based on VOC emissions from leaves.

The ANN method utilizes a set of connected nodes called artificial neurons. ANN
architectures possess several hyper-parameters including hidden layers, connection and
activation functions. In this present study, 9 neurons were considered for the input layer
based on nine sensors. Because this method was intended to classify five grape culti-
vars, 5 neurons were considered for the output layer. The majority, or 60% of the total
data were randomly selected for training while the remaining 40% were used for testing
and validation.

2.4. Model Evaluation Criteria

The confusion matrix is a table that evaluates the performance of a classification model
based on a set of experimental data with known true values. The following definitions are
provided for this study: true positive (TP), true negative (TN), false positive (FP), and false
negative (FN).

The performance of each classification model in this study was described by analyzing
accuracy, precision, sensitivity, specificity, area under the curve (AUC), and F values for
binary classification with ’positive’ and ’negative’ labels. Accuracy measures how a model
correctly identifies and meets a given condition. Accuracy is the ratio of correct predictions
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(both TP and TN) to the total number of investigated cases and can be calculated by
Equation (1):

Accuracy =
TP + TN

TP + TN + FN + FP
(1)

Sensitivity (also known as recall) is the true positive rate that evaluates the test perfor-
mance in detecting grape cultivars. It is a positive probability that a real positive is tested
and is calculated as presented in Equation (2).

Recall =
TP

TP + FN
(2)

Specificity, also called real negative rate (RNR), estimates how the test can correctly
identify wrong numbers. It is calculated as the number of correct negative predictions
divided by the total number of negatives according to Equation (3).

Specificity =
TN

TN + FP
(3)

Other parameters of precision, AUC, and F were calculated from Equations (4)–(6):

Precision =
TP

TP + FP
(4)

AUC =
Sensitivity + Precision

2
(5)

F =
2 × Precision × Recall

Precision + Recall
(6)

Receiver Operating Characteristic (ROC) and Area under the ROC Curve (AUC)

The ROC curve is a graph that shows the performance of a classification model at
all classification thresholds. This curve plots two parameters: true positive rate (TPR)
and false positive rate (FPR), where Specificity FPR = −1. The AUC measures the entire
two-dimensional region below the total ROC curve from (0, 0) to (1, 1). A model with
100% correct predictions has an AUC of 1.0 while the AUC of a model with 100% incorrect
predictions is 0.0. For AUC ≤ 0.5, the classifier fails to distinguish between positive or
negative classes. Thus, the AUC ranges of 0.9–1.0, 0.8–0.9, 0.7–0.8, and 0.6–0.7 imply
excellent, good, weak, and bad classification accuracies, respectively [28].

2.5. Software

Matlab® (vers. 2014a) software (Mathworks, Inc., Natick, MA, USA) was used to
perform neural network analysis. To analyze the PCA, LDA, QDA, and SVM, Unscrambler
software version 10.4 (Camus, Oslo, Norway) was used.

3. Results
3.1. E-Nose Response

Sensor output signals from the nine-sensor MAU-9 MOS e-nose sensor array con-
stituted a full multisensory-array output response, referred to as a smellprint or aroma
signature pattern. The unique aroma signatures (smellprint patterns), resulting from MAU-
9 sensor array output responses to individual aroma VOC emissions of grape leaf samples,
are presented in Figure 1a,b. Sensor output responses are indicated in both raw data output
format as well as in normalized sensor output format for comparative purposes using the
conductivity ratio (G-G0) to indicate a normalized value on the y-axis.
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Figure 1. Aroma signatures (smellprint patterns) resulting from nine sensor-output responses of the
MAU-9 electronic nose system to aroma VOC emissions of grape leaf samples. (a) Raw sensor array
output response; (b) Normalized sensor output response (conductivity ratio represented by G-G0 on
the y-axis).

Radar plots of sensor array output data were produced with a single radius to reveal
differences in sensor response patterns (i.e., aroma smellprints) resulting from analysis
of leaf volatiles from five grape cultivars. The average responses of individual sensors to
headspace volatiles present in aromas of 5 grape cultivars are plotted on a radar diagram
(Figure 2). The outputs of nine sensors in the sensor array (sensor numbers 1–9) are arranged
in sequential order, clockwise from the top sensor MQ9 (sensor 1) to MQ3 (sensor 9).
All output results for the five grape cultivars were plotted simultaneously for visual
comparisons on the radar plots.
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Figure 2. Radar plots of MOS e-nose sensor array output responses to VOC emissions of grape
leaf volatiles derived from five different grape cultivars. Legend color scheme (for radial lines of
e-nose plot data for grape varieties) are as follows: Join (light blue); Rasmi (green); Askari (red),
Tokilgan (orange), and Keshmeshi (purple). Peripheral numbers on the plot indicate individual MOS
sensor numbers.

Different sensors in the nine-sensor array exhibited differential responses to mixtures
of VOCs present in volatile emissions from analyzed leaf samples of each grape cultivar. The
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highest and lowest sensor responses were recorded for Tokilgan and Join grape cultivars,
respectively. TGS813 and MQ135 sensors showed the strongest sensor intensity responses
among the nine sensors, indicating a large significant contribution to sample classification.

A clear pattern of diversity (in smellprint signatures) was observed between the five
grape cultivars, confirming the ability of the e-nose to readily distinguish between different
cultivars using radar plots of e-nose sensor outputs. The response of sensor eight (TGS822)
for grape cultivar Askari was noticeably stronger than the response of this sensor to the
other four cultivars.

A summary of relative sensor intensity responses among all sensors provided an
indication of which sensors were most responsive to overall VOC components present in
leaf volatile emissions. Sensors with the lowest sensor intensity responses included sensor
one (MQ9), two (MQ4), six (MQ136), and nine (MQ3). Sensors that produced moderate-
intensity responses included sensors four (MQ8), five (TGS2620), and eight (TGS822). There
were only two sensors that produced high-intensity responses, including sensor three
(MQ135) and sensor seven (TGS813).

3.2. PCA

Electronic nose data of different grape cultivars were first analyzed by PCA to obtain
better insight into the grouping of samples (sample types). The principal components are
linear combinations of the main variables where the principal component represents the
largest variance, the second principal component represents the second largest variance,
and so on. PCA results indicated that 76% and 13% of the total variance of the data was
explained by PC1 and PC2, respectively. The first two main components constituted 89%
of the total variance of the normalized data (Figure 3a). The model based on the first two
principal components showed clear, well separated discriminations between grape samples
of the three cultivars Join, Askari, and Keshmeshi. However, there were no distinct data
clusters, resulting in relatively low separation and discrimination between cultivars Rasmi
and Tokilgan.

The relationships between the variables can be explored by plotting the correlation
loading diagram using Unscramble-x software. The loading diagram (Figure 3b) presents
the relative role of each sensor for the main components. This diagram consists of two
concentric circles; the inner circle shows 50%, while the outer circle demonstrates 100% of
the total variance of the data.

The higher the loading coefficient of a sensor (i.e., the closer to the larger circle), the
more prominent role the sensor contributes to identification and classification. Therefore,
sensors located on the larger circle play a greater role in data classification. According to
the figure, MQ9, MQ136, MQ4, and MQ135 sensors had the least response to and role in
data classification, while the other five sensors had an important role in identifying grape
cultivars from their leaf aromatic compounds. The variance of sensor signals for grape
leaves was relatively low, suggesting that sensor variance did not significantly influence
the reliability of individual sensor responses in their contributions to discriminations.

3.3. LDA and QDA

LDA and QDA analyses were utilized to classify grape cultivars based on leaf VOCs.
The results for these data analyses are presented in Figure 4a,b. After normalization, the
data of nine sensors were entered into the Unscramble-x software. The weight of the data
was one. According to the LDA results shown in Figure 4a, the first two differentiating
variables explained 98% of the total variance of the data, reflecting the relatively good
accuracy in the classification of five grape cultivars using the LDA method. Two out of
100 total data were not properly classified by the LDA approach. Figure 4b also presents
the results of QDA analysis, demonstrating 99% accuracy, which is a very high precision
level for classifying five grape cultivars. With this technique, only one sample was not
correctly identified.
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According to Equations (2)–(6), the classification performance parameters of LDA and
QDA methods are summarized in Table 1. Based on Table 1, the classification precision
of data using LDA and QDA methods was 98% and 99%, respectively. The classification
performance of the LDA and QDA statistical methods were similar and performed at a
high level for all five grape cultivars based on MAU-9 e-nose leaf data emissions.

Table 1. Confusion matrix for classification of five grape cultivars using LDA and QDA statisti-
cal methods.

Model Grape Cultivars Join Rasmi Askari Tokilgan Keshmeshi

LDA

Join 20 1 0 0 0
Rasmi 0 19 0 0 0
Askari 0 0 20 0 0

Tokilgan 0 0 0 20 1
Keshmeshi 0 0 0 0 19

QDA

Join 20 0 0 0 0
Rasmi 0 20 0 0 0
Askari 0 0 20 0 0

Tokilgan 0 0 0 20 1
Keshmeshi 0 0 0 0 19

Table 2 presents the confusion matrices obtained by LDA and QDA methods for the
classification of grape cultivars. According to Table 2, the classification accuracy of the
QDA method was higher than that of the LDA method, as the incidence of misclassification
was very small.

Table 2. Results and comparison of Nu-SVM and C-SVM statistical models 1 subjected to kernel functions.

Kernel
Function

C-SVM Nu-SVM

c γ Training Validation Nu γ Training Validation

Linear 100 1 90 89 0.255 1 91 90
Polynomial 10 10 89 89 0.255 10 88 88

Radial 0.01 100 85 84 0.745 0.1 88 88
Sigmoid 0.01 10 89 88 0.5 1 92 91

1 Statistical analysis models used for data analysis: Nu-SVM = Nu-penalty coefficient Support Vector Machine;
C-SVM = C-penalty coefficient Support Vector Machine. γ = core coefficient.

3.4. SVM

Two methods, C-SVM and Nu-SVM, were applied in this study to classify five grape
cultivars using SVM. Four kernel functions of radial basis, sigmoid, polynomial, and linear,
were used as the kernel functions of SVM, which have a penalty coefficient of C and Nu and
a kernel factor of γ. A cross-validation method was employed for validation with a weight
of one assigned to nine input sensors. The results of the SVM method are summarized
in Table 2. The highest accuracy was obtained by the Nu-SVM method and the sigmoid
kernel function with 92% and 91% accuracy for training and validation, respectively.

Two methods, C-SVM and Nu-SVM, were applied in this study to classify five grape
cultivars using SVM. Four kernel functions were used, including radial basis, sigmoid,
polynomial, and linear functions. Results of the SVM method are presented in Figure 5.
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Table 3 summarizes the classification accuracy and the confusion matrix for the Nu-
SVM method using the sigmoid kernel function which achieved higher accuracy.

Table 3. Confusion matrix for classification of five grape cultivars using SVM statistical methods.

Model Grape Cultivars Join Rasmi Askari Tokilgan Keshmeshi

Nu-SVM
(sigmoid)

Join 18 1 0 0 0
Rasmi 2 17 0 0 2
Askari 0 2 20 0 0

Tokilgan 0 0 0 20 1
Keshmeshi 0 0 0 0 17

The classification precision determined by the Nu-SVM method with sigmoid kernel
function was 0.924. Eight out of 100 input data were misclassified. The SVM model
exhibited lower classification accuracy for the five grape cultivars compared to LDA
and QDA.

3.5. ANN

The use of the recognition method with the help of ANN led to the minimum cross-
entropy (0.039) during the training course. An entropy error of less than 1% was applied
to stop training the output data from the E-nose. Table 4 shows the confusion matrix for
classifying five grape cultivars. Accordingly, only 1 sample was not properly classified,
leading to the classification accuracy of 99%.

Table 4. Confusion matrix for classification of 5 grape cultivars using ANN methods.

Topology Grape Cultivars Join Rasmi Askari Tokilgan Keshmeshi

9-3-5

Join 20 0 0 0 0
Rasmi 0 20 0 0 0
Askari 0 0 20 0 0

Tokilgan 0 0 0 20 1
Keshmeshi 0 0 0 0 19
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The functional parameters of ANN for the classification of five grape cultivars are
presented in Table 5. Classification of three cultivars (Join, Rasmi, and Askari) were
better than results for classification of cultivars Tokilgan and Keshmeshi based on all six
performance measures.

Therefore, the network with a 9-3-5 topology structure offered the highest classification
accuracy for the five grape cultivars. The statistical results of ANN classification models
using e-nose output are also listed in Table 5. The total accuracy was equal to 99% with
an error and cross-entropy of 1 and 0.030, respectively. This model was not under- or
over-fitted as the CE values obtained for training were lower than the values of the testing
phase, suggesting its high performance.

Table 5. Statistical results of the ANN classification models developed using the MOS e-nose sensor
array output data as inputs for classification of five grape cultivars.

Stage Samples Accuracy % Error 1 CE 2

Training 60 100 0 0.43
validation 20 100 0 0.83

Testing 20 95 5 0.824
Overall 100 99 1 0.030

1 Percent error indicates the fraction of samples that are misclassified. A value of 0 means no misclassifications,
100 indicates maximum misclassifications. 2 Minimizing cross-entropy results in good classification. Lower values
are better. Zero means no error.

3.6. Performance of Statistical Models

Test results comparing the performance accuracy of ANN, Nu-SVM, QDA, and LDA
statistical methods for classifying the five grape cultivars are presented in Table 6. Statistical
results were calculated using Equations (1)–(6) and their mean values were reported.
Among the tested models, ANN and QDA models showed the best performance in the
classification of grape cultivars. The highest value of classification recall for the five grape
cultivars for both QDA and ANN methods was 99%. Classification precision determined by
the Nu-SVM method with sigmoid kernel function was 0.924. Only eight out of 100 input
data were misclassified. The SVM model exhibited lower classification accuracy for the five
grape cultivars compared to LDA and QDA. ANNs, for the classification of three cultivars
(Join, Rasmi, and Askari), were better than results for classification of cultivars Tokilgan
and Keshmeshi based on all six performance measures.

Although precision and recall are valid criteria, one of them can be optimized at the
expense of the other. Therefore, the F-score criterion was adopted. The supervised methods
of ANN and QDA, along with electronic nose, may be used for satisfactory classification of
grape cultivars. No model achieved 100% accuracy. The highest accuracy was obtained by
ANN and QDA models while the lowest accuracy was obtained by the SVM model, which
could not correctly classify grape cultivars.

Figure 6 shows test results comparing the performance accuracy of ANN, Nu-SVM,
QDA, and LDA methods for classifying the five grape cultivars. Statistical results were
calculated using Equations (1)–(6) and their mean values were reported.

ANN and QDA models showed the best performance in the classification of grape
cultivars among the tested models. The highest value of classification recall for the five
grape cultivars for both QDA and ANN methods was 99%. Although precision and recall
are valid criteria, one of them can be optimized at the expense of the other. Therefore, the
F-score criterion was adopted. The supervised methods of ANN and QDA, along with
electronic nose, may be used for satisfactory classification of grape cultivars. No model
achieved 100% accuracy. The highest accuracy was obtained by ANN and QDA models
while the lowest accuracy was obtained by the SVM model, which could not correctly
classify grape cultivars.
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Table 6. Performance parameters of all models for classification of five grape cultivars.

Model Grape Cultivars Accuracy Precision Recall Specificity AUC F

LDA

Join 0.990 0.952 1.000 0.988 0.970 0.976
Rasmi 0.990 1.000 0.950 1.000 1.000 0.974
Askari 1.000 1.000 1.000 1.000 1.000 1.000

Tokilgan 0.990 0.952 1.000 0.988 0.970 0.976
Keshmeshi 0.990 1.000 0.950 1.000 1.000 0.974

Average per class 0.992 0.981 0.980 0.995 0.988 0.980

QDA

Join 1.000 1.000 1.000 1.000 1.000 1.000
Rasmi 1.000 1.000 1.000 1.000 1.000 1.000
Askari 1.000 1.000 1.000 1.000 1.000 1.000

Tokilgan 0.990 0.952 1.000 0.988 0.976 0.976
Keshmeshi 0.990 1.000 0.950 1.000 0.974 0.974

Average per class 0.997 0.996 0.990 0.990 0.998 0.990

Nu-SVM
(sigmoid)

Join 0.970 0.947 0.900 0.988 0.967 0.923
Rasmi 0.930 0.810 0.850 0.950 0.880 0.829
Askari 0.980 0.909 1.000 0.975 0.942 0.952

Tokilgan 0.990 0.952 1.000 0.988 0.970 0.976
Keshmeshi 0.970 1.000 0.850 1.000 1.000 0.919

Average per class 0.968 0.924 0.920 0.980 0.952 0.920

ANN

Join 1.000 1.000 1.000 1.000 1.000 1.000
Rasmi 1.000 1.000 1.000 1.000 1.000 1.000
Askari 1.000 1.000 1.000 1.000 1.000 1.000

Tokilgan 0.990 0.952 1.000 0.988 0.970 0.976
Keshmeshi 0.990 1.000 0.950 1.000 1.000 0.974

Average per class 0.996 0.990 0.990 0.998 0.994 0.990Chemosensors 2022, 10, x FOR PEER REVIEW 13 of 18 
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4. Discussion

The MAU-9 MOS experimental e-nose tested in this study allowed for effective dis-
crimination between certain grape cultivars based on analysis of leaf volatiles using specific
statistical methods for e-nose data analysis, as indicated in subsequent discussions. This
new tool provides a means for certifying and authenticating individual grape cultivars as
rootstocks for commercial sale within the grape nursery industry. This capability is quite
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significant given that wine and commercial grapes, sold as fruits and for juice production,
are high cash-crop industries worldwide with significant value placed on specific cultivars
responsible for producing high-quality products. Thus, the importance of certifying specific
grape cultivars is essential to maintain the integrity of product quality for rootstocks sold
by the grape nursery industry. To our knowledge, this is the first report of an e-nose device
being used for the particular purpose of discriminating between grape cultivar rootstocks
via VOC analysis of grape leaf volatiles. Some limitations of this method may include
various modifying parameters that could affect aromas emitted by grape vines such as
vine age, geographical variations in environments, changing climatic conditions, edaphic
factors such as fertilizers applied to vineyard soils, and the presence of pests, diseases, and
agricultural pesticide residues on vegetative surfaces of grape plants.

The intensity of the sensor response of the nine sensors in the MAU-9 sensor array
to all leaf volatiles, derived from the five grape cultivars tested, was strongest in cultivar
Tokilgan, with relative sensor intensity responses to leaf volatiles reduced for the other four
cultivars, in order of decreasing magnitude, for Keshmeshi, Rasmi, Askari, and Join. This
relative strength in MAU-9 sensor responses, as indicated by the radar plot, was very useful
in contributing to effective discrimination between the five cultivars based on leaf volatiles.
The strongest sensor responses to leaf volatiles of all five grape cultivars occurred for sensor
TGS813, with slightly lower responses from sensor MQ135, and with even lesser relative
responses from sensors TGS2620 and TGS822. One exception was the abnormally strong
response of sensor TGS822 to leaf volatiles from cultivar Askari. These differences in sensor
response intensities and patterns suggest that varying amounts and types of VOCs are
present in volatile emissions from different grape cultivars, which could provide additional
information for effective cultivar discriminations through more detailed chemical analysis
of grape leaf volatiles.

Known sensitivities of component MAU-9 sensors in the sensor array to certain chemi-
cal classes of VOCs provided some indications of likely types of major VOCs most prevalent
in volatile emissions from grape cultivars. The strongest responses of sensors TGS813 and
MQ135 to grape volatiles suggest major VOC components, including aliphatic alkanes, aro-
matic compounds (benzene derivatives), and sulfides. Lower responses to sensors TGS2620
and TGS822 provide evidence that lesser component VOCs in grape volatiles may contain
alcohols and polar hydrocarbons, likely containing oxygen and nitrogen functional groups,
such as aldehydes, ketones, esters, and amino or nitrile functional groups. Grape cultivar
Askari appeared to contain particularly strong VOC components of polar hydrocarbons.

Five chemometric methods (PCA, ANN, LDA, QDA, and SVM) were tested in the
present study to classify five grape cultivars based on electronic-nose analyses of VOC
emissions from whole leaves. The unsupervised method using PCA indicated a classifi-
cation accuracy of 89%, based on the total variance explained by the first two principal
components. Supervised classification algorithms, including ANN, LDA, QDA, and SVM,
were described by analyzing accuracy, precision, sensitivity, specificity, AUC, and F-value
for binary classification with labels of ’positive’ and ’negative’. The best results were
provided by the ANN and QDA classifiers which classified different grape cultivars with
99% accuracy. Thus, the ANN and QDA statistical classification methods are preferentially
recommended here for more effective discriminations between grape cultivar rootstocks,
via leaf volatile analysis using the MAU-9 e-nose, by vineyards and the commercial nursery
industry. However, the SVM method did not yield high classification accuracy, perhaps
due to incompatibilities of this method with e-nose sensor data due to the specific chemical
nature of VOCs present in grape leaf volatiles. Using the confusion matrix, the Tokilgan
cultivar was correctly detected by all models, while the Keshmeshi cultivar was detected at
a lower accuracy. To the best of our knowledge, the present study is the first to compre-
hensively test five different chemometric algorithms for effectiveness in identifying and
classifying grape cultivars based on leaf volatile emissions.

Khorramifar et al. [21] examined the identification of potato cultivars using machine
olfaction. They reported that high detection accuracy was achievable using an electronic
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nose with the PCA method. They also stated that 100% accuracy can be achieved in the
identification of potato cultivars using electronic nose and LDA and ANN methods.

Machine olfaction was used to classify 17 rice samples into four categories [29]. The
report showed that SVM was the best classification method, with an accuracy of 100%. The
k-nearest neighbor (KNN) method was second best for classifying rice samples. In another
study [30], the KNN method was employed to detect three rice cultivars with an accuracy
of 100%. It was stated that the accuracy of the KNN method was better than PCA and
LDA methods.

Lim et al. [31] achieved good results using the PCA method with an e-nose to grade
the quality of Chinese commercial moccasin yarn. They were able to classify yarn quality
via the PCA method with 94.3% accuracy. Their results are in line with the results of the
current research.

Jana et al. [32] used machine olfaction with ANN, PCA, and LDA to detect aromatic
and non-aromatic rice. The accuracy of the results obtained by these methods was 93%,
96.5%, and 80%, respectively. The results of our research showed much higher accuracy,
perhaps due to the presence of different VOCs emitted from grape leaves. Other types of
input variables in the group of non-destructive methods are based on sensors capable of
mimicking organoleptic perceptions, such as for e-noses and e-tongues [33].

Electronic-nose devices previously have been utilized to specifically analyze leaf
volatile emissions to distinguish between different varieties and cultivars of herbaceous
(leaf-based) agricultural field crop products, including herbs and teas, but not for grape leaf
volatiles. Bernáth et al. [34] applied an NST-3320 (AppliedSensor Sweden AB, Linköping,
Sweden) e-nose for identification of oregano herb cultivars to accelerate the cultivar selec-
tion process for carvacrol essential oil content. Yu et al. [35] employed an e-nose for the
rapid identification of green tea quality grades, using two neural networks, backpropaga-
tion neural network (BPNN) and probabilistic neural network (PNN), with classification
success rates of 100% and 98.7%, respectively. An electronic nose with 12-MOS sensors
also effectively classified the aroma qualities of three Indonesian black teas using PCA
discrimination with PC-1 and PC-2 principal components accounting for 80.3% and 15.3%
of the total variance, respectively [36].

Several types of e-nose and e-tongue devices have been developed to distinguish
between cultivars of agricultural field crops. A conducting polymer (CP)-based electronic
tongue, combined with PCA and partial least squares (PLS) data analyses, was used to
discriminate between five different soybean cultivars with genetically distinct characteris-
tics [37]. CP e-nose devices generally are more sensitive to sample moisture content and
more susceptible to sensor poisoning than MOS sensors. Trirongjitmoah et al. [38] devel-
oped an e-nose method with supporting technologies, including amplified fragment length
polymorphism (AFLP) markers and gas chromatography-mass spectrometry (GC–MS),
to characterize, detect chemical differences, and group four Thai garlic cultivars. Zhou
et al. [39] investigated the capabilities of an e-nose for distinguishing between wheat seed
(grain) varieties. They applied PCA and LDA statistical methods. PC1 and PC2 explained
99.7% of the total variance, while LD1 and LD2 accounted for 97.2% of the variance. The
classification accuracy using the BPNN model for training and testing data sets was 100%
and >90%, respectively.

Applications of e-nose devices for quality grading of fruits, fruit types, and cultivar
identification have also been developed for the fruit industry [6]. Sun et al. [40] used an
e-nose with GC-MS analysis to discern differences between diploid loquat fruits based
on volatile emissions and chemical components. Volatile profiles were effective in dif-
ferentiating between most triploid loquat cultivars, but PCA did not clearly separate
white-fleshed and red-fleshed loquat varieties. Four cultivars of mandarin orange with
very similar morphologies were distinguished by combining metabolomics, DNA bar-
coding, and an electronic nose [41]. Electronic-nose methods coupled with chemometrics
effectively distinguished mandarin orange cultivars. Metabolomic analysis with liquid
chromatography-quadrupole time of flight-mass spectrometry (LC-QTOF-MS) was used
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to identify nine species-specific chemical marker metabolites that could be applied for
discrimination between certain cultivars. In addition, 19 single nucleotide polymorphism
(SNP) sites within the nuclear internal transcribed spacer 2 (ITS2) region, and three stable
SNP sites in the ITS2 region, were found to be useful for distinguishing four mandarin
orange cultivars.

Other studies have demonstrated capabilities of e-nose devices to detect differences in
fruit cultivars and aromatic tree wood types using e-nose devices alone. Pruteanu et al. [42]
developed an 18-sensor MOS electronic-nose method to classify seven Romanian apple
cultivars by volatile emissions. Their results indicated that the e-nose could successfully
discriminate between all varieties of apples tested with almost 100% accuracy and a variance
of greater than 90%. Aditama et al. [43] used a 3-MOS e-nose equipped with neural
networks to classify Gyrinops versteegii (=Aquilaria versteegii) agarwood volatiles. Their test
results showed that an e-nose could detect differences in quality of agarwood based on
emissions of essential oil VOCs. This aromatic resinous wood oil, extracted only from the
heartwood of old-growth trees, is extremely rare and valuable as a ceremonial incense
(called aloeswood) in many Asian cultures [44].

The e-nose sensor array generates digital output responses to VOCs from food and
other agricultural products, which could be classified after processing using supervised
algorithms. The use of supervised algorithms to classify food and agricultural products
has increased in recent years and is expected to further expand in the future. A systematic
comparison of the main supervised algorithms useful for performing accurate classifications
based on dataset variables provides new information to help determine the best methods
for identifying and classifying agricultural products using e-nose technologies.

5. Conclusions

An experimental machine olfaction e-nose system with nine metal oxide sensors was
used to identify and differentiate between grape cultivars based on differences in leaf
VOC emissions. The chemometric methods evaluated here were effective for classifying
complex aroma data obtained from an electronic-nose sensor array. The combination of an
e-nose system with appropriate classification methods provided an innovative means for
the rapid, non-destructive identification of grape cultivars via leaf volatiles with potential
applications for differentiating between and certifying (authenticating) vegetative vine
cuttings of specific cultivars based on leaf volatiles (aroma). Cultivars may be identified
prior to the appearance of fruits on vines. This method is potentially useful in cultivar
processing units and food industries for choosing and purchasing certified grape cultivars
for sale in commercial nurseries. The comparison of performances of these classification
algorithms with an MOS e-nose are useful (by extension) for identification of many other
types of crop-specific cultivars utilized in agricultural production.
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